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Graphene

-Truly two-dimensional material
-Honeycomb lattice

-Unique electronic properties

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhasgy. Dubonos, I.V.
Grigorieva, A.A. Firsov, Sciencg06, 666 (2004).




The lattice

FIG. 1. The honeycomb lattice as a superposition of
two triangular sublattices. The basis vectors are
1= (/3/2, — $)a; T,=(0,1)a and the sublattices are
connected by by=(1/2v3,5)a; b,=(1/2v3, - L)a;
b3=(~1/v3,0)a.

A sites generated hy; andas

b1, ba, bg connectA with B sites

The reciprocal lattice

identified sides

ij= €m
jk= mn
k8= ni

equivalent corners

R1 and Ry vectors generate reciprocal lattice
Only two non-equivalent vertices




Tight binding Hamiltonian

H=a) UNAV(A+b)+VIA+b)UA).
Al

In the momentum space

d(k) = o (e““'bl + kb2 4 eik'bi%) = 0 at the six corners of the Brilloun zone.

— L 4r 1 - ' i
Take K1 = i\/§a (O, \/g) as the two non-equivalent onésonduction and valence

bands touch af 4.




Expand around<+ (k = K+ + p) in the continuum limit § — 0) up to first order im

Ulp+ K+)

Calling¥ L =
V(ip+ K+)

0 — 1Dy
. Dz + Dy

1Dz F Dy 0

Dirac Hamiltonian for massless fermioms2+1 dimensions with Fermi

: _ aaV3 6 m
velocityvp = <5~ ~ 10°~
P.R. Wallace, Physical Revie¥l, 622 (1947)
Gordon W. Semenoff, Physical Review Lettéf; 2449 (1984)
C.L. Kane and E.J. Mele, Physical Review Letté8s1932 (1997)




EFFECTIVE THEORY FOR CHARGE CARRIERS MASSLESS
DIRAC like theory in 2+1, reducible representation and twlavors”

Valleys K 4 - the two irreducible representationspMmatrices in 2+1

A and B type of sites - upper and lower componentsboin each
representation

Graphene is gapless material




Opening a gap

How useful is graphene?

GAPLESS material

To obtain grafene-based transistorsoatrollable gapmust be opened

Samples of finite size a natural guess to open a gap

Measurements of the electronic conductivity in devicesltmsa gap
Melinda Y. Han, Barbaro®zyilmaz, Yuanbo Zhang and Philip Kim, Phys. Rev. L&8,
206805 (2007).

S.Schnez, F. Molitor, C. Stampfer, JitBnger, I. Shorubalko, T. Ihn and K. Ensslin, Appl.
Phys. Lett.B94, 012107 (2009).

Melinda Y. Han, Juliana C. Brant and Philip Kim, Phys. RevitL£04, 056801 (2010).




Study a finite size sample

Most theoretical approaches presuppose orientation deper of the adequate boundary
conditions




Our work on boundary conditions

Study a family of local boundary conditions (b.c.) for massl Dirac fields fonanoribbons
andnanodots

Show that MIT bag b.c. give the best agreement with experisnen

C.G.B and E.M. Santangelo, arXiv:1011.2772

Study the eigenvalue problents, V4 (z,y) = F+ V4 (z,y),
with H4- = —i020,; =+ 018y
Domain of the differential operator defined by a family ofdbboundary conditions which:

1. Are separately imposed in each valley
2. Give a vanishing flux of current perpendicular to the baugd

3. Are defined through a self-adjoint projector

Study the problem arounf 4, when necessary, boundary conditions arond will be
discussed.




Put a boundary at

\111_0‘2 W proportional toperpendicular current

\Iflal W proportional tocurrent along boundary

The most general one-parameter family of b.c. satisfying3. t

(I + o1 e_iO‘UQ)\IJ+Ja;:a:O

(I +0o1cos(a)+ o3sin(a))V4 |z=zy =0

Note: o = 0, 7 MIT bag boundary conditions

a = £ 45 mimic zigzag boundary

Zigzag b.c.= tangential current at the boundary vanishes
MIT = current along the boundary proportional to density of charg

Propose, for eachy, ¥, (z,y) = e'Fv Yoy (z)




Half Plane

Take the boundary at = 0

Solve the eigenvalue problem with the normalizability aood whenxz — oo

For alla # 0, 7, there are apart from bulk states, edge states, correspptadi
E = ky cos a, with £, sin a > 0, eigenfunctions decreasing exponentially with

Correspond ta&& = 0 in the zigzag case

Note: This shows zigzag b.c. do not define, in a compact regithsmooth boundary, a
Lopatinski-Shapiro boundary problem.




Nanoribbons

Put a second Boundary at= W

Experiments show gap, symmetric around Dirac Point

Two ways of obtaining a symmetric spectrum:

1. Same projector at both boundareBRO MODESV« (Appear for all values o, for
a = *5,andforky, = 0fora # +3).

2. Orthogonal projectors at both boundaries

We take ortogonal projectors at both boundaries

H Wy (z,y) = B4V (2,y),

(I+o01e )W, |,g=0, (I—01e"2)U_ |,y =0

E=+\/k2+k2




Spectrum for MIT & = 0, 7)

cos (k,W)=0 = FE,

e

e equally spaced spectrum in

e energy gap for MIT bag b.c

Ag =

i
%%




Spectrum for albx £ 0, 7

kz cos (kzW) = ky sinasin (kz W), for B # +k,,

1
ky =

= _ for B = *+ky .
W sin o

Y

Both equations break the invariance unélgr— —k,
Recovered by imposing exactly the same boundary condidartbe eigenfunctions
around the other valley

1
Fork, =0, ky = (n;?)w, no matter the value af

vk, # 0, values ofk; not equally spaced

Imaginary as well as real values kf are allowed
Callingrk = 1k, for E # £k,

1

k cosh (kW) = ky sin asinh(kW), for |ky| > ——
W sin «

Fora = + 7 (zigzag b.c.)energies arbitrarily closeto zero = NO GAP
Va #+35 AFE < 3




Comparison with the experiments
Experiments show a transport gap as a function of the gatagel

Zigzag boundary conditions are then eliminated as canebdatdescribe the physical
situation.

Va # £, recovering UnitsA E < F“{,g” = %wt% = 12.37eV > (a is the next
neighbor distance). For MIT bag boundary conditions= 0, 7) the equal sign holds. The
numerical value ofA E' we obtained is in agreement with values obtained by Yu-Miimgdt

al, but smaller than the energy gap obtained by Melinda Y., daliana C. Brant and Philip

Kim.

Experiment performed by Yu-Ming Lin et al. shows equallysggplateaux in the
conductivity

This suggests that MIT bag boundary conditions are the anles imposed in the
continuous model.

Experiment performed by Melinda Y. Han, Barbafosyilmaz, Yuanbo Zhang and Philip
Kim shows the measured gap in the gate voltage doesn’t depetitk orientation of the
boundary.

This is the case if MIT bag boundary conditions are writtei/as- ) ¥ (x
wheren is the inward normal vector.
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Energy Gap (meV)

Ribbon Width (nm)

Yu-Ming Lin, Vassili Perebeinos, Zhihong Chen and Phaedeoufis, Phys. RevB78,
161409(R) (2008).

Melinda Y. Han, Juliana C. Brant and Philip Kim, Phys. RewvitL£04, 056801 (2010).

Melinda Y. Han, Barbaro®zyilmaz, Yuanbo Zhang and Philip Kim, Phys. Rev. L&8,
206805 (2007).




Quantum dots
Treat the case of a circular graphene dot of raditus
Polar coordinates

Boundary Value problem

—70r +i 105 | 4(r,0) = Bu(r,0)

(I — 77'6_“”9) v(r=R,0)=0
P(r,0) = p(r,0 + 2m),

~" = o1 cos O + o2 sin 6 andfy@ = 09 cosf — o1 sinb.

Zigzag boundary conditiongy(= =47 ) allow for an infinite amount of zero modes
This was expected from the facts that they don’t satisfy thedtinski-Shapiro condition
and the region is compact with a smooth boundary.

Experiments on quantum dots also present a gap

Treat cases # + 5




Spectrum forx # + 5

(1-sina)Jn(|E|R)+scosa)Jp+1(|E|R) =0, n =0, ...,00

(1—sina)Jp+1(|E|R)—scosa)Jn(|E|R) =0, n=0,...,00

Jn, is the Bessel function of order, ands is the sign of the energy.

The experiment performed by S.Schnez et al shows clearyitbagap in a quantum dot is
symmetric around the Dirac point.

This, again, points to the MIT boundary conditions as thatr@gpnditions to impose on the
continuum model in order to reproduce the experimentaltgstince all the remaining
values ofa produce a spectral asymmetry.

S.Schnez, F. Molitor, C. Stampfer, Jit@nger, I. Shorubalko, T. Ihn and K. Ensslin, Appl.
Phys. Lett.B94, 012107 (2009).




Casimir energy of nanotubes and nanoribbons

Graphene nanotube

-Compactifyy direction with compactification lenglit and finite lenght¥” in the
perpendicular direction

-Impose MIT bag boundary conditionsat= 0 andx = W

To obtainnanoribbortake% — oo limit

Casimir energy with zeta regularization

EC:_QSQQU Z o Z B,

nl>0 nl<0

gs andg, spin and valley degenerations

Spectrum E,, ; = + [((n—|— %)%)2%— ((l—|— g)

n=20,...,00 [ = —o00,...,00

Jd to allow arbitrary periodicity in the compact direction




0o oo
_gsgv 2 : 2 :
L

l=—00 n=0

Mellin transforming

E_LC _ 27‘(‘ ~°gs gv/dtt__lz E—t([(n—l—%)ﬁf—l—[l—i—%ﬁ)

l=—ocon=0

s=-—1

To be able to take thé — oo limit, we write thel-sum in terms of a Jacobi theta function
and use standard inversion formula for it.

27T\

—|—4ZZ/ dt cos(mld)t

l=1 n=0




Performing the integral and writing first term as a Hurwittaziinction

() s () () w1 d

—|—4§: icos(ﬂlcS) !

1) L
n - -
=1 n=0 ( + 2)2W

s=-—1

Relating the Hurwitz zeta function to the correspondingnian one, and using the
reflection formula for this last




Nanotube compactification lengtharbitrary periodicity §)
MIT bag boundary conditionat the extremes

[©.@)

Ec 295 9o (n—|—
T T Z Cos(wlcS)f

[=1,n=0

Nanoribbon limit, — oo

Independent o

Attractive force

Same result obtained considering

gsgv/ dkz n+




Alternative expression obtained extendimgum

Ec . 29s gu
LW

S. Bellucci and A.A. Saharian, Phys. R&80, 1050003 (2009).

Allows to take% — oo limit (long nanotube). In this case

Ec  gs 9o f: cos (nmd)
W L2 ns

n=1




Final comments

MIT bag boundary conditions seem to agree reasonably wiil experiments with
nanoribbons

Predict the existence of a gap which does not depend on thetation

Equally spaced energy levels

Only boundary conditions which give a symmetric spectruauad zero in the case of
nanodots

We performed the calculation of the Casimir energy for nabes of arbitrary chirality

In the nanoribbon limit, the Casimir energy shows there iattactive force between the
edges of the robbon




