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Hawking radiation



Euler-Heisenberg Effective Action

W. Heisenberg & H. Euler, Consequences of Dirac’s theory of the positron, 
Zeitschr. Phys., 98, 714 (1936)



some historical background and context



Heisenberg & Euler



Heisenberg & Euler Casimir



brief timeline

• 1928: Dirac equation, relativistic electron
• 1929: Dirac sea, hole theory
• 1931: Dirac: hole = positive-charge-electron

“A hole, if there were one, would be a new kind of particle, unknown to 
experimental physics, having the same mass and opposite charge to an electron’’

• 1932: Anderson: discovered (& named) the “positron”
• 1933 Solvay conference: Dirac: hole = positron,
           vacuum polarization and charge renormalization

• 1933/34: Heisenberg: vacuum polarization in Dirac theory
• 1936: Heisenberg’s student Hans Euler: PhD at Leipzig
• 1936: Heisenberg & Euler effective action



the road from 1928 to 1936 was not easy ...



Heisenberg and Pauli correspondence

“That the hole theory will lead to many kinds of horrors as long as the 
self-energy cannot be put in order, that I quite believe”   H to P, 1934

“With regard to quantum electrodynamics, we are still at the stage in which 
we were in 1922 with regard to quantum mechanics. We know that 

everything is wrong.”                                   H to P, 1935

“The saddest chapter of modern physics is and remains the Dirac theory’’                                     
H to P, 1928



Positron theory

Heisenberg: The fluctuations of charge connected with the formation of matter 
from radiation, 1934

Heisenberg: Comments on the Dirac theory of the positron, 1934

Dirac: Theory of the positron, Solvay Conference, 1933

“Halpern and Debye have already independently drawn attention to the fact that the 
Dirac theory of the positron leads to the scattering of light by light - even when the energy 

of the photons is not sufficient to create pairs.”

“Any state of negative energy which is not occupied represents a lack of 
uniformity and this must be shown by observation as a kind of hole. It is 

possible to assume that the positrons are these holes.”

Euler & Kockel: The scattering of light by light in Dirac’s theory, 1934

“The connection between the quantities B and D, on the one hand, and E and H, on the other, is 
therefore nonlinear in this theory, since the scattering of light implies a deviation from the 

superposition principle.”
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(10.3)   i(ξ)k(ξ′) − k(ξ′)i(ξ) = 2hci δ(ξ – ξ′). 

 

This Hamilton function U is to be regarded as the beginning of a development that 

corresponds to the powers of the field strengths up to order four (corresponding to the 

development of the Dirac theory in the electron charge up to fourth order) and is carried 

out in the degree of the derivative of the field strengths up to order zero (corresponding to 

the development of the Dirac matrix element up to order four in the light frequencies 

g
i
/mc). 

 The addition to the Maxwell energy in (10.2) is an interaction between the light 

quanta, which refers to the creation of virtual matter and replaces the energy of the matter 

field that surrounds the light quanta.  The approximation that is considered here (in which 

the derivatives of the field strengths are neglected) describes a local interaction of the 

light quanta.  The canonical equations that correspond to this Hamilton function (10.2) 

read: 
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or, in other notation: 
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 They can also be derived from the variational principle  L dV dt = extremum for the 

Lagrange function: 
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 under the associated condition  = − 
1

c
 ,  = rot .  In the first form (10.4), these 

equations will refer to the coupling of the field with the virtual matter by a coupling of 

the electrical field strength  with the electrical displacement  and the magnetic 

induction  with the quantity , just as in the electrodynamics of polarizable bodies this 

will represent the coupling of the actual matter with the field. 

 In the second notation (10.5), the virtual matter that is created by the field ,  enters 

directly in the form of the apparent density ρ = ρ(, ) and the apparent current i = i(, 

).  Moreover, this nomenclature (10.5) shows that the equations (10.2, …, 10.6) that 

were assumed here are in agreement with the general equations 
1
) for light and matter, 

except with the matter ρ, i being replaced with particular functions of the field strengths 

that produce it. 

 As one easily deduces from (10.2), (10.3), or (10.4), one has the conservation laws: 
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 1 ) W. Heisenberg and W. Pauli, Zeit. f. Phys. 56, pp. 1, 1930; 59, pp. 168, 1930. 
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vacuum polarization:

 

“Über die Streuung von Licht an Licht nach der Diracschen Theorie,” Ann. Phys. (Leipzig) 26 (1936), 398-
448. 

 

On the scattering of light by light in Dirac’s theory 
1
) 

 

By Hans Euler 
 

Translated by D. H. Delphenich 
 

(With 3 figures) 
 

Contents 
 

Introduction 
Part I 

 

§ 1. Provisional statement of an intuitive expression for the interaction 1U of light with light 

that leads to the transition from two light quanta g1, g2 into two others – g3, − g4: 
 

((g1 g2 | 1U | – g3 − g4) = 
4
in

H ). 

 

§ 2. Approximate determination of the interaction 1U of light with light from the invariance of 

the associated corrected Maxwell equations: 
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§ 3. Discussion of the commutation relations for the field strengths in the system of corrected 

Maxwell equations. 
Part II 

 
§ 4. General perturbation schema that will be used the calculation of the scattering of light by 

light. 

§ 5. Presentation of the matrix
4

in
H in Dirac’s theory for the scattering of light by light. 

§ 6. Development of the matrix
4

in
H to order zero in light frequency and comparison with the 

Heisenberg subtraction term. 

§ 7. Proof of the identity between the matrix
4

in
H that follows from Dirac’s theory with the 

interaction energy 1U for light quanta that was presented above. 

                                                
 1 ) Dissertation presented to the philosophy faculty at the University of Leipzig.  The present work is 
the detailed treatment of a notice of Euler and Kockel in “Naturwissenschaften” 23, pp. 246, 1935.  The 
work done in Parts II and III was done jointly with Herrn Kockel, while § 5 was mainly due to Herrn 
Kockel. 
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 Concerning this interaction 1U for the light quanta as a function of the field strengths, 

one may state the following: 

 Since it shall lead to processes in which two light quanta go in while two come out, it 

must include the field strengths or their derivatives to the fourth power: 
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(Here, and in what follows, indices for vectors and tensors will be omitted or represented 

by special indices that make their connection with a scalar obvious). 

 However, since the interaction 1U has the dimension of energy (as a fourth order term 

in Dirac’s theory), the electron charge must appear to the fourth power (and there as only 

a dimensionless number that can be constructed out of the four universal units e, m, c, h, 

namely, the Sommerfeld fine-structure constant
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 On the same grounds, the terms in the derivatives of the field strengths must include a 

length that is independent of the electron charge, hence, the Compton wavelength h/mc as 

an additional factor. 

 One next wonders whether the electron mass shall figure in vacuum electrodynamics, 

since it is assumed that only light quanta and absolutely no electrons are present.  

However, whether the terms considered here are valid only as long as no actual pairs are 

created, nonetheless, they come into being only through the virtual possibility of pair 

creation, and that expresses itself by the introduction of the electron mass. 

 One thus expects that along with the Maxwellian energy of the individual light quanta 

there is a mutual interaction between the light quanta of the form: 
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It will later be shown that the matrix element 4

in
H that was mentioned above, and which 

follows from Dirac’s theory, can also actually be converted into the matrix element of an 

expression such as (1.3). 
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The fact that there is only one simple integral in (4), as opposed to (5), means that two 

light quanta can only interact at the same point. 

 The nonlinear correction to the MAXWELL equations of the vacuum becomes 

essential when the field strengths approach the one at “the edge of the electron;” the 

formulas that were derived here are therefore valid only as long as they do not become 

too large.  (||, ||, ||, || E0). 

 It is interesting to compare this supplementary term to the MAXWELL energy, which 

arises from the quantum-mechanical possibility of pair creation, with the one that BORN
1
 

obtained in the framework of classical theory, and the first term in its development is: 
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Disregarding the fact that the ratio of the coefficients of the two supplementary terms is 

1:4 for BORN and 1:7 for us, the two expressions differ only by the factor: 
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Considering the actual value of the SOMMERFELD fine structure constant, the 

numerical value of this factor is ~ 1.7, and it is remarkable that the quantum-theoretic 

change in the MAXWELL equations is, in any event, of the same order of magnitude as 

one would expect in the classical presentation on the basis of self-energy. 

 The equations (1), (2), (3) that follow from the DIRAC theory are valid under the 

assumption that the wavelength of light is large compared to the COMPTON wavelength.  

Otherwise, in contrast to the BORN theory, higher-order terms in development in light 

quantum energies, hence, supplementary terms will appear in the interaction, in addition 

to the ones that are of fourth order in the derivatives of the field strengths (multiplied 

by /mc ). 

 The experimental test of the deviation from the MAXWELL theory is difficult since 

the noteworthy effects are extraordinarily small.  The interaction cross-section for the 

scattering of light by light with the mean wavelength λ is, from (1), of the order of 

magnitude: 

Q ~ 
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in DIRAC’s theory, hence, about 10
−28

 cm
2
 for γ-rays and 10

−76
 cm

2
 for visible light. 

 We would like to cordially thank Herrn Prof. HEISENBERG for the problem 

definition, his ongoing interest, and his numerous suggestions on the work. 

 

 Leipzig.  Institute for Theoretical Physics, 11 February 1935. 

                                                
 1 M. BORN, Proc. Roy.  Soc. Lond., M. BORN and L. INFELD, ibid., A143 (1933), 410, A144, 423; 

A147 (1934), 522. 

“Über die Streuung von Licht an Licht nach der Diracschen Theorie,” Naturwiss. 23 (1935), 246-247. 
 
 

The scattering of light by light in Dirac’s theory 
 

By H. Euler and B. Köckel 
 

Translated by D. H. Delphenich 
 
 

 HALPERN1 and DEBYE2 have remarked that in Dirac’s theory there must be the 
scattering of visible light by light.  Thus, there will be processes in which two light 
quanta create a virtual pair (positron and electron), which then immediately radiates 
again.  This process then converts two light quanta (v1, v2) into two other light quanta 

1 2( , )ν ν′ ′ , and this can also happen when their energy is not sufficient for the creation of an 

actual pair. 
 We have determined the interaction cross-section for the collision of two light quanta3 
for this case, which can characterized for all light quanta by the condition: 
 

v1v2(1 – cos ∠v1, v2) 
2 2

2

2( )mc

h
, 

 
hence, in a particular coordinate system by hν mc

2. 
 

 mass of  the electron,  charge of  the electron,

 velocity of  light, 2 PLANCK's quantum of  action.
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 Next, from this, the ordinary perturbation term in DIRAC’s theory for the fourth-
order matrix element for this process was calculated and developed in light quantum 
energies hν / mc

2. 
 The zeroth-order term in hν / mc

2 proves to be equal and opposite to the term: 
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( = potential of the radiation field), which, according to HEISENBERG4, must be added 

to the ordinary fourth-order matrix element in order to give a real result. 
 The terms of order 1, 2, and 3 vanish, and the fourth-order term in hν / mc

2 may be 
formally represented as the matrix element of a function of the radiation field, such that 

                                                
 1 O. Halpern, Phys. Rev. 44 (1933), 855 – also cf. G. Breit and J. Wheeler, Phys. Rev. 46 (1934), 1087. 
 2 In a discussion with Herrn Prof. HEISENBERG.  
 3 The detailed analysis will appear later.  
 4 W. Heisenberg, Z. Phys. 90 (1934), 209, formula 61; 92 (1934), 692.  
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Euler-Heisenberg Effective Action

“Consequences of Dirac’s theory of the positron”, 
Zeitschr. Phys., 98, 714 (1936)



what did Heisenberg & Euler actually do?

vacuum polarization due to slowly varying [constant] fields

“Due to relativistic invariance, the Lagrangian can only depend on the 
two invariants E^2-B^2 and (E.B). The calculation of U(E, B) can be 

reduced to the question of how much energy density is associated with 
the matter fields in a background of constant fields E and B.”





H. Euler.  On the scattering of light by light, etc.                                  4 

 Concerning this interaction 1U for the light quanta as a function of the field strengths, 
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must include the field strengths or their derivatives to the fourth power: 
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 On the same grounds, the terms in the derivatives of the field strengths must include a 

length that is independent of the electron charge, hence, the Compton wavelength h/mc as 

an additional factor. 

 One next wonders whether the electron mass shall figure in vacuum electrodynamics, 

since it is assumed that only light quanta and absolutely no electrons are present.  

However, whether the terms considered here are valid only as long as no actual pairs are 

created, nonetheless, they come into being only through the virtual possibility of pair 
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 One thus expects that along with the Maxwellian energy of the individual light quanta 
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It will later be shown that the matrix element 4

in
H that was mentioned above, and which 

follows from Dirac’s theory, can also actually be converted into the matrix element of an 

expression such as (1.3). 

H. Euler, thesis 1936
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vacuum polarization due to slowly varying [constant] fields

“In the presence of only a magnetic field, the stationary states can be 
divided into those of negative and positive energy. 

... The situation is different in an electric field. 
... This difficulty is physically related to the fact that in an electric field, 
pairs of positrons and electrons are created. The exact analysis of this 

problem was performed by Sauter.”
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On the behavior of an electron in a homogeneous electric field 

 in Dirac’s relativistic theory  
 
 

By Fritz Sauter in Munich 
 

Translated by D. H. Delphenich 
 

With 6 figures.  (Received on 21 April 1931) 
 
 

The solutions of the Dirac equation with the potential V = vx will be obtained and their behavior will be 
discussed.  Along with the region of the function that also appears in the non-relativistic calculations, there 
is a region in the Dirac theory in which the impulse and velocity of the electron possess opposite signs.  In 
conjunction with that, the probability will be computed for an electron to go from the “positive impulse” 
region to the “negative impulse” region.  This yields the result that transition probability first takes on finite 
values when the magnitude of the potential ramp over a distance that is equal to the Compton wavelength is 
comparable to the rest energy of the electron.  The large values for the transition probability that were 
computed by O. Klein for a potential well whose order of magnitude is twice the rest energy are understood 
to be limiting values in the case of an infinitely steep potential ramp. 

 
 Some time ago, an interesting work by O. Klein! appeared on the reflection of 
electrons by a potential well.  The computation in terms of Dirac’s relativistic theory 
yielded the following result: If one lets the height P of the potential well increase from 0 
then the reflection coefficient R also takes on values from null to 1, which it attains when 
P = E – E0 .  (E is the relativistic energy of the electron; E0 is its rest energy.)  With 
further increases in P, R remains constantly equal to 1, up to the value P = E + E0 .  If one 
lets the height of the potential well increase still more then the reflection coefficient goes 

down again, and in the limiting case of P = " it approaches the value 
E cp

E cp

#

+
.  (p = 

impulse of the electron before the transition through the potential well).  In Dirac’s 
theory, an electron therefore possesses a finite probability that it might pass on through a 
very high potential well that is completely reflecting in the classical analysis. 
 The state that the electron attains after this transition is thus recognized to be one in 
which its velocity (group velocity) is oppositely directed to its impulse. 
 The appearance of a “negative impulse” is no longer surprising, since one has already 
learned to compute with the concept of “negative energy. !!”  The large value that Klein 
found for the probability of making the transition from a state of positive impulse to one 
of negative impulse is therefore noteworthy.  N. Bohr made the conjecture that this high 

                                                
 ! O. Klein, ZS. f. Phys. 53, 157, 1929.  
 !! Cf., dispersion theory, in which I. Waller (ZS. f. Phys. 61, 837, 1930) has shown precisely that the 
states of negative energy take on a special meaning as intermediate states. 
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From this, on account of (38) and (39), one determines the transmission coefficient: 

 

D = 
2

k
e

"$       (41) 

and reflection coefficient: 

R = 1.       (42) 

 

This result is valid up to higher order terms in 1/k
2
 and was derived under the assumption 

that k
2
 ! 1. 

 This therefore shows that for all electric fields for which k
2
 ! 1, hence, for all 

practically attainable fields (cf., supra), the transmission coefficient is vanishingly small; 

transitions into the region of negative impulse are therefore very rare in this case 
†
. 

 For the case of high electron velocity and a symmetric potential function, in the first 

approximation the value of the transmission coefficient D depends upon only the field 

strength, hence, upon only the steepness of the potential ramp.  This case would (cf., 

supra) correspond to around 10
16

 volt/cm.  The location k
2
 ~ 1 has a special physical 

meaning.  In this case, one has: 

k
2
 = 

2 22 ( )mc

hc v

"
~ 1, 

or: 

 
vh

mc
~ mc

2
.     (43) 

 

This agrees with the conjecture of N. Bohr that was given in the introduction, that one 

first obtains the finite probability for the transition of an electron into the region of 

negative impulse when the potential ramp vh/mc over a distance of the Compton 

wavelength h/mc has the order of magnitude of the rest energy. 

 It is naturally impossible to experimentally configure fields of this strength.  One can 

possibly imagine that such fields can appear in the interior of an atom in some 

                                                
 

†
 This result is naturally independent of the aforementioned assumption of symmetric behavior.  In the 

general case, the final formulas thus become very unclear.  
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 This result is naturally independent of the aforementioned assumption of symmetric behavior.  In the 

general case, the final formulas thus become very unclear.  

“This case would correspond to around 10^16 volt/cm.”  
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From this, on account of (38) and (39), one determines the transmission coefficient: 

 

D = 
2

k
e

"$       (41) 

and reflection coefficient: 

R = 1.       (42) 

 

This result is valid up to higher order terms in 1/k
2
 and was derived under the assumption 

that k
2
 ! 1. 

 This therefore shows that for all electric fields for which k
2
 ! 1, hence, for all 

practically attainable fields (cf., supra), the transmission coefficient is vanishingly small; 

transitions into the region of negative impulse are therefore very rare in this case 
†
. 

 For the case of high electron velocity and a symmetric potential function, in the first 

approximation the value of the transmission coefficient D depends upon only the field 

strength, hence, upon only the steepness of the potential ramp.  This case would (cf., 

supra) correspond to around 10
16

 volt/cm.  The location k
2
 ~ 1 has a special physical 

meaning.  In this case, one has: 

k
2
 = 

2 22 ( )mc

hc v

"
~ 1, 

or: 

 
vh

mc
~ mc

2
.     (43) 

 

This agrees with the conjecture of N. Bohr that was given in the introduction, that one 

first obtains the finite probability for the transition of an electron into the region of 

negative impulse when the potential ramp vh/mc over a distance of the Compton 

wavelength h/mc has the order of magnitude of the rest energy. 

 It is naturally impossible to experimentally configure fields of this strength.  One can 

possibly imagine that such fields can appear in the interior of an atom in some 

                                                
 

†
 This result is naturally independent of the aforementioned assumption of symmetric behavior.  In the 

general case, the final formulas thus become very unclear.  
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Figure 2. A static electric field can tear apart a virtual e+e� pair from the vacuum, producing

an asymptotic electron and positron, as shown on the left. On the other hand, a static magnetic

field does not break this virtual dipole apart, as shown on the right for a magnetic field directed

out of the page.

approaches a critical value Ec ⌅ m2c3

e� ⌅ 1016 Vcm�1, where the work done
accelerating a virtual pair apart by a Compton wavelength is of the order
of the rest mass energy for the pair. Such electric field strengths are well
beyond current technological capabilities, even in the most intense lasers.
For an excellent recent review of the search for this remarkable phenomenon
of vacuum pair production, see [14]. Even though the condition of a con-
stant electric field is rather unrealistic, Heisenberg and Euler’s result (1.10)
provides the starting point for more detailed analyses which incorporate
time-dependent electric fields, as is discussed below in Section 2.

1.2.3. Charge renormalization, ⌥-functions and the strong-field limit.

Another remarkable thing about Heisenberg and Euler’s result (1.2) is that
they correctly anticipated charge renormalization. The first term (on each
line) on the the RHS of (1.2) is the bare result, the second term is the
subtraction of a field-free infinite term, and the third term is the subtraction
of a logarithmically divergent term which has the same form as the classical
Maxwell Lagrangian. This last subtraction corresponds precisely to what
we now call charge renormalization, as was later formalized by Schwinger
[12, 13]. Indeed, the study of such logarithmically divergent terms was a
major focus of the early quantum field theory work of both Heisenberg and
Weisskopf. Weisskopf [2] noted the characteristic strong-field limit behavior
of the Heisenberg-Euler result (1.2), for example for spinor QED in a strong
magnetic background:

L(1)
spinor

LMaxwell
⌅ � e2

12⌅2
log

⇥
eB

m2

�
, B ⇤⇥ (1.12)

In modern language, the coe⌅cient of the logarithmic dependence of this
ratio is known as the one-loop QED ⌥-function, and Weisskopf anticipated
the importance of such logarithmic behavior. In later work [15] he showed
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what did Heisenberg & Euler actually do?

“a wavefunction that begins large in region I decreases slowly in 
region III, where the transmission coefficient through region II (which 
plays the role of a Gamow-wall) calculated by Sauter has the order of 

magnitude               .”    e�
m2c3
�e|E| �



Dirac equation for constant EM fields: 
harmonic oscillators; parabolic cylinder functions; Euler-Maclaurin 

summation; integral representations ...

what did Heisenberg & Euler actually do?
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harmonic oscillators; parabolic cylinder functions; Euler-Maclaurin 

summation; integral representations ...

what did Heisenberg & Euler actually do?

“The integral around the pole Ƞ=pi/a has the value

(for b=0). This is the order of the terms which are 
associated with the pair creation in an electric field.”
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field-free subtraction
charge renormalization term



V. Weisskopf, The electrodynamics of the vacuum on the 
basis of the quantum theory of the electron, 1936

“the electromagnetic properties of the vacuum can be described by a field-
dependent electric and magnetic polarisability of empty space, which leads, for 

example, to refraction of light in electric fields or to a scattering of light by light.”
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Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction
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The validity of the rules given in previous papers for the solution of problems in quantum electrodynamics

is established. Starting with Fermi s formulation of the field as a set of harmonic oscillators, the effect of

the oscillators is integrated out in the Lagrangian form of quantum mechanics. There results an expression

for the effect of all virtual photons valid to all orders in e /hc. It is shown that evaluation of this expression

as a power series in e'/kc gives just the terms expected by the aforementioned rules.

In addition, a relation is established between the amplitude for a given process in an arbitrary unquantized

potential and in a quantum electrodynamical field. This relation permits a simple general statement of

the laws of quantum electrodynamics.

A description, in Lagrangian quantum-mechanical form, of particles satisfying the Klein-Gordon equation

is given in an Appendix. It involves the use of an extra parameter analogous to proper time to describe

the trajectory of the particle in four dimensions.

A second Appendix discusses, in the special case of photons, the problem of finding what real processes

are implied by the formula for virtual processes.

Problems of the divergences of electrodynamics are not discussed.

1. INTRODUCTION

N two previous papers' rules were given for the

~ ~ cakulation of the matrix element for any process in

electrodynamics, to each order in e2/hc. No complete

proof of the equivalence of these rules to the conven-

tional electrodynamics was given in these papers.

Secondly, no closed expression was given valid to all

orders in e'/Ac. In this paper these formal omissions

will be remedied. '

In paper II it was pointed out that for many prob-

lems in electrodynamics the Hamiltonian method is not

advantageous, and might be replaced by the over-all

space-time point of view of a direct particle interaction.

It was also mentioned that the Lagrangian form of

quantum mechanics' was useful in this connection. The

rules given in paper II were, in fact, first deduced in

this form of quantum mechanics. Ke shall give this

derivation here.

The advantage of a Lagrangian form of quantum

mechanics is that in a system with interacting parts it

permits a separation of the problem such that the

motion of any part can be analyzed or solved first, and

the results of this solution may then be used in the

solution of the motion of the other parts. This separa-

tion is especially useful in quantum electrodynamics

which represents the interaction of matter with the

electromagnetic field. The electromagnetic field is an

especially simple system and its behavior can be

analyzed completely. What we shall show is that the

*Now at the California Institute of Technology, Pasadena,

California.
i R. P. Feynman, Phys. Rev. 76, 749 {1949),hereafter called I,

and Phys. Rev. 76, 769 (1949), hereafter called II.
' See in this connection also the papers of S. Tomonaga, Phys.

Rev. 74, 224 (1948}; S. Kanesawa and S. Tomonaga, Prog.

Theoret. Phys, 3, 101 {1948);J. Schwinger, Phys. Rev. 76, 790

(1949); F. Dyson, Phys. Rev. 75, 1736 (1949};W. Pauli and

F. Villars, Rev. Mod. Phys. 21, 434 (1949). The papers cited

give references to previous work.
~ R. P. Feynman, Rev. Mod. Phys. 20, 367 {1948},hereafter

called C.
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net eGect of the field is a delayed interaction of the

particles. It is possible to do this easily only if it is not

necessary at the same time to analyze completely the

motion of the particles. The only advantage in our

problems of the form of quantum mechanics in C is to

permit one to separate these aspects of the problem.

There are a number of disadvantages, however, such as

a lack of familiarity, the apparent (but not real)

necessity for dealing with matter in non-relativistic

approximation, and at times a cumbersome mathe-

matical notation and method, as well as the fact that

a great deal of useful information that is known about

operators cannot be directly applied.

It is also possible to separate the field and particle

aspects of a problem in a manner which uses operators

and Hamiltonians in a way that is much more familiar.

One abandons the notation that the order of action of

operators depends on their written position on the paper
and substitutes some other convention (such that the

order of operators is that of the time to which they

refer). The increase in manipulative facility which

accompanies this change in notation makes it easier to

represent and to analyze the formal problems in electro-

dynamics. The method requires some discussion, how-

ever, and will be described in a succeeding paper. In
this paper we shall give the derivations of the formulas

of II by means of the form of quantum mechanics

given in C.

The problem of interaction of matter and field will be

analyzed by first solving for the behavior of the field in

terms of the coordinates of the matter, and finally

discussing the behavior of the matter (by matter is

actually meant the electrons and positrons). That is to

say, we shall first eliminate the 6eld variables from the

equations of motion of the electrons and then discuss

the behavior of the electrons. In this way all of the

rules given in the paper II will be derived.
Actually, the straightforward elimination of the field



Feynman’s worldline representation
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tude for the emission of m photons of a given kind and

summing on all m. Actually the sums and integrations

over the oscillator momenta can usually easily be

performed analytically. For example, the amplitude,

starting from vacuum and ending with m photons of a

given kind, is by (56) just

G o= (m!)-&Goo(ig')". (61)

The square of the amplitude summed on m requires

the product of two such expressions (the y(t) in the P
of one and in the other will have to be kept separately)
summed on m:

G o*G o'=2 Goo*Goo'(~!) 'P"(tl'*)"
=Goo Goo exp(PP ) ~

In the resulting expression the sum over all oscillators

is easily done. Such expressions can be of use in the

analysis in a direct manner of problems of line width,

of the Bloch-Nordsieck infra-red problem, and of sta-

tistical mechanical problems, but no such applications

mill be made here.

The author appreciates his opportunities to discuss

these matters with Professor H. A. Bethe and Professer

J. Ashkin, and the help of Mr. M. Baranger with the

manuscript.

APPENDIX A. THE KLEIN-GORDON EQUATION

In this Appendix we describe a formulation of the equations

for a particle of spin zero which was first used to obtain the rules

given in II for such particles. The complete physical significance

of the equations has not been analyzed thoroughly so that it may
be preferable to derive the rules directly from the second quanti-

zation formulation of Pauli and Weisskopf. This can be done in a
manner analogous to the derivation of the rules for the Dirac

equation given in I or from the Schwinger-Tomonaga formulation~

in a manner described, for example, by Rohrlich. '8 The formulation

given here is therefore not necessary for a description of spin

zero particles but is given only for its own interest as an alternative

to the formulation of second quantization.

We start with the Klein-Gordon equation

{i8/(3x„—A„}'P=m'P

for the wave function lt of a particle of mass m in a given external

potential A„.Ke shall try to represent this in a manner analogous

to the formulation of quantum mechanics in C. That is, we try
to represent the amplitude for a particle to get from one point to

another as a sum over all trajectories of an amplitude exp(iS)
where S is the classical action for a given trajectory. To maintain
the relativistic invariance in evidence the idea suggests itself of

describing a trajectory in space-time by giving the four variables

x„(u}as functions of some 6fth parameter u (rather than expressing

xl, x~, x3 in terms of x4). As we expect to represent paths which

may reverse themselves in time {to represent pair production,

etc., as in I) this is certainly a more convenient representation,

for all four functions x„(u) may be considered as functions of a

parameter u {somewhat analogous to proper time} which increase

as we go along the trajectory, whether the trajectory is proceeding

forward (dx4/du&0} or backward {dx4/du&0) in time. "We shall
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and are independent of u, the equation is separable in u and we

can write a special solution in the form q =exp(+im'u)le {x)where
!It (x), a function of the coordinates x„only, satisfies (1A) and the
eigenvalue ~m' conjugate to u is related to the mass m of the
particle. Equation {2A) is therefore equivalent to the Klein-

Gordon Eq. (1A) provided we ask in the end only for the solution
of (1A) corresponding to the eigenvalue j'm' for the quantity
conjugate to u.
We may now proceed to represent. Eq. (2A) in Lagrangian form

in general and without regard to this eigenvalue condition. Only

in the 6nal solutions need we apply the eigenvalue condition.
That is, if we have some special solution y(x, u) of {2A}we can
select that part corresponding to the eigenvalue +m' by calculating

d {x)=f exp{ rim'—u) y{x, u)du

and thereby obtain a solution
ldll
of Eq. (1A}.

Since (2A) is so closely analogous to the Schrodinger equation,
it is easily written in the Lagrangian form described in C, simply

by working by analogy. For example if cp{x, u} is known at one
value of u its value at a slightly larger value u+e is given by

(x„—x„')' 1 x„—x
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where (x„—x„')' means {x„—x„')(x„—x„'), d'v =dxi'dx~'dx3'dx4'

and the sign of the normalizing factor is changed for the x4

component since the component has the reversed sign in its
quadratic coefficient in the exponential, in accordance with our

summation convention a„b„=a4b4—a&b&
—a2b&—a3b3. Equation

(3A), as can be verified readily as described in C, Sec. 6, is equiva-
lent to 6rst order in ~, to Eq. (2A}.Hence, by repeated use of this

equation the wave function at up=me can be represented in terms

of that at u=0 by:
'l6 xp, i xp, i

ql($„, , Qp) =f exp Z
2i=l-

+& (xp, i xp, o—&) (~p(xi)+~p(xi-1))

ro-I
~

q (x„,p, 0) II (d4vi/4m'e'i). (4A)

That is, roughly, the amplitude for getting from one point to
another with a given value of up is the sum over all trajectories
of exp{iS) where

5= f gg(dx„/—du)'+ (dx„/du) A„(x) jdu, (sg)

when sufIicient care is taken to define the quantities, as in C.
This completes the formulation for particles in a fixed potential
but a few words of description may be in order.
In the 6rst place in the special case of a free particle we can

de6ne a kernal k('(x, up, x', 0) for arrival from x„', 0 to x„at up
as the sum over all trajectories between these points of

exp—i J,"'q{dx„/du)'du. Then for this case we have

o (x, up) ft'o'@(x, uo; =x', 0) o (x', 0)d4~, {6A)

and it is easily veri6ed that kp is given by

k(') {x,up,. x', 0) = (4''up'i) ' exp—i{x„—x ')'/2up (7A)

for up&0 and by 0, by definition, for u«0. The corresponding
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tude for the emission of m photons of a given kind and

summing on all m. Actually the sums and integrations

over the oscillator momenta can usually easily be

performed analytically. For example, the amplitude,

starting from vacuum and ending with m photons of a

given kind, is by (56) just

G o= (m!)-&Goo(ig')". (61)

The square of the amplitude summed on m requires

the product of two such expressions (the y(t) in the P
of one and in the other will have to be kept separately)
summed on m:

G o*G o'=2 Goo*Goo'(~!) 'P"(tl'*)"
=Goo Goo exp(PP ) ~

In the resulting expression the sum over all oscillators

is easily done. Such expressions can be of use in the

analysis in a direct manner of problems of line width,

of the Bloch-Nordsieck infra-red problem, and of sta-

tistical mechanical problems, but no such applications

mill be made here.

The author appreciates his opportunities to discuss

these matters with Professor H. A. Bethe and Professer

J. Ashkin, and the help of Mr. M. Baranger with the

manuscript.

APPENDIX A. THE KLEIN-GORDON EQUATION
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for a particle of spin zero which was first used to obtain the rules
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of the equations has not been analyzed thoroughly so that it may
be preferable to derive the rules directly from the second quanti-
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manner analogous to the derivation of the rules for the Dirac
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given here is therefore not necessary for a description of spin
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It is shown that Feynman's relativistic solution for- the scattering of an electron (or pair creation) by a
given external Geld is the Fredholm resolvent of the related integral equation and is thus the unique and
absolutely convergent solution for any strength of 6eld.

INTRODUCTION

HE Fredholm theory of integral equations has

been applied to the nonrelativistic theory of

scattering by Jost and Pais. ' We here consider the

extension of this theory to the interaction of the

quantized electron-positron field with a prescribed

external electromagnetic 6eld. This problem has been

considered by Feynman. ' Feynman's solution is most

simply derived from the 5 matrix in the form given by
Dyson. ' The appropriate matrix element for electron

scattering or pair creation is obtained as an expan-

sion in the external field and is normalized by multi-

plying by the vacuum expectation value of the 5
matrix. VVe show that this is identical with the Fred-

holm resolvent of a related integral equation and is

thus absolutely convergent for any strength of the

external Geld, for which the cross section has any

meaning.

ln the first section the Fredholm theory is stated in

a form given by Plemelj, ' which exhibits the Fredholm

solution in terms of the iterations of the kernel and its
traces. These quantities have the advantage over the

usual form of the theory' that they are either the same

as, or closely related to, expressions occurring in the

5 matrix and can be written down directly by Feynman's

graphical methods. The relation of the Fredholm

solution to the solution by iteration is discussed. The

problem of scattering in a pure external field is then

treated in Secs. 2 and 3, with the result stated above.

The case of a static field is related to the work of Jost
and Pais. '

1. FREDHOI, M THEORY

Consider Fredholm's integral equation

x(s) =y(s)+X E(s, t)x(t)dt,

(or x=y+XEx),
*Now at Department of Mathematical Physics, University of

Birmingham, Birmingham, England.
' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
~ R. P. Feynman, Phys. Rev. 76, 749 (1949).
3 F. I. Dyson, Phys. Rev. 75, 486, 1736 (1949}.
4 J. Plemelj, Monatsch. Math. 15, 93 (1904).' See, for example, E.T. Whittaker and G. N. Watson, Modern

Analysis (Cambridge University Press, Cambridge, 1940), fourth
edition, Chapter XI.

C,=,r "~E(s, t) tsdsdt&~,

then (1.1) has the unique solution

x(s) =d—'P.) D(X, s, t)y(t)dt,

=d—'(X)A(X, s),

for all X for which d(X) WO. Here

d()t) =Q d.X",
n=o

(1.4)

D(X, s, t)=g D„(s, t))"
n=o

LD(X, s, t) is called the Fredholrn resolvent], where

do= j.,

0'2 S—1 ~ ~ ~ Q

(
—1)" ~s 02 e—2 0

(1.6)

~ ~ ~ 0 2

8(s—t) u 0 0 ~ ~ ~ Q

E(s, t)
(—1)"

D„(s, t) = E'(s, t)

~ ~ e Q

Oj 0'y 's—2 ' ' 0

E"(s, t) o„o„i ~ ~ ~ 0

(1.7)

E(s, u)E" '(u t)du

' F. Smithies, Duke Math. J. 8, 107 (1941).

where the integration may be over a fjxed interval,
. finite or infinite. Smithies has shown that, if E(s, t)
is a measurable function of s and t, and

69Q

W = �i tr ln
�
1� e�AG0

+
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• pair production from vacuum
• light-light scattering
• vacuum polarization physics
• effective field theory
• gravitational effective actions
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A signal of 106 6 14 positrons above background has been observed in collisions of a low-emittance
46.6 GeV electron beam with terawatt pulses from a Nd:glass laser at 527 nm wavelength in an
experiment at the Final Focus Test Beam at SLAC. The positrons are interpreted as arising from a two-
step process in which laser photons are backscattered to GeV energies by the electron beam followed
by a collision between the high-energy photon and several laser photons to produce an electron-positron
pair. These results are the first laboratory evidence for inelastic light-by-light scattering involving only
real photons. [S0031-9007(97)04008-8]
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The production of an electron-positron pair in the
collision of two real photons was first considered by Breit
and Wheeler [1] who calculated the cross section for the
reaction

v1 1 v2 ! e1e2 (1)

to be of order r2
e , where re is the classical electron radius.

While pair creation by real photons is believed to occur
in astrophysical processes [2], it has not been observed in
the laboratory up to the present.
After the invention of the laser the prospect of intense

laser beams led to the reconsideration of the Breit-
Wheeler process by Reiss [3] and others [4,5]. Of
course, for production of an electron-positron pair, the
center-of-mass (CM) energy of the scattering photons
must be at least 2mc2 � 1 MeV . While this precludes
pair creation by a single electromagnetic wave, the
necessary CM energy can be achieved by colliding a
laser beam against a high-energy photon beam created,
for example, by backscattering the laser beam off a high-
energy electron beam. With laser light of wavelength
527 nm (energy 2.35 eV), a photon of energy 111 GeV
would be required for reaction (1) to proceed. However,
with an electron beam of energy 46.6 GeV, as available
at the Stanford Linear Accelerator Center (SLAC), the
maximum Compton-backscattered photon energy from a
527 nm laser is only 29.2 GeV.
In strong electromagnetic fields the interaction

need not be limited to initial states with two photons
[3], but rather the number of interacting photons be-
comes large as the dimensionless, invariant parameter

h � e
q

⇥AmAm⇤⌃mc2 � eErms⌃mv0c � eErmsl-0⌃mc2

approaches or exceeds unity. Here the laser beam has
laboratory frequency v0, reduced wavelength l-0, root-
mean-square electric field Erms, and four-vector potential
Am; e and m are the charge and mass of the electron,
respectively, and c is the speed of light.
For photons of wavelength 527 nm a value of h �

1 corresponds to laboratory field strength of Elab �
6 3 1010 V⌃cm and intensity I � 1019 W⌃cm2. Such
intensities are now practical in tabletop laser systems
based on chirped-pulse amplification [6].
Then the multiphoton Breit-Wheeler reaction

v 1 nv0 ! e1e2 (2)

becomes accessible for n $ 4 laser photons of wave-
length 527 nm colliding with a photon of energy 29 GeV.
Similarly, the trident process

e 1 nv0 ! e0e1e2 (3)

requires at least five 527 nm laser photons colliding with
an electron of 46.6 GeV. Reaction (3) is a variant of the
Bethe-Heitler process [7] in which an e1e2 pair is created
by the interaction of a real photon with a virtual photon
from the field of a charged particle.
When an electromagnetic field with four-tensor Fmn

is probed by a particle of four-momentum pm, an in-
variant measure of the strength of vacuum-polarization

effects is k �
q

⇥⌅Fmnpn⇧2⇤⌃⌅mc2Ecrit⇧, where Ecrit �
m2c3⌃eh̄ � mc2⌃el-C � 1.3 3 1016 V⌃cm is the quan-
tum electrodynamic (QED) critical field strength [8,9] at
which the energy gain of an electron accelerating over a
Compton wavelength l-C is its rest energy, and at which a
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We collected data at various laser intensities. The

data from collisions with poor e-laser beam overlap were

discarded when the signal in the EC37 monitor was less

than one-third of the expected value. The number of

positron candidates observed in the remaining 21 962 laser

shots is 175 6 13 and is shown as the upper distribution
in Fig. 3(a) as a function of cluster momentum.

Positrons were also produced in showers of lost elec-

trons upstream of the PCAL detector. The rate of these

background positrons was studied in 121 216 electron-

beam pulses when the laser was off, yielding a total of

379 6 19 positron candidates. Figure 3(a) shows the mo-
mentum spectrum of these candidates as the hatched dis-

tribution, which has been scaled by 0.181, this being the

ratio of the number of laser-on to laser-off pulses. Af-

ter subtracting the laser-off distribution from the laser-

on distribution, we obtain the signal spectrum shown in

Fig. 3(b) whose integral is 106 6 14 positrons.
We have modeled the pair production as the two-step

process of reaction (4) followed by reaction (2), using

the formalism of Ref. [4] for linearly polarized light.

The high-energy photon is linearly polarized since the

laser is linearly polarized [16]. By numerical integration

over space and time in the e-laser interaction region
we account for both the production of the high-energy

photon (through a single or multiphoton interaction) and

its subsequent multiphoton interaction within the same

laser focus to produce the pair. Further Compton scatters

of the positron (or electron) are also taken into account.

The positron spectrum predicted by this calculation is

shown as the curve in Fig. 3(b) and is in reasonable

agreement with the data.

To determine the effective intensity of each laser shot,

i.e., the peak intensity of the part of the laser beam that

overlapped with the electron beam, we made use of N1,

N2, and N3, the number of electrons intercepted by the gas

FIG. 3. (a) Number of positron candidates vs momentum for
laser-on pulses and for laser-off pulses scaled to the number
of laser-on pulses. (b) Spectrum of signal positrons obtained
by subtracting the laser-off from the laser-on distribution.
The curve shows the expected momentum spectrum from the
model calculation. (c),(d) Same as (a) and (b) but with the
requirement that h . 0.216.

C̆erenkov counters EC37, N2, and N3, of first-, second-,

and third-order Compton scattering, respectively. Ide-

ally, the field intensity could be extracted from each of

these monitors. However, because of e-laser timing jit-
ter [13], the effective intensity has been extracted from

ratios of the monitor rates. For h2 ø 1, the field inten-
sity is approximately given by h2 � k1N2⇤N1 as well as

h2 � k2N3⇤N2. The parameters k1 and k2 depend on the

acceptance and efficiency of the counters, as well as the

spectrum of scattered electrons, and were calculated over

the relevant range of h2 in the numerical simulation. We

fit the observed Ni for each event to ideal values subject

to the constraint N2
2 � �k2⇤k1⇥N1N3. Then the fitted Ni

determined h with an average precision of 11%. Uncer-

tainties in the acceptance, background levels, calibration,

and efficiency of the monitors caused a systematic error of
18
213% to the absolute value of h.
Figure 4 shows the yield �Re1 ⇥ of positrons⇤laser shot

as a function of h. The line is a power law fit to the data
and gives Re1 ~ h2n with n � 5.1 6 0.2�stat⇥10.5

20.8�syst⇥,
where the statistical error is from the fit and the systematic

error includes the effects discussed previously, as well

as the effect of the choice of bin size in h. Thus,

the observed positron production rate is highly nonlinear,

varying as the fifth power of the laser intensity. This is in

good agreement with the fact that the rate of multiphoton

reactions involving n laser photons is proportional to h2n

(for h2 ø 1), and with the kinematic requirement that five
photons are needed to produce a pair near threshold. The

detailed simulation indicates that, on average, 1.5 photons

are absorbed from the laser field in reaction (4) and 4.7 in

(2), but that the exponent n for the two-step process varies
slightly with h and has an average value of 5.3.

FIG. 4. Dependence of the positron rate per laser shot on the
laser field-strength parameter h. The line shows a power law
fit to the data. The shaded distribution is the 95% confidence
limit on the residual background from showers of lost beam
particles after subtracting the laser-off positron rate.
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The production of an electron-positron pair in the
collision of two real photons was first considered by Breit
and Wheeler [1] who calculated the cross section for the
reaction

v1 1 v2 ! e1e2 (1)

to be of order r2
e , where re is the classical electron radius.

While pair creation by real photons is believed to occur
in astrophysical processes [2], it has not been observed in
the laboratory up to the present.
After the invention of the laser the prospect of intense

laser beams led to the reconsideration of the Breit-
Wheeler process by Reiss [3] and others [4,5]. Of
course, for production of an electron-positron pair, the
center-of-mass (CM) energy of the scattering photons
must be at least 2mc2 � 1 MeV . While this precludes
pair creation by a single electromagnetic wave, the
necessary CM energy can be achieved by colliding a
laser beam against a high-energy photon beam created,
for example, by backscattering the laser beam off a high-
energy electron beam. With laser light of wavelength
527 nm (energy 2.35 eV), a photon of energy 111 GeV
would be required for reaction (1) to proceed. However,
with an electron beam of energy 46.6 GeV, as available
at the Stanford Linear Accelerator Center (SLAC), the
maximum Compton-backscattered photon energy from a
527 nm laser is only 29.2 GeV.
In strong electromagnetic fields the interaction

need not be limited to initial states with two photons
[3], but rather the number of interacting photons be-
comes large as the dimensionless, invariant parameter
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approaches or exceeds unity. Here the laser beam has
laboratory frequency v0, reduced wavelength l-0, root-
mean-square electric field Erms, and four-vector potential
Am; e and m are the charge and mass of the electron,
respectively, and c is the speed of light.
For photons of wavelength 527 nm a value of h �

1 corresponds to laboratory field strength of Elab �
6 3 1010 V⌃cm and intensity I � 1019 W⌃cm2. Such
intensities are now practical in tabletop laser systems
based on chirped-pulse amplification [6].
Then the multiphoton Breit-Wheeler reaction

v 1 nv0 ! e1e2 (2)

becomes accessible for n $ 4 laser photons of wave-
length 527 nm colliding with a photon of energy 29 GeV.
Similarly, the trident process

e 1 nv0 ! e0e1e2 (3)

requires at least five 527 nm laser photons colliding with
an electron of 46.6 GeV. Reaction (3) is a variant of the
Bethe-Heitler process [7] in which an e1e2 pair is created
by the interaction of a real photon with a virtual photon
from the field of a charged particle.
When an electromagnetic field with four-tensor Fmn

is probed by a particle of four-momentum pm, an in-
variant measure of the strength of vacuum-polarization

effects is k �
q
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m2c3⌃eh̄ � mc2⌃el-C � 1.3 3 1016 V⌃cm is the quan-
tum electrodynamic (QED) critical field strength [8,9] at
which the energy gain of an electron accelerating over a
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We collected data at various laser intensities. The

data from collisions with poor e-laser beam overlap were

discarded when the signal in the EC37 monitor was less

than one-third of the expected value. The number of

positron candidates observed in the remaining 21 962 laser

shots is 175 6 13 and is shown as the upper distribution
in Fig. 3(a) as a function of cluster momentum.

Positrons were also produced in showers of lost elec-

trons upstream of the PCAL detector. The rate of these

background positrons was studied in 121 216 electron-

beam pulses when the laser was off, yielding a total of

379 6 19 positron candidates. Figure 3(a) shows the mo-
mentum spectrum of these candidates as the hatched dis-

tribution, which has been scaled by 0.181, this being the

ratio of the number of laser-on to laser-off pulses. Af-

ter subtracting the laser-off distribution from the laser-

on distribution, we obtain the signal spectrum shown in

Fig. 3(b) whose integral is 106 6 14 positrons.
We have modeled the pair production as the two-step

process of reaction (4) followed by reaction (2), using

the formalism of Ref. [4] for linearly polarized light.

The high-energy photon is linearly polarized since the

laser is linearly polarized [16]. By numerical integration

over space and time in the e-laser interaction region
we account for both the production of the high-energy

photon (through a single or multiphoton interaction) and

its subsequent multiphoton interaction within the same

laser focus to produce the pair. Further Compton scatters

of the positron (or electron) are also taken into account.

The positron spectrum predicted by this calculation is

shown as the curve in Fig. 3(b) and is in reasonable

agreement with the data.

To determine the effective intensity of each laser shot,

i.e., the peak intensity of the part of the laser beam that

overlapped with the electron beam, we made use of N1,

N2, and N3, the number of electrons intercepted by the gas

FIG. 3. (a) Number of positron candidates vs momentum for
laser-on pulses and for laser-off pulses scaled to the number
of laser-on pulses. (b) Spectrum of signal positrons obtained
by subtracting the laser-off from the laser-on distribution.
The curve shows the expected momentum spectrum from the
model calculation. (c),(d) Same as (a) and (b) but with the
requirement that h . 0.216.

C̆erenkov counters EC37, N2, and N3, of first-, second-,

and third-order Compton scattering, respectively. Ide-

ally, the field intensity could be extracted from each of

these monitors. However, because of e-laser timing jit-
ter [13], the effective intensity has been extracted from

ratios of the monitor rates. For h2 ø 1, the field inten-
sity is approximately given by h2 � k1N2⇤N1 as well as

h2 � k2N3⇤N2. The parameters k1 and k2 depend on the

acceptance and efficiency of the counters, as well as the

spectrum of scattered electrons, and were calculated over

the relevant range of h2 in the numerical simulation. We

fit the observed Ni for each event to ideal values subject

to the constraint N2
2 � �k2⇤k1⇥N1N3. Then the fitted Ni

determined h with an average precision of 11%. Uncer-

tainties in the acceptance, background levels, calibration,

and efficiency of the monitors caused a systematic error of
18
213% to the absolute value of h.
Figure 4 shows the yield �Re1 ⇥ of positrons⇤laser shot

as a function of h. The line is a power law fit to the data
and gives Re1 ~ h2n with n � 5.1 6 0.2�stat⇥10.5

20.8�syst⇥,
where the statistical error is from the fit and the systematic

error includes the effects discussed previously, as well

as the effect of the choice of bin size in h. Thus,

the observed positron production rate is highly nonlinear,

varying as the fifth power of the laser intensity. This is in

good agreement with the fact that the rate of multiphoton

reactions involving n laser photons is proportional to h2n

(for h2 ø 1), and with the kinematic requirement that five
photons are needed to produce a pair near threshold. The

detailed simulation indicates that, on average, 1.5 photons

are absorbed from the laser field in reaction (4) and 4.7 in

(2), but that the exponent n for the two-step process varies
slightly with h and has an average value of 5.3.

FIG. 4. Dependence of the positron rate per laser shot on the
laser field-strength parameter h. The line shows a power law
fit to the data. The shaded distribution is the 95% confidence
limit on the residual background from showers of lost beam
particles after subtracting the laser-off positron rate.
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``Physicists are planning  
lasers powerful enough 

to rip apart the fabric 
of space and time’’

``We’re going to change 
the index of refraction 

of the vacuum, and 
produce new particles.’’
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age can be calculated,

Am = (0.542+ 0.004) && 10'0 sec (7)
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We can now re-evaluate the "vacuum regenera-
tion'* experiments's using (7). Reference 2 now
yields

= (44.7 + 4.0)',
while Ref. 3 gives (49+12)'; the main effect is
that the uncertainty due to b,m (not included in
the errors just quoted1) is now reduced to +2'.
Combining these values and taking into account
the error due to uncertainties in 4m, we get

= (45.2 + 4.0)'.
The value is consistent with those theories which
predict

= tan '2b, m v, = (43.2 +'0.4);
in particular the superweak theory, for which
this prediction is exact.
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PHOTON SPLITTING IN A STRONG MAGNETIC FIELD
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We determine the absorption coefficient and polarization selection rules for photon
splitting in a strong magnetic field, and describe the possible application of our results
to pulsars.

Recent work on pulsars suggests the presence
of trapped magnetic fields within an order of
magnitude in either direction of the electrody-
namic critical field B« =m'/e =4.41X10"G.'
(Here m and e are, respectively, the electronic
mass and charge. ) In such intense fields, elec-
trodynamic processes which are unobservable in

the laboratory can become important. One such
process, for photons with energy co&2m, is
photopair production, for which both the photon
absorption coefficient and the corresponding vac-
uum dispersion have been calculated by Toll. '
For w & 2m the photopair process is kinematical-
ly forbidden, and the only' photon absorption
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Nonlinear EfFects in Quantum Electrodynamics. Photon Propagation
and Photon Splitting in an External Field*

Z. BIALYNICKA-BIRVLAl' AND I. BIALYNICKI-BIRVLA1
DeParlraeaf of Physv'es, Ursvvers@y of Pvffsbargh, Pvffsbargh, Pellsylvaafa 15213

(Received 14 July 1970)

The eftective nonlinear Lagrangian. derived by Heisenberg and Euler is used to describe the propagation
of photons in slowly varying but otherwise arbitrary electromagnetic Gelds. The group and the phase veloc-
ities for both propagation modes are calculated, and it is shown that the propagation is always causal. The
photon splitting processes are also studied, and it is shown that they do not"play any significant role even
in very strong magnetic Gelds surrounding neutron stars.

8x' p

dss 'e

where

Re coshesX
&& (es)'I'

Im coshesX
—1+v (es)'S, (1)
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Owing to the universality of electromagnetic inter-
actions, ' the same Lagrangian (1) describes the inter-
action between photons and between photons and an
external field.
The self-interaction of photons can also be described

in terms of Feynman diagrams. In the lowest order of
perturbation theory in n, the only diagrams that con-
tribute to this interaction are those containing one
closed electron loop. The leading term in the low-energy
~ Research supported by the U. S. Army Research Once

(Durham) and by the U. S. Atomic Energy Commission under
Contract No. AT-30-1-3829.
l'On leave of absence from the Institute of Physics, Polish

Academy of Sciences, Warsaw, Poland.
f On leave of absence from Warsaw University, Warsaw,

Poland.
1These are fields whose variations over the Compton wave-

lenth of the electron (K=3.9 10 "cm) and over the corresponding
time interval (v =I/c) are much smaller than the field itself:
I s.f~a I «ml f~. I' W. Heisenberg and H. Euler, Z. Physik 98, /14 (1936).
'This form of the Lagrangian is taken from the paper of

Schwinger LJ. Schwinger, Phys. Rev. 82, 664 (1951)j, who re-
derived the result of Ref. 2 by the proper-time technique.

4 The interaction of charges with an external Geld is the same as
the interaction with photons.
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I. INTRODUCTION
'~T was recognized in the early thirties that virtual
- - creation and annihilation of electron pairs induces
the self-coupling of the electromagnetic Geld. This self-
interaction is in general nonlocal, and its description is
further complicated by the possibility of real pair
creation. However, for slowly varying' but arbitrarily
strong electromagnetic fields, the self-interaction energy
was computed already in 1936 by Heisenberg and
Euler' in the lowest order of the fine-structure constant
(i.e., without radiative corrections). The effective
Lagrangian which they obtained' (in units A=1=c) is

approximation of the Feynman amplitude represented
by such a diagram with 2e photon lines corresponds to
the eth order term in the asymptotic expansion of the
Lagrangian (1).This was veri&ed by a direct computa-
tion for m=2 by Karplus and Neuman. ' Thus the
calculation based on the effective Lagrangian (1) can
replace the complicated S-matrix calculation in all
problems with slowly varying external fields and/or
low-energy photons.
Out of many nonlinear effects which can be discussed

with the help of this Lagrangian we have selected two:
the photon propagation and the photon splitting in an
external electromagnetic field. These problems have
been studied in many papers. ~' None of these papers,
however, contains the correct formula for the proba-
bility of the photon splitting. Our calculation of the
photon splitting was prompted by recent speculations
that intense magnetic Gelds may be produced by neutron
stars. We have wondered whether photen-splitting
phenomena could inQuence the spectrum of the electro-
magnetic radiation from neutron stars. We have found,
however, this effect to be exceedingly small. The
theoretical explanation of the smallness of the photon-
splitting amplitude is that owing to gauge invariance,
this amplitude is of a much higher degree in the external
field than one would expect on purely dimensional
gl oullds.

II. PHOTON PROPAGATION

The propagation of photons in an external electro-
magnetic field will be described here as the propagation
of weak disturbances in a strong background field. In
this approximation the equation for the photon wave
function is linear, but the coefFicients depend on the
external field. For time-independent and homogeneous
external fields this propagation problem can be solved
explicitly for any relativistic local theory. Such a theory
' R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950).
6 A. Minguzzi, Nuovo Cimento 4, 476 (1956); 6, 501 (1957);

9, 145 (1958); 19, 847 (1961).
r J. J. Klein and B. P. Nigam, Phys. Rev. 135, B1279 (1964).' N. B. Narozhnyi, Zh. Eksperim. i Teor. Fiz. 55, 714 (1968)

I Soviet Phys. JETP 28, 371 (1969)g.
eV. G. Skobov, Zh. Eksperim. i Teor. Fiz. 35, 1315 (1958)

I Soviet Phys. JETP 8, 919 (1959)g."S.S. Sannikov, Zh. Eksperim. i Teor. Fiz. 52, 1303 (1967)
I Soviet Phys. JETP 25, 867 (1967)P.
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a new field of strong-field/high-intensity particle physics is forming



Biréfringence Magnétique du Vide (BMV)

OSQAR: Optical Search for QED vacuum magnetic 
birefringence, Axions and photon Regeneration

PVLAS: Polarizzazione del Vuoto con LASer

LIPSS: Light Pseudoscalar and Scalar SearchThomas Jefferson National 
Accelerator Facility

Future Plans
•Run again with more power (~1 kW) using 
improved mirrors as soon as possible; take more 
data in both pseudoscalar (!) and scalar (!) 
configurations

•Investigate other improvements or follow-on 

experiments

•Continue the quantum efficiency and uniformity 
measurements on the camera

•Complete a thorough statistical treatment of the 
data.

some laser-based fundamental physics experiments



Figure 6: Exclusion limit (95% C.L.) for pseudoscalar (left) and scalar (right) axion-like particles obtained by
the ALPS experiment from vacumm and gas runs together with the results from various other LSW experiments
[10], see the text for details. Dashed and dotted lines show the bounds derived form the PVLAS measurement on

ALP induced dichroism and birefringence [17].

4.4 ALPS Result

ALPS took around 50 data sets (1 h frames) under different experimental conditions: with
magnet on or off, laser polarization parallel or perpendicular to the magnetic field and different
gas pressures. Details on the methodology and analysis are described in [9, 10]. From the
non observation of any WISP signal a 95 % confidence level on the conversion probabilty was
obtained, ranging between Pγ→φ→γ = 1...10×10−25 for the different experimental setups. Fig. 6
shows the ALPS results for pseudoscalar and scalar axion-like particles together with the results
obtained from BMV [24], BFRT [23], GammeV [25], LIPSS [26] and OSQAR [18]. The gaps at
higher masses are covered by the ALPS gas runs as described above. ALPS provide now the
most stringent laboratory bounds on ALPs in the sub-eV mass range.

Also for hidden photon and minicharged particle search ALPS provides now the most strin-
gent laboratory bounds on their existence, cf. Fig. 7. The ALPS LSW results on hidden photon
search fills the gap between lab searches for deviations from Coulomb’s law and astrophysical
bounds. Remarkable, with the achieved sensitivity ALPS almost completely rules out the hint of
WMAP and large-scale-structure probes with non-standard radiation density contribution due
to hidden photons, cf. [10] and references therein.

5 Prospects of Direct WISP Search Experiments

Further upgrades and plans toward large scale LSW experiments are aiming to surpass present
astrophysics limits on the coupling of ALPs to photon. This requires a sensitivity in the photon-
ALP coupling of g < 10−10GeV−1, an improvement of 3 orders of magnitude with respect to the
actual ALPS results. Table 1 summarizes the dependence of the sensitivity in g on experimental
parameters together with possible improvements.

Magnet

The sensitivity in g improves linearly with the magnetic field strength and length. Instead of half
an HERA dipole magnet with BL ≈ 23 Tm as used within the actual ALPS setup for the WISP
generation and for the reconversion to photons one may use e.g. up to six HERA dipoles on
each side providing about 280 Tm. This would improve the sensitivity by more than one order
of magnitude. Alternatively two plus two LHC magnets, which are the most powerful existing

7

Ehret, ALPS collaboration, 2010

“light shining through walls” experiments
Future Experiments

� “light-shining-through-walls” experiments:

B B

PVLAS upgrade first run: Nov 2007
ALPS (DESY) first run: Sep 2007
APFEL (DESY) (VUV-FEL at TTF)
LIPSS (JLAB) first run: Mar 2007
OSQAR (CERN) first run: Jun 2007
GammeV (Fermilab) first run: Jul 2007

photon regeneration

Holger Gies External Fields as a Probe for Fundamental Physics

H. Gies



• pair production from vacuum
• light-light scattering
• vacuum polarization physics
• effective field theory
• gravitational effective actions
• zeta functions

Scientific legacy of Heisenberg & Euler’s paper



from QED to QCD ...
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Exact results for effective Lagrangians

M. R. Brown and M. J. Duff
Department of Astrophysics, Oxford University, Oxford, England

(Received 4 September 1974)

A simple method is presented for the evaluation in quantum field theory of the effective Lagrangian

induced by one-loop quantum efFects. Exact solutions may be obtained in the quasilocal situation where

the resulting Lagrangian is allowed to depend on the fields and their first derivatives (and, in some

cases, their second derivatives as well). The method is a general one and may be applied to any given

field theory. For example, Schwinger's result for the effective Maxwell Lagrangian with constant

external field and the Coleman-Weinberg results for effective potentials each emerge as special cases of
the general method. By isolating the divergent part of the induced Lagrangian in the general case,

moreover, one may recover the 't Hooft-Veltman expression for the one-loop counterterms of an
arbitrary field theory. At no stage need Feynman diagrams be evaluated.

I. INTRODUCTION

It was recognized long ago that the effects of
closed loops in a perturbation expansion of the S
matrix could be summarized by adding to the orig-
inal classical action functional, S, an "effective"
quantum action functional, 8'." All calculations
are then reduced to a study of the c-number theory
based on I'=S+W.
Although it has now become popular to employ

the functional integral representation for l as a
useful device for generating the full irreducible
vertex functions of the theory, there have been

relatively few attempts to simply calculate I ex-
plicitly, even though this effective action, if one
could only get a handle on it, contains all the in-

forrnation we need ever want to extract from the

theory.
Qf course I' is an exceedingly complicated quan-

tity. Even in the one-loop approximation it is a
nonlocal functional of the fields depending, as it
does, on the field variables and all their deriva-
tives. For arbitrarily varying fields, therefore,
one must, it seems, resort to perturbative meth-

ods of calculation. In certain situations, however,

exact results ean be obtained. For example,
Schwinger' has computed exactly the effective
Maxwell Lagrangian induced by closed loops of

fermions or bosons, in the case of a constant ex-
ternal field. Schwinger's coordinate-space method

is an elegant one, relying on his proper-time for-
malism, which is accompanied by the introduction

of abstract vectors in a nonphysical Hilbert space
with an associated "Hamiltonian" and "transition
amplitudes" satisfying a "Schrodinger equation. "
There is, however, another way to compute ef-

fective Lagrangians which relies on straightfor-
ward momentum-space methods, which, we feel,
are more familiar to most field theorists. Work-

ing in momentum space also facilitates the intro-
duction of dimensional regularization whereby the

resulting divergences may be rapidly and elegant-
ly removed. It is this route which we advocated in

a previous paper' for the computation of effective

potentials, and which we wish to extend in this pa-
per to effective Lagrangians.
Rather than plunging straight into the evaluation

of I' in the general case, we prefer to begin in

Sec. II with the example of a X$' theory so as not
to obscure the essential simplicity of the method.

Many of the results of this section will be seen to

carry over, with one or two modifications, to the

general case treated in Sec. III. Using the back-
ground-field method of DeWitt, ' it turns out that

the one-loop effective Lagrangian, Z ', may be

computed exactly provided one can obtain an exact
solution to the equation of the appropriate Green's
function in the presence of the background field,
P(x). This we are able to do in the quasilocal situ-
ation in which Z~" is allowed to depend on the vari-
ables Q' 8 P', and 8 8, $'.
The essence of the calculation is to write an in-

tegral representation for the momentum-space
Green's function, G(P), in terms of three unknown

functions which are then determined by three ele-
mentary first-order differential equations obtained

by substituting G(P) back into its defining equation.

By working throughout in n dimensions and only

taking the limit n- 4 after renormalization, the

resulting finite Lagrangian is arrived at without
reference to eutoffs or counterterms, and we de-
scribe how to avoid the infrared divergence in the
massless theory. Our Lagrangian goes smoothly
over to the Coleman-Weinberg effective potential
in the local approximation obtained by setting the

derivatives of the field equal to zero.
In Sec. III, we set up the relevant Green's-func-

tion equation for an arbitrary field theory. The
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VACUUM POLARIZATION INDUCED BY THE INTENSE GAUGE FIELD 

S G MATINYAN and G K SAVVIDY 

Yerevan Phystcs Instttute, Armenta, USSR 

Recewed 8 March 1977 
(Revised 27 October 1977) 

The results obtained from conslderatmn of the effective Lagrangmn density asymptotic 
behawour m gauge theories by means of the renormallzatlon-group method are discussed 
Such a conslderatmn allows one to relate the asymptotic behavlour of the effectave Lag- 
rangmn density in strong fields to the short-range behavlour of gauge theories 

1. Introduction 

In the well known papers of  Helsenberg and Euler [1] and Schwlnger [2] the 

problem of  vacuum polarization was studied by means of  the external electromagnetic 

field Schwmger found the general expression for the quantum correction to the clas- 

sical action, stipulated by the vacuum polarization, this expression coincides with the 

WO)-one-loop approximation of  the effectwe action 

I" = S d  + W 

: S d + W  O ) + W  (2)+ (1 1) 

The exphclt calculation of this correction xs possible m two cases for the constant 

field and for the plane-wave field Thas problem for the constant field in the two-loop 

approxamataon has been solved by Ratus [3] 

The study of  the effects of  vacuum polarization an ~,~p4 theory has led to some 

interesting conclusxons [4] In this theory we succeeded in explacltly calculating the 

one-loop correctaon for a wader famdy of  fields [5,6] 

In a previous paper [7] we discussed the problem of vacuum polarization by a 

Yang-Mtlls (YM) source free external field The restnctaon to fields which satisfy a 

source-free equation of motion was connected with the fact that an this case one can 

prove the total gauge mvaraance of  the effectwe actaon [8-10,7 ,11]  The calculations 

m [7] were made an the one-loop approximation 

In the particular case when the external field is covarlantly constant [6,7], the 

one-loop correctaon for the classacal action can be calculated exphclt ly [7] 

The result as analogous to the one-loop Lagrangaan density of Heasenberg and 
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Covariant perturbation theory (II). Second order in the curvature. General algorithms

A.O. Barvinsky, G.A. Vilkovisky

Nuclear Safety Institute, Bolshaya Tulskaya 52, Moscow 113191, USSR
Lebedev Physical Institute, Leninsky Prospect 53, Moscow 117924, USSR
Received 7 July 1989; Available online 18 October 2002.

Abstract

Covariant perturbation theory proposed in the previous paper is worked up to the second order 
in field strengths (curvatures). The trace of the heat kernel and the one-loop effective action 
for the generic second-order operator are obtained with this accuracy. The calculational 
scheme for higher orders is presented. The large time behaviour of the trace of the heat kernel 
is obtained to all orders in the curvature.

http://www.sciencedirect.com/science/journal/05503213
http://www.sciencedirect.com/science/journal/05503213
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SELF-DUALITY, HELICITY, AND SUPERSYMMETRY: THE SCATTERING OF LIGHT BY LIGHT 

M.J. DUFF 1 and C.J. ISHAM 

Physics Department, Imperial College, London SW7 2AZ, UK 
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The scattering of light by light is used to provide a concrete example of the c, onnection between self-duality, helicity and 

supersymmetry first suggested in supergravity. 

Although supersymmetric gauge theories [1] and 

supergravity [2] have received considerable attention 

over the last few years, there is one remarkable aspect 

of supergravity which has only recently come to light: 

all invariants of arbitrary order in the gravitational cur- 

vature and spin-3/2 field strength vanish with self- 

duality, save for the (topological) invariants quadratic 

in the curvature [3-5] .  Moreover, in ref. [5], where 

this result is proved to all orders, an attempt was made 

to relate this self-duality property to another pheno- 

menon, that of helicity conservation in supergravitational 

scattering amplitudes [6]. Since helicity conservation 

is known to be a feature common to all supersymme- 

tric gauge theories [6], one would expect the self- 

duality property to make its appearance in spin-1 

theories as well. The purpose of the present paper is 

to give a concrete example of this phenomenon via the 

scattering of light by light in supersymmetric QED [7]. 

The relationship between self-duality and helicity 

conservation in supergravity was illustrated in ref. [5 ] 

by the following example. There are two local scalar 

invariants quartic in the Weyl tensor Cuvno which are 

allowed by general covariance, namely 

(1) C2+C 2, 

(2) C+ 4 + C4_, 

where 
+ 1 

C~uoo = ~ (Cuuoo + i*Cuuoa) , ( l )  

and 
, _1_ 
Cuuoa - 2 euuatJCaoo o" (2) 

I Science Research Council Advanced Research Fellow. 

Only the first of these, however, makes its appearance 

in the supergravity quantum effective lagrangian (it is, 

in fact, the square of the Bel-Robinson tensor and 

enters as a possible three-loop counterterm [8]). The 

second is not part of a superinvariant. It was then ar- 

gued that in two-graviton to two-graviton processes, for 

example, invariants like C2C 2 would contribute only 

to the helicity conserving process (++, out[++, in), 

while the he!icity-flip process ( - - ,  out I++, in)would 

correspond to forbidden invariants like C 4 + C4_. 

A concrete confirmation of this conjecture would 

unfortunately prove rather cumbersome in supergravity, 

and here we shall consider the analogous relationship 

in supersymmetric QED. Our reasons for choosing this 

theory to illustrate our point are twofold. First, it is 

the simplest example of a supersymmetric gauge 

theory and, secondly, most of the required results can 

be gleaned, without much extra effort, from calcula-' 

tions made (years before the advent of supersymmetry) 

by Schwinger [9]. If we focus our attention on photon 

scattering at the one-loop level, then the only relevant 

vertices are the usual photon-fermion and photon-scalar 

minimal couplings of ordinary QED. The crucial point 

is that, by supersymmetry, there are two charged scalars 

and one charged fermion each with the same mass m. 

Let us f'trst consider fermions. As shown by Euler 

and Heisenberg [10] and emphasized by Schwinger [9], 

the process 7")' "-* 77 via a closed fermion loop may be 

represented, in the limit of low frequencies, by an effec- 

tive four-photon lagrangian, 

Z?l/2 = (°t2/90m4) t2rUw2~2-+-_ _ ~ (F 4 + F4)]  , (3) 
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where, in analogy with eqs. (1) and (2), we have written 

the result in terms of the self-dual and anti-self-dual 

parts of the Maxwell field strength, 

Fur = ½ (F,v -+ i 'Fur  ) . (4) 

Now let us consider the various helicity amplitudes. It 

is not difficult to show that one-photon states of de- 

f'mite helicity [a -+) with wavefunctions au(k , +_) yield, 

in coordinate space, incoming wave functions 

<O[Au(x)la+-> whose field strengths are self-dual or 

anti-self-dual according as the helicity is + or - ,  with 

the opposite assignments to the outgoing wave func- 

tions <0t_+lAu(x)]0>. This follows from the equation 

[k se~ (k) - k v e~ (k) ] 

= +1" po e~(k)- kae~(k)] _ ~ l e . ~  [kp , (5 )  

satisfied by the + and - helicity polarization vectors 

e~(k). Thus the invariant F2F 2_ corresponds to the 

amplitudes <++, out 1+% in> and < - - ,  out I - - ,  in>, 

while (/74+ F4_) corresponds to < - - ,  outl++, in> and 

(++, out I - - ,  in>. The non-vanishing of both coefficients 

in the fermion lagrangian (3) implies the presence of 

both helicity-conserving and helicity-flip amplitudes. 

Similar remarks apply to other non-vanishing amplitudes, 

namely <+-,  outl+ --, in> and <-% outl+ - ,  in>. These 

are associated with higher derivative invariants 
(F2+ OF 2 + F2 0F2+ ), (F2+ OF2 + F 20F2)and 
(F+F_)m,O(F+F_)uz,, where O is a rather complicated 

differential operator. In the limit that the fields are 

slowly varying, these terms make nocontribution to 

the effective lagrangian. The general rule still holds, 

however. Those which contain F+F_ as a factor corre- 

spond to helicity conservation and the other to helicity 

flip. 

If we repeat the above argument for a single charged 

scalar loop (with the same m) one finds [9] 

3 4 F4_)] (6) £?0 = (a2/90m4) [ F2F2 + g (F~ + , 

and once again both types of amplitude are present. 

If we now consider the supersymmetric combination, 

however, then from (3) and (6) 

• Qsuper = ,£~?1/2 + 2"6?0 = (°t2/12rna) F2F2- • (7) 

The terms involving (F 4 + F4_) have cancelled and we 

recover, as anticipated, the helicity-conservation rule. 

Thus the simple example of scattering of light by light 

in supersymmetric QED provides a concrete demon- 

stration, in a spin-1 gauge theory, of the connection 

between self-duality, helicity, and supersymmetry first 

suggested in supergravity. 

Note also that just as the Weyl tensor makes its ap- 

pearance in the local part of the supergravitational ef- 

fective lagrangian via the Bel-Robinson tensor 

T = ~ C + ~#C- u ~ p o  u ~  , ~ p o  , (8) 

so the Maxwell field strength in the local supersymmetric 

QED lagrangian always appears via the energy-moment- 

um tensor, 

Tuu= ~_ a 2 F+ u F_~u. (9) 

In both cases, moreover, the quadratic terms (C+ 2 + C2_) 

and (F+2+ F 2) provide the exception to the rule. The 

difference in the spin-1 case, of course, is that (F 2 +F2_) 

is just the Maxwell lagrangian itself. This means that, 

strictly speaking * 1, the vanishing of the quantum cor- 

rections to the effective lagrangian with self-duality 

occurs only after renormalization, i.e., after the counter- 

terms proportional to FuuFU~ have been subtracted. 

This is apparent from the contribution to 170, "~112, 

and 22supe r coming from closed loops with arbitrarily 

many external photon lines. In the limit of slowly 

varying fields, these are given by [9] 

(•)2/ 
ds ~2~ 

.~0 = __ e - , , J  o 

s 3 

× [ (es)2~ -- 1 -- ](es) 2 fir] 
l_Im cos (es~g 1_/2) J 

(10) 

"~1/2 = --2 / d__s e_m2s 
(4rr) 2 s 3 

[(es)2 ~Re cos(es~ 1/2 co_o_~es~ l_~ 2 ~] X L - 1+ g(es) 2 , (11) 

where 

~=-~FuuFUU, q= -~*FuvFUU, 9d± =2(~r+ i~). 

(12) 

The subtraction of the final two terms in square brackets 

.1 When F~v is self-dual, the Maxwell lagrangian is proportional 
to Ft, w*F~v, a total divergence. In the non-abelian case, the 
total divergence is the integrand of the "winding number", 
i.e. the second Chern number. 
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in the fermion lagrangian (3) implies the presence of 

both helicity-conserving and helicity-flip amplitudes. 

Similar remarks apply to other non-vanishing amplitudes, 

namely <+-,  outl+ --, in> and <-% outl+ - ,  in>. These 

are associated with higher derivative invariants 
(F2+ OF 2 + F2 0F2+ ), (F2+ OF2 + F 20F2)and 
(F+F_)m,O(F+F_)uz,, where O is a rather complicated 

differential operator. In the limit that the fields are 

slowly varying, these terms make nocontribution to 

the effective lagrangian. The general rule still holds, 

however. Those which contain F+F_ as a factor corre- 

spond to helicity conservation and the other to helicity 

flip. 

If we repeat the above argument for a single charged 

scalar loop (with the same m) one finds [9] 

3 4 F4_)] (6) £?0 = (a2/90m4) [ F2F2 + g (F~ + , 

and once again both types of amplitude are present. 

If we now consider the supersymmetric combination, 

however, then from (3) and (6) 

• Qsuper = ,£~?1/2 + 2"6?0 = (°t2/12rna) F2F2- • (7) 

The terms involving (F 4 + F4_) have cancelled and we 

recover, as anticipated, the helicity-conservation rule. 

Thus the simple example of scattering of light by light 

in supersymmetric QED provides a concrete demon- 

stration, in a spin-1 gauge theory, of the connection 

between self-duality, helicity, and supersymmetry first 

suggested in supergravity. 

Note also that just as the Weyl tensor makes its ap- 

pearance in the local part of the supergravitational ef- 

fective lagrangian via the Bel-Robinson tensor 

T = ~ C + ~#C- u ~ p o  u ~  , ~ p o  , (8) 

so the Maxwell field strength in the local supersymmetric 

QED lagrangian always appears via the energy-moment- 

um tensor, 

Tuu= ~_ a 2 F+ u F_~u. (9) 

In both cases, moreover, the quadratic terms (C+ 2 + C2_) 

and (F+2+ F 2) provide the exception to the rule. The 

difference in the spin-1 case, of course, is that (F 2 +F2_) 

is just the Maxwell lagrangian itself. This means that, 

strictly speaking * 1, the vanishing of the quantum cor- 

rections to the effective lagrangian with self-duality 

occurs only after renormalization, i.e., after the counter- 

terms proportional to FuuFU~ have been subtracted. 

This is apparent from the contribution to 170, "~112, 

and 22supe r coming from closed loops with arbitrarily 

many external photon lines. In the limit of slowly 

varying fields, these are given by [9] 

(•)2/ 
ds ~2~ 

.~0 = __ e - , , J  o 

s 3 

× [ (es)2~ -- 1 -- ](es) 2 fir] 
l_Im cos (es~g 1_/2) J 

(10) 

"~1/2 = --2 / d__s e_m2s 
(4rr) 2 s 3 

[(es)2 ~Re cos(es~ 1/2 co_o_~es~ l_~ 2 ~] X L - 1+ g(es) 2 , (11) 

where 

~=-~FuuFUU, q= -~*FuvFUU, 9d± =2(~r+ i~). 

(12) 

The subtraction of the final two terms in square brackets 

.1 When F~v is self-dual, the Maxwell lagrangian is proportional 
to Ft, w*F~v, a total divergence. In the non-abelian case, the 
total divergence is the integrand of the "winding number", 
i.e. the second Chern number. 
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ensures that the integral over s is finite. Combining 

(10) and (11), we find 

_ 1 ? dSe_m:S(es)2 
"Qsuper 87r2 0 s3 

F 1 1 -  Recos(esg~ 1/2)\ 

X L ~ t I ~ ~ - F 7  7 ) - S r ]  . (13) 

Note that the quadratic divergence in the first term 

has cancelled ,2 and also that/2supe r vanishes when 

F+ or F_  vanishes. If we expand the lagrangian (13) 

and keep only terms quartic in the field strength, we 

then recover the four-photon lagrangian (7). 

When the slowly varying field restriction is lifted, 

the one-loop effective action Wsupe r = fd4x 22supe r 

becomes a complicated non-local functional of the 

field strength. Its vanishing with self-duality may still 

be established, however, by extending to massive fields 

the arguments first put forward in the context of mass- 

less field equations in the background of (non-abelian) 

self-dual instantons in euclidean space [12,13,3]. The 

euclidean action functional is given by 

exp (-- Wsuper) = (det AF)l/2/(det AB)2 , (14) 

where we have used the fact that there is one charged 

fermion and two charged scalars, and where 

AF= -VtaVu - -  ½ieouuFUV + m 2 , 
(is) 

AB=-VUVu+m 2, Vu=Su+ieA u. 

By converting the functional integral over the Fermi 

fields into the determinant of the second-order opera- 

tor AF, it is then possible to show that, when Fuz , is 

self-dual, the operator A F has the same spectrum as 

A B but with four times the multiplicity. (There are no 

zero-eigenvalue modes when m 4= 0.) Helace 

(det AF)I/2 = (det AB)2 , (16) 

and Wsupe r vanishes. In their original euclidean context, 

such arguments were used to prove that the instanton 

contribution to the one-loop action is determined in 

supersymmetric theories only by the zero modes (which 

are also absent in our case). In the Minkowski regime, 

:1:2 This has been noted before [11 ] and corresponds in curved 
space to the absence of an induced cosmological constant. 

where the self-dual Fur is complex, we have instead the 

helicity-state interpretation and the vanishing of Wsupe r 

with self-duality again reflects the absence of helicity- 

flip scattering amplitudes. This vanishing is not simply 

a one-loop phenomenon but in fact persists to all 

orders of perturbation theory, as can be seen by argu- 

ments along the lines of ref. [4]. 

Although we have, for simplicity, concentrated on 

supersymmetric QED, the connection between self- 

duality, helicity, and supersymmetry is also shared by 

non-abelian gauge theories (as might have been expected 

from the supergravity results). The non-abelian analogue 

of the effective lagrangians (10), (11) and (13) will also 

receive contributions from closed loops of the gauge 

quanta themselves and the corresponding ghosts. In the 

case of slowly varying fields, moreover, one may once 

again obtain exact results [14]. (A particularly inte- 

resting example is provided by the 0(4)  model where 

the term analogous to the ~r term in £?super(13) vanishes 

by mutual cancellation of the vector, spinor and scalar 

contributions. This corresponds to the well-known re- 

sult that the one-loop (and two-loop) contribution to 

the/3-function vanishes [15]. Higher order invariants 

like F2F 2 do survive, however.) 

What is no longer quite so obvious in the non-abelian 

case is the connection between self-duality and helicity. 

Although the properties of the positive and negative 

helicity polarization vectors (5) and the duality of 

the corresponding "in" and "out" wave functions still 

hold true, they are of course statements about the free- 

field operators which obey the linearized equations of 

motion. The self-duality of the non-abelian field strength 

Fur = (auA v - ~vAu) + g [Au,Av], on the other hapd, 

is a highly non-linear statement about exact solutions. 

It was the attempt to reconcile the linear and non- 

linear aspects of the theory which led us, in a previous 

paper [16], to a theorem concerning Yang-Mills field 

equations which is of interest in its own right: solutions 

of the non-linear equations obtained by iteration from 

self-dual solutions of the linearized equations are them- 

selves self-dual. Thus the iteration in powers of coupling 

constant g preserves the self-duality, in spite of the non- 

linearity of the field equations. We are presently investi- 

gating further implications of this result, in the light of 

the fact that the duality properties of the supersymme- 

tric effective action are such that self-dual solutions of 

the classical equations will also solve the quantum equa- 

tions derived from the full effective action. 
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Quantum string theory effective action

E. S. Fradkin and A. A. Tseytlin

Department of Theoretical Physics, P.N. Levedev Physical Institute, Leninsky pr. 53, Moscow 117924, USSR

Abstract

We present a covariant background field method for quantum string dynamics. It is based on the effective action Γ for fields corresponding to 
different string modes. A formalism is developed for the calculation of Γ in the αʹ′ → 0 limit. It is shown that in the case of closed Bose strings Γ 
contains the standard kinetic terms for the scalar, external metric and the antisymmetric tensor. Our approach makes possible a consistent formulation 
and solution of a ground state problem (including the problem of space-time compactification) in the string theory. We suggest a solution to the old 
“tachyon problem” based on the generation of non-trivial vacuum values for the scalar field, metric and antisymmetric tensor. It is shown that a 
preferred compactification in the closed Bose string theory is to three (anti-de Sitter) space-time dimensions.

Nuclear Physics B
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Volume 163, 1985

Non-linear electrodynamics from quantized strings

E. S. Fradkin and A. A. Tseytlin

P.N. Lebedev Physical Institute, Leninsky pr. 53, Moscow 117924, USSR

Abstract

We compute the effective action for an abelian vector field coupled to the virtual open Bose string. The problem is exactly solved (in the “tree” and 
“one-loop” approximation for the string theory) for the case of a constant field strength and the number of space-time dimensions D=26. The resulting 
tree-level effective lagrangian is shown to coincide with the Born-Infeld lagrangian, [det(δμν + 2Παʹ′Fμν)]1/2.
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• pair production from vacuum
• light-light scattering
• vacuum polarization physics
• effective field theory
• gravitational effective actions
• zeta functions
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Quantum Theory of Gravity. II. The Manifestly Covariant Theory*

BRVCE S. DEWITT

Institute for Advanced Study, Princeton, New Jersey
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Department of Physics, University of North Carolina, Chape/ Hill, North Caroiinat

(Received 25 July 1966; revised manuscript received 9 January 1967)

Contrary to the situation which holds for the canonical theory described in the first paper of this series,
there exists at present no tractable pure operator language on which to base a manifestly covariant quantum

theory of gravity. One must construct the theory by analogy with conventional 5-matrix theory, using

the c-number language of Feynman amplitudes when nothing else is available. The present paper undertakes

this construction. It begins at an elementary level with a treatment of the propagation of small disturbances

on a classical background. The classical background plays a fundamental role throughout, both as a technical
instrument for probing the vacuum (i.e., analyzing virtual processes) and as an arbitrary fiducial point for

the quantum fluctuations. The problem of the quantized light cone is discussed in a preliminary way, and

the formal structure of the invariance group is displayed. A condensed notation is adopted which permits

the Yang-Mills field to be studied simultaneously with the gravitational field. Generally covariant Green s

functions are introduced through the imposition of covariant supplementary conditions on small dis-

turbances. The transition from the classical to the quantum theory is made via the Poisson bracket of

Peierls. Commutation relations for the asymptotic fields are obtained and used to define the incoming

and outgoing states. Because of the non-Abelian character of the coordinate transformation group, the

separation of propagated disturbances into physical and nonphysical components requires much greater

care than in electrodynamics. With the aid of a canonical form for the commutator function, two distinct

Feynman propagators relative to an arbitrary background are defined. One of these is manifestly co-

variant, but propagates nonphysical as well as physical quanta; the other propagates physical quanta only,

but lacks manifest covariance. The latter is used to define external-line wave functions and non-radiatively-

corrected amplitudes for scattering, pair production, and pair annihilation by the background field. The

group invariance of these amplitudes is proved. A fully covariant generalization of the complete S matrix
is next proposed, and Feynman's tree theorens on the group invariance of non-radiatively-corrected n-particle

amplitudes is derived. The big problem of radiative corrections is then confronted. The resolution of this

problem is carried out in steps. The single-loop contribution to the vacuum-to-vacuum amplitude is first

computed with the aid of the formal theory of continuous determinants. This contribution is then func-

tionally diRerentiated to obtain the lowest-order radiative corrections to the n-quantum amplitudes.

These amplitudes split automatically into Feynman baskets, i.e., sums over tree amplitudes (bare scattering

amplitudes) in which all external lines are on the mass shell. This guarantees their group invariance. The
invariance can be made partially manifest by converting from the noncovariant Feynman propagator to
the covariant one, and this leads to the formal appearance of fictitious quanta which compensate the

nonphysical modes carried by the covariant propagator. Although avoidable in principle, these quanta

necessarily appear whenever manifestly covariant expressions are employed, e.g., in renormalization theory.

The fictitious quanta, however, appear only in closed loops and are coupled to real quanta through vertices

which vanish when the invariance group is Abelian. The vertices are nonsymmetric and always occur with

a uniform orientation around any fictitious quantum loop. The problem of splitting radiative corrections

into Feynman baskets becomes more difhcult in higher orders, when overlapping loops occur. This problem
is approached with the aid of the Feynman functional integral. It is shown that the "measure" or "volume

element" for the functional integration plays a fundamental role in the decomposition into Feynman

baskets and in guaranteeing the invariance of radiative corrections under arbitrary changes in the choice

of basic field variables. The "measure" has two effects. Firstly, it removes from all closed loops the non-

causal chains of cyclically connected advanced (or retarded) Green's functions, thereby breaking them

open and ensuring that at least one segment of every loop is on the mass shell. Secondly it adds certain non-

local corrections to the operator field equations, which vanish in the classical limit 5-+ 0. The question

arises why these removals and corrections are always neglected in conventional field theory without apparent
harm. It is argued that the usual procedures of renormalization theory automatically take care of them.

In practice the criteria of locality and unitarity are replaced by analyticity statements and Cutkosky rules.

It is virtually certain that the "measure" may be similarly ignored (set equal to unity) in gravity theory,
and that attention may therefore be confined to primary diagrams, i.e., diagrams which contain Feynman

propagators only, with no noncausal chains removed. A general algorithm is given for obtaining the

primary diagrams of arbitrarily high order, including all fictitious quantum loops, and the group invariance

of the amplitudes thereby defined is proved. Essential to all these derivations is the use of a background
fie1d satisfying the classical "free" Geld equations. It is never necessary to employ external sources, and

hence the well-known difhculties arising with sources in a non-Abelian context are avoided.

1. INTRODUCTION
' 'N the Grst paper of this series' an attempt was made

~ ~ to show what happens when canonical Hamiltonian

quantization methods are applied to the gravitational

Geld. Attention was focused on some of the bizarre

features of the resulting formalism which arise in the

case of finite worlds, and which are of possible cos-

mological and even metaphysicaL signidcance. Such

*This research was supported in part by the Air Force Ofhce
of Scientific Research under Grant AFOSR-153-64, and in part by
the National Science Foundation under Grant GP7437.
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Quantized Fields and Particle Creation in Expanding Universes. I
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(Received 11March 1969}

Spin-0 6elds of arbitrary mass and massless Gelds of arbitrary spin are considered. The equations gov-
erning the fields are the covariant generalizations of the special-relativistic free-field equations. The metric,
which is not quantized, is that of a universe with an expanding (or contracting) Euclidean 3-space. The
spin-0 Geld of arbitrary mass is quantized in the expanding universe by the canonical procedure. The
quantization is consistent with the time development dictated by the equation of motion only when the
boson commutation relations are imposed. This consistency requirement provides a new proof of the con-
nection between spin and statistics. We show that the particle number is an adiabatic invariant, but not a
strict constant of the motion. We obtain an expression for the average particle density as a function of the
time, and show that particle creation occurs in pairs. The canonical creation and annihilation operators
corresponding to physical particles during the expansion are specified. Thus, we do not use an S-matrix
approach. We show that in a universe with flat 3-space containing only massless particles in equilibrium,
there will be precisely no creation of massless particles as a result of the expansion, provided the Einstein
field equations without the cosmological term are correct. Furthermore, in a dust-filled universe with Bat
3-space there will be precisely no creation of massive spin-0 particles in the limit of in6nite mass, again pro-
vided that the Einstein field equations are correct. Conversely, without assuming any particular equations,
such as the Einstein equations, as governing the expansion of the universe, we obtain the familiar Fried-
mann expansions for the radiation-61led and the dust-filled universes with Rat 3-space. We only make a
very general and natural hypothesis connecting the particle creation rate with the macroscopic expansion
of the universe. In one derivation, we assume that in an expansion of the universe in which a particular
type of particle is predominant, the type of expansion approached after a long time will be such as to mini-
mize the average creation rate of that particle. In another derivation, we use the assumption that the
reaction of the particle creation back on the gravitational Geld will modify the expansion in such a way
as to reduce, if possible, the creation rate. This connection between the particle creation and the Einstein
equations is surprising because the Einstein equations themselves played no part at all in the derivation of
the equations governing the particle creation. Final)y, on the basis of a so-called in6nite-mass approximation,
we argue that in the present predominantly dust-filled universe, only massless particles of zero spin might
possibly be produced in signi6cant amounts by the present expansion. In this connection, we show that
massless particles of arbitrary nonzero spin, such as photons or gravitons, are not created by the expansion,
regardless of its form.

'N a previous paper, ' the results of an investigation
~ ~ of particle creation in expanding universes were
summarized. The present paper is the first of several
in which the previously summarized results wil] be
derived. 2 The considerations in this paper will be
restricted to (1) spin-0 particles of arbitrary mass and

' L. Parker, Phys. Rev. Letters 21, 562 (2968).
~These articles will he based mainly on t.he author's thesis:

L. Parker, Ph.D. thesis, Harvard University, 1966 (unpublished).
Other related articles were cited in Rf f. l. A relevant article that
the author was not previouslv aware of is Y. Takahashi and H.
Umezawa, Nuovo Cimento 6, 1324 (1957). This is the earliest
article we know of dealing with quantized particle creation in
expanding systems. It treats a problem corresponding to a sudden
expansion of the universe.

(2) particles of arbitrary spin but zero mass. The class

of metrics considered here have the form

ds =-dtt+R(/)t(dx +dy +ds )

where R(t) is an unspecified positive function of t. We
will refer to a universe with such a metric conveniently

as an expanding universe, although R(t) need not be

increasing with time. The equations governing the

fields are the covariant generalizations of the special-

relativistic free-field equations. The gravitational

metric is treated as an unquantized external field. No

additional interactions are included.
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General-relativistic quantum Beld theory: An exactly soluble model
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(Received 3 March 1975)

The massive scalar and Dirac fields quantized on a de Sitter background geometry prove to be exactly soluble

models in general-relativistic field theory. The Feynman Green's function is computed for both the scalar as'
Dirac fields. A dimensional regularization procedure applied in coordinate space facilitates the calculation of
their respective effective Lagrangians, which describe the vacuum corrections due to closed matter loops. The

model is found to be renormalizable. There is no creation of real particle pairs.

I. INTRODUCTION

It is well known that the quantum corrections
to a field theory may be summarized by adding

to the classical action functional S an effective

action W." The functional I' = S+S'contains all

the information to be extracted from the theory.
In general I may only be calculated in perturba-
tion theory; however, in certain cases of high
symmetry I' may be calculated in closed form.
In this paper we show how this approach can be

used to solve the problem of quantizing matter

fields in a given curved space-time. We present
exact solutions for I' for both Klein-Gordon and

Dirac fields coupled to a gravitational field of

constant curvature (de Sitter space). '
Inevitably divergences arise which must be

removed from the final answer in a coordinate-

invariant manner. This is accomplished by

applying the dimensional regularization procedure'

directly in coordinate space.
In Sec. II it is shown how the effective Lagran-

gian and hence the effective action may be cal-
cul.ated from a knowledge of the Feynman Green's

function. The effective Lagrangian is calculated

in closed form in Sec. III and the result is com-

pared with a perturbative treatment in Secs. IV
and V. The following results were found: (i)
The quadratic and quartic infinities from the

perturbative treatment arise also in the exact
solution and are absorbed by a renormalization

of the gravitational and cosmological. constants.

(ii) The logarithmic infinity which cannot be

absorbed by renormalization is ambiguous in the

exact theory. A closer examination of the per-
turbation theory reveals that it too is real, ly am-

biguous; the logarithmic infinity occurs with a
definite coefficient only if we require the effec-
tive Lagrangian to possess an expansion in in-

tegral powers of the curvature. In de Sitter space
this ambiguous term is of no consequence since
it does not contribute to the energy-momentum

tensor. Hence this particular model is renormal-

izable. (iii) The perturbation series is an asymp-
totic series which is valid for small curvature
(large mass), but does not converge. It therefore
provides no information about the large-curvature
behavior. (iv) Independently of the magnitude of

the curvature, there is no particle production in

the de Sitter model. (v) Dimensional regulari-
zation can be applied without recourse to Fourier

analysis.
Similar results are found for the Dirac equation

in Sec. VI. In Sec. VII we consider a special case
of the problem of quantizing in a coordinate system
covering only part of the space. This particular
case is of additional interest in that it allows a
comparison of x-space and P -space 4imensional
r egul arization.

II. THE GENERAL THEORY

For a scalar field (II with an actioa fuectional'

the vacuum-to-vacuum transition amplitude is
given by the functional integral

(Oout[Oin) =N ' ~(d[Q]e' i

where N is a normalization constant independent

of the metric. The effective Lagrangian C, (x)
is defined by

exp i
~
Z,dx =(Oout~ Oin).

These last two expressions are properly defined

only if there exist asymptotic regions.
By considering

5$(x)d[0) [0(x')e"'")=o

we see that the Feynman Green's function
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Effective Lagrangian and energy-momentum tensor in de Sitter space

J. S. Dowker and Raymond Critchley

Department of Theoretical Physics, The University, Manchester, 13, England

(Received 29 October 1975)

The effective Lagrangian and vacuum energy-momentum tensor ( T"")due to a scalar field in a de Sitter-

space background are calculated using the dimensional-regularization method. For generality the scalar field

equation is chosen in the form ( '+ $R + m ')p = 0. If $ = 1/6 and m = 0, the renormalized (T"') equals
g ""(960m a ') ', where a is the radius of de Sitter space. More formally, a general zeta-function method is

developed. It yields the renormalized effective Lagrangian as the derivative of the zeta function on the curved

space. This method is shown to be virtually identical to a method of dimensional regularization applicable to

any Riemann space.

I. INTRODUCTION

In a previous paper' (to be referred to as I) the
effective Lagrangian g ' due to single-loop dia-
grams of a scalar particle in de Sitter space was

computed. It was shown to be real and was evalu-
ated as a principal-part integral. The regulariza-
tion method used was the proper-time one due to
Schwinger' and others. We now wish to consider
the same problem but using different techniques.
In particular, we wish to make contact with the

work of Candelas and Raine, ' who first discussed
the same problem using dimensional regulariza-
tion.
Some properties of the various regularizations

as applied to the calculation of the vacuum expec-
tation value of the energy-momentum tensor have

been contrasted by DeWitt. 4 We wish to pursue
some of these questions within the context of a
definite situation.

II. GENERAL FORMULAS: REGULARIZATION

METHODS

We use exactly the notation of I, which is more
or less standard, and begin with the expression
for J~' in terms of the quantum-mechanical propa-
gator, K(x",x', v),

Z~"(x')= —2i lim d~v 'K(x", x', v)e ' '+X(x').
x" ~x' p

There are two points regarding this expression
which need some further discussion. Firstly, if
we adopt the proper-time regularization method

so that the infinities appear only when the ~ inte-

gration, which is the final operation, is performed,
then we can take the coincidence limit, x"=x',
through into the integrand. Further, since the

regularized expression is continuous across the

light cone, it does not matter how we let x" ap-

proach x'. Secondly, the term X does not have
to be a constant, but it should integrate to give a
metric-independent contribution to the total action,

The Schwinger-DeWitt procedure is to derive an

expression for K, either in closed form or as a
general expansion to powers of ~, then to effect
the coincidence limit in (1), and finally to perform
the v integration. This was the approach adopted
in I. We proceed now to give a few more details.
We assume that we are working on a Riemann-

ian space, It', , of dimension d. The coincidence
limit K(x, x, v) can be expanded, '

K(x, x, 7) = i (4)Ti v) ' ' Q a„(x)(iv)",
n=p

(2)

The infinite terms are those for which n & d/2

(for d even) or n &(d —1)/2 (for d odd). For d =4,
e.g. space-time, there are three infinite terms.
These terms are removed by renormalization;
the details are given by DeWitt. '
Another popular regularization technique is di-

mensional regularization. In this method the di-
mension, d, is considered to be complex and all
expressions are defined in a region of the d plane
where they converge. The infinities appear when

an analytic continuation to d =4 is performed to
regain the physical quantities. This idea was
originally developed for use in flat-space (i.e.,
Lorentz-invariant) situations for the momentum

where the a„are scalars constructed from the

curvature tensor on Sg and whose functional form
is independent of d. The manifold Sg must not
have boundaries, otherwise other terms appear
in the expansion.
The expansion (2) is substituted into (1) to yield

)' '(x)= —'((4w) 'ga„(x)f (iv)" '' 'e ' "dv.
n 0
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Abstract. This paper describes a technique for regularizing quadratic path
integrals on a curved background spacetime. One forms a generalized zeta
function from the eigenvalues of the differential operator that appears in the
action integral. The zeta function is a meromorphic function and its gradient at
the origin is defined to be the determinant of the operator. This technique agrees
with dimensional regularization where one generalises to n dimensions by
adding extra flat dimensions. The generalized zeta function can be expressed as
a Mellin transform of the kernel of the heat equation which describes diffusion
over the.four dimensional spacetime manifold in a fith dimension of parameter
time. Using the asymptotic expansion for the heat kernel, one can deduce the
behaviour of the path integral under scale transformations of the background
metric. This suggests that there may be a natural cut off in the integral over all
black hole background metrics. By functionally differentiating the path integral
one obtains an energy momentum tensor which is finite even on the horizon of a
black hole. This energy momentum tensor has an anomalous trace.

1. Introduction

The purpose of this paper is to describe a technique for obtaining finite values to

path integrals for fields (including the gravitational field) on a curved spacetime

background or, equivalently, for evaluating the determinants of differential

operators such as the four dimensional Laplacian or D lembertian. One forms a

gemeralised zeta function from the eigenvalues λ
n
 of the operator

In four dimensions this converges for Re (s) > 2 and can be analytically extended to a

meromorphic function with poles only at s = 2 and 5 =  1. It is regular at 5 =  0. The

derivative at s =  0 is formally equal to — ]Γlog/ l
M
. Thus one can define the

n

determinant of the operator to be exρ( — dζ/ ds)\
s=0

.

Zeta Function Regularization of Path Integrals 137

Note that the volume element which appears in the (2.6) is (g
0
)

112
 because g

0
 is

positive definite. On the other hand the volume element that appears in the action /
is (— g)

112
 = — i(g)

1/ 2
 where the minus sign corresponds to a choice of the direction

of Wick rotation of the time axis into the complex plane.

If the background metric g
0
 is not Euclidean, the operator A will not be self 

adjoint. However I shall assume that the eigen functions φ
n
 are still complete. If this

is so, one can express the fluctuation φ in terms of the eigen functions.

Φ = Σ"nΦn  (2 7)

The measure d[φ] on the space of all fields φ can then be expressed in terms of the

coefficients a
n
:

ά[_φ ] = Y\µda
n
, (2.8)

n

where µ is some normalization constant with dimensions of mass or inverse length.
From (2.5) (2.8) it follows that

(2.9)

3. The Zeta Function

The determinant of the operator A clearly diverges because the eigenvalues λ
n

increase without bound. One therefore has to adopt some regularization procedure.

The technique that will be used in this paper will be called the zeta function method.

One forms a generalized zeta function from the eigenvalues of the operator A:

In four dimensions this will converge for Re(s) > 2. It can be analytically extended to
a merophorphic function of s with poles only at s =  2 and s =  1 [18]. In particular it

is regular at s =  0. The gradient of zeta at s =  0 is formally equal to ]Γlog/ l
w
. One

n

can therefore define dGtA to be Qxp( dζ/ ds\
s=o

) [19]. Thus the partition function

(3.2)

In situations in which the eigenvalues are known, the zeta function can be
computed explicitly. To illustrate the method, I shall treat the case of a zero rest
mass scalar field φ contained in a box of volume V in flat spacetime at the
temperature T=β~

1
. The partition function will be defined by a path integral over

all fields φ on the Euclidean space obtained by putting τ =  it which are zero on the
walls of the box and which are periodic in τ with period β. The operator A in the
action is the negative of the four dimensional Laplacian on the Euclidean space. If
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which is stated in equation (2.10). A simple integration with respect to m produces 
Schwinger's old result for a constant field (Schwinger 1951): 

and 

y ( s )  = 4 Tr ln[(eFs)-' sinh(eFs)]. (3.22) 

If there is only an external constant magnetic field present, e.g. F12 = -F21 = H, we find 
Tr exp(3ieaFs) = 4 cos(eHs) and 

eFs eHs 

(sinh(eFs)) = sin(eHs)' 
exp(-y(s)) = det 

With the substitution s + -is in (3.21) and appropriate choice of contact terms, we find 
at last 

(3.23) 
ds - m 2 s  2 "  

e [(eHs) coth(eHs)- 1 -$(esH)'] =qWl=-- (4T)" lo -p 
(3.24) 

If we make use of the formula (Gradshteyn and Ryzhik 1965) 

lo" d z  zP-' e-crz coth z = r(p)(2'-'5(p, a/2) - a-@) 

we can integrate (3.24) with the result 

+ 4m;(eH) - 3 mi + 2(4eH)'4"(-1; mi/2eH)) (3.25) 

where the subscript 3 is indicative of spin-4 particles. One can now follow the same 
scheme as displayed so far to produce an equivalent result for scalar QED with external 
constant magnetic field: 

ds -,,, eHs 1 1 "  
- 1 +-(esm2) 9; ) [H]= 2 

1 6 ~  10 3e (sinh(eHs) 6 

= i[ 1 [2 m: - $(eH)'][ 1 +In( g)] - 3 m: + 2(4eH)'['( - 1 ; s) ). 
64 T 

(3.26) 

Here we employed the formula (Gradshteyn and Ryzhik 1965) 

J .  Phys. A: Math. Gen.. Vol. 9. No. 7. 1076. Printed in  Great Britain. @ 1076 

One-loop effective potentials in quantum electrodynamics 

W Dittrich 

Institut fur Theoretische Physik der Universitat Tubingen, Auf der Morgenstelle 14, 

D-7400, Tubingen 1, West Germany 

Received 2 February 1976 

Abstract. We investigate the one-loop effective potential for some typical external fields in 

electrodynamics, in particular for a constant magnetic field and a laser field. Our treatment 

is based on the corresponding Green function as explicit functional of the prescribed field. 

Schwinger’s source- and proper-time techniques will be used throughout. 

1. Introduction 

The aim of this paper is to illustrate the computation of one-loop effective potentials in 
quantum electrodynamics (QED). Different types of external electromagnetic fields will 
be studied. We demonstrate that the existence of non-linear vacuum phenomena, pair 
production, etc depends essentially on the nature of the external prescribed field. 

The vacuum persistence amplitude (O+lO-)* = exp(i “(”[A])  will be exclusively the 
quantity of interest. It summarizes the effect that an arbitrary number of external 
photon lines can have on a single fermion loop. Since the action iW(”[A] is directly 
related to the Green function G+[A] ,  we are faced primarily with the question of how to 
find G+[A] .  Being interested in vacuum polarization phenomena only, we want to 
compute G+(x, ylA) for x = y ,  i.e., in the neighbourhood about where the quantum 
mechanical fluctuations take place. This summarizes all the information necessary to 
compute the one-loop correction to the classical Lagrangian. It will prove useful to 
work side-by-side with various representations for G+[A]  and i W(”[A].  

Besides the space and momentum representation, it is most convenient to exhibit 
those quantities in the proper-time formalism which makes it easy to compute the 
necessary traces. 

In $2,  we shall collect the functional ingredients and then proceed in $ 3  with 
vacuum polarization effects for different types of electromagnetic fields. 

2. Functional statements 

Here we want to collect the relevant Green function equation, closed-loop factor, etc 
for spinor QED (Schwinger 1973, Fried 1972). The process which summarizes the 
effect that an external field environment A ( x )  can have on a single fermion loop, is 
given analytically by 

(O,lO-)* = exp(i W(”[A]) ,  (2.1) 
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the bounds (2.20). We denote ZN and LN with this choice of f by `N(s, w)
and 9N(w).
Accordingly, the (Barnes) multiple zeta function reads (cf. (2.9))

`N(s, w)=
1

1(s) |
!

0

dt
t
tse&wt `

N

j=1

(1&e&aj t)&1, Re s>N, Re w>0. (3.2)

It can be rewritten as a power series by using

`
N

j=1

(1&e&aj t)&1= :
!

m1, ..., mN=0

exp(&t(m1a1+ } } } +mNaN)) (3.3)

and the integral (2.7) (with l=0). This yields the formula

`N(s, w)= :
!

m1, ..., mN=0

(w+m1a1+ } } } +mNaN)&s, Re s>N, Re w>0,

(3.4)

mentioned in the Introduction, which is used as a starting point by Barnes [5].
In order to relate the Bernoulli-type polynomials Bn(x) associated with

f (3.1) (cf. (2.4) and (2.5)) to the so-called multiple Bernoulli polynomials
BN, n(x) defined by

tNext

>N
j=1 (eajt&1)

= :
!

n=0

tn

n!
BN, n(x), (3.5)

we exploit the identity (cf. (2.19))

:
!

n=0

(&t)n

n!
Bn(&x)= f (&t) ext=

tNext

>N
j=1 (e

a jt&1)
. (3.6)

Indeed, a comparison yields

Bn(x)=(&)n BN, n(&x), :n=(&)n BN, n(0). (3.7)

Correspondingly, the general formula (2.10) specializes to

`N(s, w)= :
N

k=0

(&)k

k!
BN, k (0) wN&s&k `

N&k

l=1

1
s&l

+ :
M

k=N+1

(&)k

k!
BN, k (0) wN&s&k `

k&N&1

l=0

(s+l)

+
1

1(s) |
!

0

dt
t
tse&wt \ `

N

j=1

(1&e&ajt)&1& :
M

k=0

(&)k

k!
BN, k (0) tk&N+ ,

(3.8)
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and the integral representation (2.35) becomes

9N(w)=|
!

0

dt
t \e&wt `

N

j=1

1
1&e&ajt

&t&N :
N&1

n=0

(&t)n

n!
BN, n (w)&

(&)N

N!
e&tBN, N(w)+ . (3.17)

To proceed, we introduce the multiple gamma function

1N(w)#exp(9N(w))=exp(!s`N(s, w)| s=0). (3.18)

(It should be pointed out that the multiple gamma function 1B
N (w) defined

by Barnes is slightly different: One has

1N (w)=1B
N (w)⌘\N , (3.19)

where \N is Barnes' modular constant. Our definition is in accord with
most of the later literature.) Then the recurrence (1.4) entails

1M+1 (w | a1 , ..., aM+1)

=1M (w | a1 , ..., aM) 1M+1 (w+aM+1 | a1 , ..., aM+1), M #N,
(3.20)

with 10(w)#1⌘w.
Next, we recall that 9M+1(w) has an analytic continuation to C& (2.21).

Therefore, 1M+1(w) has an analytic continuation to C&, too, and has no
zeros in C&. The analytic character of 1M+1(w) for w # (&⇣, 0] can now
be obtained by exploiting (3.20).
Specifically, taking first M=0, one can iterate (3.20) to get

11 (w | a1)= `
l&1

k=0

1
w+ka1

} 11 (w+la1 | a1), l #N*. (3.21)

From this one reads off that 11 (w | a1) has a meromorphic extension
without zeros and with simple poles for w # &a1N. Writing next

12 (w | a1 , a2)= `
l&1

k=0

11 (w+ka2 | a1) } 12 (w+la2 | a1 , a2), l #N*, (3.22)

one deduces that 12 (w | a1 , a2) has a meromorphic extension without zeros
and with poles for w=&(k1a1+k2a2), k1 , k2 #N. The multiplicity of
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so-called multiple zeta and gamma functions. Barnes' multiple zeta function
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`N(s, w | a1 , ..., aN)
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significant scientific legacy continues today

W. Heisenberg & H. Euler, Consequences of Dirac’s theory of the positron, 
Zeitschr. Phys., 98, 714 (1936)

this paper was many years ahead of its time
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