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Plan of the talk

• Dynamical Casimir effect for perfect mirrors

• Functional approach, dissipation, and  dynamical Casimir
effect for imperfect mirrors

• Forces on accelerated mirrors due to excitation of internal
degrees of freedom

• Dissipative effects in imperfect moving mirrors

     I. Normal motion

II. Vacuum friction

• Conclusions



Dynamical Casimir effect: intuitive idea

Accelerated mirror
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Simplest case: perfect mirrors 

Motion induced radiation
Accelerated mirror
(non relativistic)

Dissipative force on the mirror. Dimensional analysis:

  

! 

f (t) "  
hAq

(5)
(t)

c
4

Boundary conditions



Performing the calculation: 

Oscillating mirror:
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Parametric amplification in resonant cavities 

The number of created photons
grows exponentially when

Oscillating mirror  

vacuum
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The number of created photons is
 limited by the Q-factor of the cavity



Ca

• Similar calculations for  TE and TM modes of the electromagnetic field, 
  for cavities with different geometries 

• Intermode coupling if 

• All modes coupled in 1+1 (or TEM in 3+1) 

•Time dependent electromagnetic properties: Padova experiment, 
  Gothenburgh experiment….

                    

                                            
                                             Review article: D.Dalvit, P. Maia Neto, FDM (2011)

                                          



In this talk: imperfect moving (and deforming) mirrors

Analysis of the Dynamical Casimir effect taking into account
the microscopic degrees of freedom of the moving mirrors

 mirror

Vacuum field 
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Internal degrees of freedom



Functional approach, dissipation, and dynamical Casimir effect

Main idea:

Vacuum field + microscopic degrees of freedom on the moving mirrors

Dissipative effects                     Vacuum persistence amplitude  < 1



Functional approach, dissipation, and dynamical Casimir effect

Main idea:

Vacuum field + microscopic degrees of freedom on the moving mirrors

Dissipative effects                     Vacuum persistence amplitude  < 1
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The motion of the mirrors can produce excitations of the 
electromagnetic field and/or of the microscopic degrees of 
freedom in the mirrors 

em field Internal degrees
of freedom



Different sources of dissipation:

•  photon creation

•  excitation of internal degrees of freedom due to exchange of virtual photons
    (vacuum friction)

• excitation of internal degrees of freedom due to inertial forces 



Different sources of dissipation:

•  photon creation

•  excitation of internal degrees of freedom due to exchange of virtual photons
    (vacuum friction)

• excitation of internal degrees of freedom due to inertial forces 

Technical points:

For simplicity we will work with a scalar vacuum field and thin mirrors

We will compute the Euclidean effective action and then obtain the 
vacuum persistence amplitude using a Wick rotation, and the force 
on the mirror using a retarded prescription

! 

"E[q(t)]#"in$out[q(t)]

! 

"#E

"q
$

"#

"q
retarded

= Fdis



The Euclidean effective action

Vacuum field

Internal  d.o. f.

is the spacetime volume swept by a deforming mirror

! 

g"# Induced metric

Internal degrees of freedom = quantum field theory in curved
spacetime



Integrating the internal degrees of freedom

Inertial effects.
Do not depend on 
the coupling to the 
vacuum field

In some particular limits provides a boundary 
condition for the vacuum field



The acceleration of the mirror excites the internal
degrees of freedom

Known result from Quantum Field Theory in Curved Spacetimes:
for massless internal d.o.f:

+ …..



The acceleration of the mirror excites the internal
degrees of freedom

curvature associated to the mirrorNonlocal effective action

Known result from Quantum Field Theory in Curved Spacetimes
In 2+1 dimensions. For massless internal d.o.f:



The acceleration of the mirror excites the internal
degrees of freedom

Known result from Quantum Field Theory in Curved Spacetimes
In 2+1 dimensions. For massless internal d.o.f:

Effective action fro graphene: massless Dirac field 



For standing waves on the mirror



Comparison with the usual DCE (perfect mirrors)

(Golestanian & Kardar, Saharian)



Comparison with the usual DCE (perfect mirrors)

(Golestanian & Kardar, Saharian)

threshold



Coupling to the vacuum field: sidewise and normal
motions
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Vacuum field

Internal d.o.f.
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“normal motion”

“Sidewise motion”



The effective action is of the form:

For a scalar vacuum field



The effective action is of the form:

For a scalar vacuum field

After integration of the internal degrees of freedom (linear response theory)

Here we are neglecting the term independent of the vacuum field. 



g, 

Example 1: a set of harmonic oscillators on a static mirror generate a 
delta-potential for the vacuum field



Example 2: relativistic massless fermions coupled to the
electromagnetic field 

Fosco, Lombardo, FDM, PLB (2008)

Graphene sheet if c       vF,  Bordag et al PRB (2009)
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Effective action for a single mirror:

Effective action for two mirrors:

Each one can have normal or sidewise motion

We will assume that V is spatially local in the rest frame of the mirror



Normal motion

We perform an expansion in powers of 
a

Linear term
Quadratic terms



On general grounds we expect: linear term

Usual static Casimir
force between thin mirrors

Explicitly:

x



The quadratic term:
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With:

Fourier transform of the form factor



Fourier transform of the form factor

Poles at resonant frequencies for perfect mirrors. Breakdown
of perturbative calculations



1+1 dimensions, “graphene-like” coupling

Electromagnetic analogy:

(no additional dimensionful constants)

The vacuum field propagates at a velocity
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Limit of perfect mirrors:
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Well known result: Jaeckel & Reynaud, Maia Neto & Mundarain

(strong coupling)



Weak coupling
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Weak coupling

! 

" # 0   or   $ #%

Leading term independent of a and similar to perfect conductor



Weak coupling
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(the time of flight between the two mirrors does not depend on χ)



Sidewise motion (Barton 1996) 
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We consider two parallel mirrors:



For constant velocity

The usual static Casimir force depend on the velocity



For constant velocity

For the particular case:

And we expect:
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Summary

Interaction between internal degrees of freedom and vacuum field

Vacuum persistence amplitude  < 1

Dissipative
effects

Reaction force due to 
photon creation

Vacuum friction

Excitation of internal d.o.f.

Analogue of QFTCS

In 2+1 dimensions

We are studying the generalization to the electromagnetic field and to realistic internal 
degrees of freedom, using the Schwinger-Keldysh formalism

Non perturbative?
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Conclusions
• We have studied dissipative effects on imperfect moving mirrors using the

functional approach. The analysis of the vacuum persistence amplitude allowed us
to consider on the same footing different kinds of dissipative effects

• For “normal motion” we obtained general expressions for the effective action in
terms of the (analogous of the) polarization tensor that decribes the interaction
between the vacuum field and the internal degrees of freedom of the mirror

• Explicit examples in 1+1 dimensions

• For “sidewise motion” we found that in general there is “vacuum friction” between
thin mirrors even for constant velocity. The interaction must be non local

• We described a new dissipative effect related to the excitation of the internal
degrees of freedom of the mirrors due to the acceleration.

• For simplicity we worked with a scalar vacuum field. We are studying the
generalization to the electromagnetic field and to realistic internal degrees of
freedom, using the Schwinger-Keldysh formalism



For constant velocity

The structure is similar to Pendry’s result:


