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Euler-Heisenberg Effective Action

W. Heisenberg & H. Euler, Consequences of Dirac’s theory of the positron,
Zeitschr. Phys., 98, 714 (1936)

Folgerungen aus der Diracschen Theorie des Positrons.
Von W. Heisenberg und H. Euler in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

Aus der Diracschen Theorie des Positrons folgt, da jedes elektromagnetische
Feld zur Paarerzeugung neigt, eine Abinderung der Maxwellschen Gleichungen
des Vakuums. Diese Abinderungen werden fiir den speziellen Fall berechnet,
in, dem keine wirklichen Elektronen und Positronen vorhanden sind, und 1n
dem sich das Feld auf Strecken der Compton-Wellenlinge nur wenig dndert.
Fs crgibt sich filr das Feld eine Lagrange-Funktion:
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some historical background and context



Heisenberg & Euler




Heisenberg & Euler Casimir




brief timeline

e 1928: Dirac equation, relativistic electron
e 1929: Dirac sea, hole theory
e 1931: Dirac: hole = positive-charge-electron

“A hole, if there were one, would be a new kind of particle, unknown to
experimental physics, having the same mass and opposite charge to an electron”

e 1932: Anderson: discovered (& named) the “positron”
e 1933 Solvay conference: Dirac: hole = positron,
vacuum polarization and charge renormalization

e 1933 /34: Heisenberg: vacuum polarization in Dirac theory
e 1936: Heisenberg’s student Hans Euler: PhD at Leipzig
e 1936: Heisenberg & Euler effective action




the road from 1928 to 1936 was not easy ...



Heisenberg and Pauli correspondence

“The saddest chapter of modern physics is and remains the Dirac theory”
H to P, 1928

“That the hole theory will lead to many kinds of horrors as long as the
self-energy cannot be put in order, that I quite believe” H to P, 1934

“With regard to quantum electrodynamics, we are still at the stage in which
we were in 1922 with regard to quantum mechanics. We know that
everything is wrong.” B 1P IRS



Positron theory

Dirac: Theory of the positron, Solvay Conference, 1933

“Any state of negative energy which is not occupied represents a lack of
uniformity and this must be shown by observation as a kind of hole. It is
possible to assume that the positrons are these holes.”

Heisenberg: The fluctuations of charge connected with the formation of matter
from radiation, 1934

Heisenberg: Comments on the Dirac theory of the positron, 1934

“Halpern and Debye have already independently drawn attention to the fact that the
Dirac theory of the positron leads to the scattering of light by light - even when the energy
of the photons is not sufficient to create pairs.”

Euler & Kockel: The scattering of light by light in Dirac’s theory, 1934

“The connection between the quantities B and D, on the one hand, and E and H, on the other, is
therefore nonlinear in this theory, since the scattering of light implies a deviation from the
superposition principle.”



Koy len

61. Hans Euler (1909-1941).
Assistent bei Werner Heisenberg,
Leipzig Mai/Juni 1936

ie Philosophische Fakultit
der Universitiat Leipzig

ernennt durch diese Urkunde Herrn

geboren in Meran, auf
Grund seiner im Druck erschienenen sehr
guten Dissertation ,,Uber die Streuung
von Licht an Licht nach der Diracschen
Theorie* und der mit sehr gutem Erfolge
bestandenen miindlichen Priifung zum

Leipzig, den 25. Juni 1936.
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“Uber die Streuung von Licht an Licht nach der Diracschen Theorie,” Ann. Phys. (Leipzig) 26 (1936), 398-
448.

On the scattering of light by light in Dirac’s theory ')

By Hans Euler

Translated by D. H. Delphenich

effective Lagrangian:
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“Uber die Streuung von Licht an Licht nach der Diracschen Theorie,” Naturwiss. 23 (1935), 246-247.

The scattering of light by light in Dirac’s theory

By H. Euler and B. Kockel

Translated by D. H. Delphenich

The experimental test of the deviation from the MAXWELL theory 1s difficult since
the noteworthy effects are extraordinarily small. The interaction cross-section for the

scattering of light by light with the mean wavelength A is, from (1), of the order of

magnitude:
R 1
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in DIRAC’s theory, hence, about 107*® cm” for y-rays and 1077 cm® for visible light.




“Uber die Streuung von Licht an Licht nach der Diracschen Theorie,” Naturwiss. 23 (1935), 246-247.

The scattering of light by light in Dirac’s theory

By H. Euler and B. Kockel

Translated by D. H. Delphenich

The experimental test of the deviation from the MAXWELL theory 1s difficult since
the noteworthy effects are extraordinarily small. The interaction cross-section for the

scattering of light by light with the mean wavelength A is, from (1), of the order of

magnitude:
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in DIRAC’s theory, hence, about 107*® cm” for y-rays and 1077 cm® for visible light.

It 1s interesting to compare this supplementary term to the MAXWELL energy, which
arises from the quantum-mechanical possibility of pair creation, with the one that BORN'
obtained in the framework of classical theory, and the first term in its development is:

(1.2361) 1 e ,
= Egj[(% D)’ + 4(BD)*1dV .

' M. BORN, Proc. Roy. Soc. Lond., M. BORN and L. INFELD, ibid., A143 (1933), 410, A144, 423;
A147 (1934), 522.




NATURE

Scattering of Light by Light

Ix a recent paper! Kuler and Kockel have calcu-
lated the effective cross-section for the scattering of
light by light. The calculation was carried out for
the case of small frequencies (fiw<< < me?), the
frequencies being taken in a frame of reference,
where the total momentum of the colliding quanta
vanishes.

We have calculated the cross-section for the
opposite case of large frequencies (hw> >me?). For
the integral cross-section we get an expression of the

form :
Y
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where o= o with a constant «, which is difficult to

compute. According to Ituler and Kockel, for small
frequencies o is proportional to w®. Consequently o
has a maximum value in a region %w~~mec?.

It i1s also difficult to compute the dependence of
the differential cross-section on the angle of scattering.
We find that for the small angles the polarization of
the light quanta is not altered. The differential
cross-section for small angles is

de = 8w ! (—(i-) *log? ©@d0,
o

@ being the angle of scattering and d0 the solid angle,
This formula is valid for small angles, hbut not
essentially small compared with me2liow. In the latter
case 16 1s necessary to insert into the logarithm me?flie
in place of ©.

The formula has a relative accurateness of 1/log®.
The cross-section increases with decreasing angles,

high frequency limit

but not very rapidly, and it is imyp
that this region plays the main 1gl

cross-section.

The detailed caleulations will appear elses;
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Euler-Heisenberg Effective Action

“Consequences of Dirac’s theory of the positron”,
Zeitschr. Phys., 98, 714 (1936)

Folgerungen aus der Diracschen Theorie des Positrons.
Von W. Heisenberg und H. Euler in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

Aus der Diracschien Theorie des Positrons folgt, da jedes elektromagnetische
Feld zur Paarerzeugung neigt, eine Abinderung der Ma xweilschen Gleichungen
des Vakuums. Diese Abinderungen werden fiir den speziellen Fall berechnet,
in dem keine wirklichen Elektronen und Positronen vorhanden sind, und In
dem sich das Feld auf Strecken der Compton-Wellenlinge nur wenig dndert.
Fs crgibt sich fiir das Feld eine Lagrange-Funktion:
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what did Heisenberg & Euler actually do?

vacuum polarization due to slowly varying [constant] fields

“Due to relativistic invariance, the Lagrangian can only depend on the
two invariants EA2-BA2 and (E.B). The calculation of U(E, B) can be
reduced to the question of how much energy density is associated with
the matter fields in a background of constant fields E and B.”



JULY 1, 1935 PHYSICAL REVIEW VOLUME 48

(Linear Modifications in the Maxwell Field Equations

ROBERT SERBER,* University of California, Berkeley
(Received April 24, 1935)

Expressions, accurate to the first order in ¢2, are obtained for the charge and current densities
which, according to positron theory, are induced in vacuum by an electromagnetic field. Be-
cause the corresponding correction terms in the Maxwell field equations involve integral
operators, it does not seem possible to treat the modified field equations by Hamiltonian

methods.
div E(s') — f A(S)J[div E(s”)ds"
=4rjo(s’), (20)
JULY 1, 1935 PHYSICAL REVIEW VOLUME 48

Polarization Effects in the Positron Theory

E. A. UEHLING,* Unversity of California
(Received April 24, 1935)

Some of the consequences of the positron theory for the
special case of impressed electrostatic fieldsare investigated.
By imposing a restriction only on the maximum value of the
field intensity, which must always be assumed much smaller
than a certain critical value, but with no restrictions on the
variation of this intensity, a formula for the charge induced
by a charge distribution is obtained. The existence of an

induced charge corresponds to a polarization of the vacuum,
and as a consequence, to deviations from Coulomb’s law
for the mutual potential energy of point charges. Conse-
quences of these deviations which are investigated are the
departures from the Coulombian scattering law for heavy
particles and the displacement in the energy levels for
atomic electrons moving in the field of the nucleus.



One thus expects that along with the Maxwellian energy of the individual light quanta
there 1s a mutual interaction between the light quanta of the form:

(1.3) (71=h—fi2j FFFF+(iiFj(iiFjFF+--- dv .
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H. Euler, thesis 1936



Euler-Heisenberg and Casimir: two sides of a coin

quantized virtual e+e-
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what did Heisenberg & Euler actually do?

vacuum polarization due to slowly varying [constant] fields

“In the presence of only a magnetic field, the stationary states can be
divided into those of negative and positive energy.
... The situation is different in an electric field.
... This difficulty is physically related to the fact that in an electric field,
pairs of positrons and electrons are created. The exact analysis of this
problem was performed by Sauter.”



what did Heisenberg & Euler actually do?

vacuum polarization due to slowly varying [constant] fields

“In the presence of only a magnetic field, the stationary states can be
divided into those of negative and positive energy.
... The situation is different in an electric field.
... This difficulty is physically related to the fact that in an electric field,
pairs of positrons and electrons are created. The exact analysis of this
problem was performed by Sauter.”

“Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie
Diracs,” Zeit. f. Phys. 69 (1931), 742-764.

On the behavior of an electron in a homogeneous electric field
in Dirac’s relativistic theory

By Fritz Sauter in Munich

Translated by D. H. Delphenich
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“Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie
Diracs,” Zeit. f. Phys. 69 (1931), 742-764.

On the behavior of an electron in a homogeneous electric field
in Dirac’s relativistic theory

By Fritz Sauter in Munich
Translated by D. H. Delphenich

The solutions of the Dirac equation with the potential V = vx will be obtained and their behavior will be
discussed. Along with the region of the function that also appears in the non-relativistic calculations, there
is a region in the Dirac theory in which the impulse and velocity of the electron possess opposite signs. In
conjunction with that, the probability will be computed for an electron to go from the “positive impulse”
region to the “negative impulse” region. This yields the result that transition probability first takes on finite
values when the magnitude of the potential ramp over a distance that is equal to the Compton wavelength is
comparable to the rest energy of the electron. The large values for the transition probability that were
computed by O. Klein for a potential well whose order of magnitude is twice the rest energy are understood
to be limiting values in the case of an infinitely steep potential ramp.

2\2
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“This case would correspond to around 10716 volt/cm.”

This agrees with the conjecture of N. Bohr that was given in the introduction, that one
first obtains the finite probability for the transition of an electron into the region of
negative impulse when the potential ramp vh/mc over a distance of the Compton
wavelength i/mc has the order of magnitude of the rest energy.
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what did Heisenberg & Euler actually do?

electric field: tunnelling from Dirac sea

“a wavefunction that begins large in region I decreases slowly in
region III, where the transmission coefficient through region II (which
plays the role of a Gamow-wall) calculated by Sauter has the order of

magnitude e~ releT”.”



what did Heisenberg & Euler actually do?

Dirac equation for constant EM fields:
harmonic oscillators; parabolic cylinder functions; Euler-Maclaurin
summation; integral representations ...

cxa

3

(€2 — BYH 44 n2m c? (%ﬂ) 53*”1%2 {-——anctga n-byCtgbny 41
2

0 +%(bﬂ—ﬂﬂ)}

1
2

8 =



what did Heisenberg & Euler actually do?

Dirac equation for constant EM fields:
harmonic oscillators; parabolic cylinder functions; Euler-Maclaurin
summation; integral representations ...
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“The integral around the pole n=pi/a has the value
0y h

(for b=0). This is the order of the terms which are
associated with the pair creation in an electric field.”



what did Heisenberg & Euler actually do?

Dirac equation for constant EM fields:
harmonic oscillators; parabolic cylinder functions; Euler-Maclaurin
summation; integral representations ...
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what did Heisenberg & Euler actually do?

Dirac equation for constant EM fields:
harmonic oscillators; parabolic cylinder functions; Euler-Maclaurin
summation; integral representations ...
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what did Heisenberg & Euler actually do?

Dirac equation for constant EM fields:
harmonic oscillators; parabolic cylinder functions; Euler-Maclaurin
summation; integral representations ...
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what did Heisenberg & Euler actually do?

Dirac equation for constant EM fields:
harmonic oscillators; parabolic cylinder functions; Euler-Maclaurin
summation; integral representations ...
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charge renormalization term

field-free subtraction



V. Weisskopt, The electrodynamics of the vacuum on the
basis of the quantum theory of the electron, 1936
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“the electromagnetic properties of the vacuum can be described by a field-
dependent electric and magnetic polarisability of empty space, which leads, for
example, to refraction of light in electric fields or to a scattering of light by light.”
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“the electromagnetic properties of the vacuum can be described by a field-
dependent electric and magnetic polarisability of empty space, which leads, for
example, to refraction of light in electric fields or to a scattering of light by light.”
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the proper-time formalism



PHYSICAL REVIEW

VOLUME 76, NUMBER o

SEPTEMBER 15, 1949

The Theory of Positrons

R. P. FEYNMAN
Department of Physics, Cornell University, Ithaca, New York

(Received April 8, 1949)

The problem of the behavior of positrons and electrons in given
external potentials, neglecting their mutual interaction, is analyzed
by replacing the theory of holes by a reinterpretation of the solu-
tions of the Dirac equation. It is possible to write down a complete
solution of the problem in terms of boundary conditions on the
wave function, and this solution contains automatically all the
possibilities of virtual (and real) pair formation and annihilation
together with the ordinary scattering processes, including the
correct relative signs of the various terms.

In this solution, the “negative energy states” appear in a form
which may be pictured (as by Stiickelberg) in space-time as waves
traveling away from the external potential backwards in time.
Experimentally, such a wave corresponds to a positron approach-
ing the potential and annihilating the electron. A particle moving
forward in time (electron) in a potential may be scattered forward
in time (ordinary scattering) or backward (pair annihilation).
When moving backward (positron) it may be scattered backward

PHYSICAL REVIEW

VOLUME 80,

in time (positron scattering) or forward (pair production). For
such a particle the amplitude for transition from an initial to a
final state is analyzed to any order in the potential by considering
it to undergo a sequence of such scatterings.

The amplitude for a process involving many such particles is
the product of the transition amplitudes for each particle. The
exclusion principle requires that antisymmetric combinations of
amplitudes be chosen for those complete processes which differ
only by exchange of particles. It seems that a consistent interpre-
tation is only possible if the exclusion principle is adopted. The
exclusion principle need not be taken into account in intermediate
states. Vacuum problems do not arise for charges which do not
interact with one another, but these are analyzed nevertheless in
anticipation of application to quantum electrodynamics.

The results are also expressed in momentum-energy variables.
Equivalence to the second quantization theory of holes is proved
in an appendix.

NUMBER 3 NOVEMBER 1, 1950

Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction

R. P. FEynmaAN*
Department of Physics, Cornell University, Ithaca, New York

(Received June 8, 1950)

The validity of the rules given in previous papers for the solution of problems in quantum electrodynamics
is established. Starting with Fermi’s formulation of the field as a set of harmonic oscillators, the effect of
the oscillators is integrated out in the Lagrangian form of quantum mechanics. There results an expression
for the effect of all virtual photons valid to all orders in €2/%¢. It is shown that evaluation of this expression
as a power series in ¢2/kc gives just the terms expected by the aforementioned rules.

In addition, a relation is established between the amplitude for a given process in an arbitrary unquantized
potential and in a quantum electrodynamical field. This relation permits a simple general statement of

the laws of quantum electrodynamics.

A description, in Lagrangian quantum-mechanical form, of particles satisfying the Klein-Gordon equation
is given in an Appendix. It involves the use of an extra parameter analogous to proper time to describe

the trajectory of the particle in four dimensions.



Feynman’s worldline representation

“We try to represent the amplitude for a particle to get from one point to another as a
sum over all trajectories of an amplitude exp(i S) where S is the classical action for a
given trajectory. To maintain the relativistic invariance in evidence the idea suggests
itself of describing a trajectory in space-time by giving the four variables x_mu(u) as
functions of some fifth parameter u ... (somewhat analogous to proper time) ...”

. ) 19 The ph sical ideas involved in such a description are discussed
10¢/0u=—34(10/0x,— A,)?e in detail by Y. Nambu, Prog. Theor. Phys. 5, 82 (1950). An
equation of type (2A) extended to the case of Dirac electrons has

been studied by V. Fock, Physik Zeits. Sowjetunion 12, 404
(1937).

:c,'—:.r"__lﬁ
o( Xy, n, Uo) = fexp—-—-—Z[(“l ‘”)

€

+ € (o, i — X, o —1) (A o) + A (2 21) )]

n—1

~ (a0, 0) TI (d*7;/4n2e%). (4A)

=0

That is, roughly, the amplitude for getting from one point to

another with a given value of %, is the sum over all trajectories
of exp(:S) where

S=— J, "THdxu/duy+ dxu/du) Au(x) I, (5A)



Progress of Theoretical Physics, Vol. V, No. .1',, Jan.~Feb., 1950.

The Use of the Proper Time in Quantum Electr'odynarriics |

Yoichiro NamsU |
Department of Fhysics, Universigy of City Osaka*

(Received November. 8, 1949)

whole of it at glance. The time itself loses sense as the indicator of the develop-
ment of phenomena; there are particles which flow down as well as up the
stream of time; the eventual creation and annihilation of pairs that may occur
now and then, is no creation nor annihilation, but only a change of directions
of moving particles, from past to future, or from future to past; a virtual pair,
which, according to the ordinary view, is foredoomed to exist only for a limited
interval of time, may also be regarded as a single particle that is circulating
round a closed orbit in the four-dimensional theatre; a real particle is then a
particle whose orbit is not closed but reaches to infinity. . .



Worldline QED eftective action

PHYSICAL REVIEW VOLUME 80, NUMBER 3 NOVEMBER 1, 1950

Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction

R. P. FEynmMAN*®
Department of Physics, Cornell University, I[thaca, New York

(Received June 8, 1950)

A description, in Lagrangian quantum-mechanical form, of particles satisfying the Klein-Gordon equation
is given in an Appendix. It involves the use of an extra parameter analogous to proper time to describe
the trajectory of the particle in four dimensions.

effective action expressed as a 4d QM path integral
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PHYSICAL REVIEW

VOLUME 82,

NUMBER 5 JUNE 1, 1951

On Gauge Invariance and Vacuum Polarization

JULIAN SCHWINGER
Harvard University, Cambridge, Massachusetts

(Received December 22, 1950)

This paper is based on the elementary remark that the ex-
traction of gauge invariant results from a formally gauge invariant
theory is ensured if one employs methods of solution that involve
only gauge covariant quantities. We illustrate this statement in
connection with the problem of vacuum polarization by a pre-
scribed electromagnetic field. The vacuum current of a charged
Dirac field, which can be expressed in terms of the Green’s function
of that field, implies an addition to the action integral of the elec-
tromagnetic field. Now these quantities can be related to the
dynamical properties of a “particle’” with space-time coordinates
that depend upon a proper-time parameter. The proper-time
equations of motion involve only electromagnetic field strengths,
and provide a suitable gauge invariant basis for treating problems.
Rigorous solutions of the equations of motion can be obtained for
a constant field, and for a plane wave field. A renormalization of
field strength and charge, applied to the modified lagrange func-
tion for constant fields, yields a finite, gauge invariant result which
implies nonlinear properties for the electromagnetic field in the
vacuum. The contribution of a zero spin charged field is also
stated. After the same field strength renormalization, the modified
physical quantities describing a plane wave in the vacuum reduce
to just those of the maxwell field; there are nononlinear phenomena
for a single plane wave, of arbitrary strength and spectral com-
position. The results obtained for constant (that is, slowly varying
fields), are then applied to treat the two-photon disintegration of

a spin zero neutral meson arising from the polarization of the
proton vacuum. We obtain approximate, gauge invariant ex-
pressions for the effective interaction between the meson and the
electromagnetic field, in which the nuclear coupling may be scalar,
pseudoscalar, or pseudovector in nature. The direct verification
of equivalence between the pseudoscalar and pseudovector inter-
actions only requires a proper statement of the limiting processes
involved. For arbitrarily varying fields, perturbation methods can
be applied to the equations of motion, as discussed in Appendix
A, or one can employ an expansion in powers of the potential
vector. The latter automatically yields gauge invariant results,
provided only that the proper-time integration is reserved to the
last. This indicates that the sjgnificant aspect of the proper-time
method is its isolation of divergences in integrals with respect
to the proper-time parameter, which is independent of the coor-
dinate system and of the gauge. The connection between the
proper-time method and the technique of ‘“‘invariant regulariza-
tion” is discussed. Incidentally, the probability of actual pair
creation is obtained from the imaginary part of the electromagnetic
field action integral. Finally, as an application of the Green’s
function for a constant field, we construct the mass operator of an
electron in a weak, homogeneous external field, and derive the
additional spin magnetic moment of «/27 magnetons by means of
a perturbation calculation in which proper-mass plays the cus-
tomary role of energy.
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The latter notation emphasizes that U(s) may be
regarded as the operator describing the development of
a system governed by the “hamiltonian,” 3C, in the
“time’’ s, the matrix element of U(s) being the trans-
formation function from a state in which x,(s=0) has
the value x,” to a state in which x,(s) has the value «,’.

constant field U(s) found by Fock (1937) and Nambu (1950)
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Re coshesX plane wave Dirac eqn solved
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45 mc2 Thus, there are no nonlinear vacuum phenomena for a

single plane wave, of arbitrary strength and spectral
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“Schwinger pair production”

£=-§-82—-(1/81r2)f dss— exp(—m?2s)
0

X[e8s cot(ebs)—1+3(e8s)%], (6.39)

has singularities at
s=s,=nr/e8, n=1,2, --. (6.40)

If the integration path is considered to lie above the
real axis, which is an alternative version of the device
embodied in Eq. (6.32), we obtain a positive imaginary
contribution to £,

1] o
2ImL=— 2 s, 2exp(—m?s,)

4-1r n==1

a?

0 — nam?
=—82Y n? exp( ) (6.41)

e  n=1 eb

This is the probability, per unit time and per unit
volume, that a pair is created by the constant electric

field.



Euler-Heisenberg effective action and functional determinants
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It is shown that Feynman’s relativistic solution for. the scattering of an electron (or pair creation) by a
given external field is the Fredholm resolvent of the related integral equation and is thus the unique and
absolutely convergent solution for any strength of field.
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Scientific legacy of Heisenberg & Euler’s paper

® pair production from vacuum
® light-light scattering

® vacuum polarization physics

o effective field theory

® ocravitational effective actions
® zeta functions



Scientific legacy of Heisenberg & Euler’s paper

pair production from vacuum



beyond uniform fields

this is the analogue of probing geometric and
temperature effects in Casimir physics
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JONIZATION IN THE FIELD OF A STRONG ELECTROMAGNETIC WAVE
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P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor May 23, 1964
J. Exptl. Theoret. Phys. (U.S.S.R.) 47, 1945-1957 (November, 1964)

Expressions are obtained for the probability of ionization of atoms and solid bodies in the
field of a strong electromagnetic wave whose frequency is lower than the ionization potential.
In the limiting case of low frequencies these expressions change into the well known formulas
for the probability of tunnel auto-ionization; at high frequencies they describe processes in
which several photons are absorbed simultaneously. The ionization probability has a number

adiabaticity parameter : v = =
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Pair Production in Vacuum by an Alternating Field

E. Brezin anp C. ITzyksonN
Service de Physique Théorique, Centre d’ Etudes Nucléairves de Saclay, 91, Gif-sur-Yveite, France G{EZ T 2

(Received 15 April 1970)
| T v<1, w~-—exp
We discuss the creation of pairs of charged particles in an alternating electric field. The dependence on

the frequency is computed and found negligible. We obtain a formula for the field intensities required in 27r e E
order to observe the effect E = mwoc/e sinh (fwo/4mc?). '

«F? ) ¢E yimlv

v>1, w~
8 27%(.00

SOVIET PHYSICS JETP VOLUME 35, NUMBER 4 OCTOBER, 1972

Pair Production in a Variable and Homogeneous Electric Field as an Oscillator
Problem

V. S. Popov

Institute of Theoretical and Experimental Physics
Submitted November 2, 1971

Zh. Eksp. Teor. Fiz. 62, 1248-1262 (April, 1972)

The calculation of the probability w of pair production in a strong electric field E(t) which is homogeneous
in space reduces to the problem of the parametric excitation of a quantum oscillator (or, what is equivalent,
to the calculation of the reflection coefficient for a plane wave incident on a one-dimensional potential
barrier). Because of this reiation, the calculation of the pair-production probability does not require the
determination of the exact solutions of the relativistic wave equations and the Green’s function. In the
particular case when E(t)=E(coshwt)~? the probability w coincides with the coefficient of reflection from the
Eckart potential. The relation between the exact formulas for w and the quasiclassical approximation (the
*imaginary time” method) is investigated in detail, and the limits of applicability of the quasiclassical
approximation are indicated.
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Positron Production in Multiphoton Light-by-Light Scattering

D.L. Burke, R.C. Field, G. Horton-Smith, J. E. Spencer, and D. Walz
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

S.C. Berridge, W.M. Bugg, K. Shmakov, and A. W. Weidemann

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996

C. Bula, K. T. McDonald, and E.J. Prebys
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C. Bamber,* S.J. Boege,T T. Koffas, T. Kotselroglou,iE A.C. Melissinos, D.D. Meyerhofer,§ D.A. Reis, and W. Ragg”

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 2 June 1997)
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experimental goal

probe pair production from vacuum
in the nonperturbative regime v <1

SLAC E-144: 7y ~ 4
XFEL: ~ ~ 0.1

HiPER: v ~ 0.02
ELL  ~ ~ 0.0002



experimental goal

probe pair production from vacuum
in the nonperturbative regime v <1

SLAC E-144: v ~4
XFEL: v ~ 0.1

HiPER: v ~ 0.02
ELL  ~ ~ 0.0002

theoretical goal

reliable computation of vacuum pair production rate
and spectrum in realistic short-pulse focussed laser fields
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Scientific legacy of Heisenberg & Euler’s paper

light-light scattering



Scientific legacy of Heisenberg & Euler’s paper

®
®
® vacuum polarization physics
®
®



PHYSICAL REVIEW D VOLUME 2, NUMBER 10 15 NOVEMBER 1970

Nonlinear Effects in Quantum Electrodynamics. Photon Propagation
and Photon Splitting in an External Field*

Z. B1ALYNICKA-BIRULAT AND I. B1ALYNICKI-BIRULA]
Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
(Received 14 July 1970)

The effective nonlinear Lagrangian derived by Heisenberg and Euler is used to describe the propagation
of photons in slowly varying but otherwise arbitrary electromagnetic fields. The group and the phase veloc-
ities for both propagation modes are calculated, and it is shown that the propagation is always causal. The
photon splitting processes are also studied, and it is shown that they do not™play any significant role even
in very strong magnetic fields surrounding neutron stars.

PHOTON SPLITTING IN A STRONG MAGNETIC FIELD

S. L. Adler, J. N. Bahcall,* C. G. Callan, and M. N. Rosenbluth
The Institute for Advanced Study, Prvinceton, New Jevsey 08540
(Received 6 August 1970)

We determine the absorption coefficient and polarization selection rules for photon
splitting in a strong magnetic field, and describe the possible application of our results

to pulsars.

PHYSICAL REVIEW D VOLUME 10, NUMBER 2 15 JULY 1974

Photon pair creation in intense magnetic fields*

Wu-yang Tsai
Department of Physics, University of California, Los Angeles, California 90024

Thomas Erber

Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
(Received 4 April 1974)

The vacuum polarization of photons in intense, homogeneous magnetic fields is recal-
culated, using a proper-time method presented by Schwinger. This result is applied
to compute exactly, in closed form, the photon absorption coefficient due to pair creation,
kK, ., corresponding to the polarization of the photon parallel or perpendicular to the plane



a new field of strong-field / high-intensity particle physics is forming



some laser-based fundamental physics experiments

PVLAS: Polarizzazione del Vuoto con LASer

ALPS

Any Light Particle Search

Biréfringence Magnétique du Vide (BMYV)

m— fc/ferson Cfad — mmmmmm | [PSS: Light Pseudoscalar and Scalar Search

- - - -’

@ | OSQAR: Optical Search for QED vacuum magnetic
~~\  birefringence, Axions and photon Regeneration



“light shining through walls” experiments

I photon regeneration
B B

H. Gies

Ehret, ALPS collaboration, 2010
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Figure 6: Exclusion limit (95% C.L.) for pseudoscalar (left) and scalar (right) axion-like particles obtained by

the ALPS experiment from vacumm and gas runs together with the results from various other LSW experiments

[10], see the text for details. Dashed and dotted lines show the bounds derived form the PVLAS measurement on
ALP induced dichroism and birefringence [17].



Scientific legacy of Heisenberg & Euler’s paper

effective field theory



from QED to QCD ...



PHYSICAL REVIEW D VOLUME 11, NUMBER 8 15 APRIL 1975

Exact results for effective Lagrangians

M. R. Brown and M. J. Duff*

Department of Astrophysics, Oxford University, Oxford, England
(Received 4 September 1974)

A simple method is presented for the evaluation in quantum field theory of the effective Lagrangian
induced by one-loop quantum effects. Exact solutions may be obtained in the quasilocal situation where
the resulting Lagrangian is allowed to depend on the fields and their first derivatives (and, in some
cases, their second derivatives as well). The method is a general one and may be applied to any given
field theory. For example, Schwinger’s result for the effective Maxwell Lagrangian with constant
external field and the Coleman-Weinberg results for effective potentials each emerge as special cases of
the general method. By isolating the divergent part of the induced Lagrangian in the general case,
moreover, one may recover the 't Hooft-Veltman expression for the one-loop counterterms of an
arbitrary field theory. At no stage need Feynman diagrams be evaluated.

Nuclear Physics B134 (1978) 539-545
® North-Holland Publishing Company

VACUUM POLARIZATION INDUCED BY THE INTENSE GAUGE FIELD

S G MATINYAN and G K SAVVIDY
Yerevan Physics Institute, Armenia, USSR

Received 8 March 1977
{Revised 27 October 1977)

The results obtained from consideration of the effective Lagrangian density asymptotic
behaviour 1n gauge theories by means of the renormalization-group method are discussed
Such a consideration allows one to relate the asymptotic behaviour of the effective Lag-
rangian density 1n strong fields to the short-range behaviour of gauge theories



gohr. Phys. 82 (1984) 11, 585622

Calculations in External Fields in Quantum Chromodynamies.

Teehnical Review.

V. A. Novigov, M. A. SHIFMAN, A. I. VAINSHTEIN, V. I. ZAKHAROV.

Institute of Theoretical and Experimental Physics, Moscow, 117259, USSR

Abstract

review the technique of calculation of operator expansion coefficients. The main emphasis
ub on gluon operators which appear in expansion of n-point functions induced by colourless
k currents. Two convenient schemes are discussed in detail: the abstract operator method
the method based on the Fock-Schwinger gauge for the vacuum gluon field. We consider a
e number of instructive examples important from the point of view of physical applications.
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Nuclear Physics B, 333,471 (1990)

Covariant perturbation theory (II). Second order in the curvature. General algorithms

A.O. Barvinsky, G.A. Vilkovisky

Nuclear Safety Institute, Bolshaya Tulskaya 52, Moscow 113191, USSR
Lebedev Physical Institute, Leninsky Prospect 53, Moscow 117924, USSR
Received 7 July 1989; Available online 18 October 2002.

Abstract

Covariant perturbation theory proposed in the previous paper 1s worked up to the second order
in field strengths (curvatures). The trace of the heat kernel and the one-loop effective action
for the generic second-order operator are obtained with this accuracy. The calculational
scheme for higher orders is presented. The large time behaviour of the trace of the heat kernel
is obtained to all orders in the curvature.
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supersymmetry, helicity, superstrings, ...



Volume 86B, number 2

PHYSICS LETTERS

24 September 1979

SELF-DUALITY, HELICITY, AND SUPERSYMMETRY: THE SCATTERING OF LIGHT BY LIGHT

M.J. DUFF' and C.J. ISHAM

Physics Department, Imperial College, London SW7 2AZ, UK

Received 18 June 1979

The scattering of light by light is used to provide a concrete example of the connection between self-duality, helicity and

supersymmetry first suggested in supergravity.

Let us first consider fermions. As shown by Euler
and Heisenberg [10] and emphasized by Schwinger {9],
the process yy = vy via a closed fermion loop may be
represented, in the limit of low frequencies, by an effec-
tive four-photon lagrangian,

Lyjp = (@[90m*) [F FEF2 - Fi+FY],  (3)
= ___1__“ 3 .d_s "'mQS 2
'quper a2 (‘)f 3 < (es)
1— Recos(esH 1_/2)
X [g( ) - 9*] . (13)
Im cos (es K 1/2)

Note that the quadratic divergence in the first term
has cancelled ¥ and also that Lsuper Vanishes when
F_or F_ vanishes. If we expand the lagrangian (13)
and keep only terms quartic in the field strength, we
then recover the four-photon lagrangian (7).

If we repeat the above argument for a singie charged
scalar loop (with the same m) one finds [9]

2y = (@2(90m*) [FEF? + 3 (F{+ F%)], 6)

and once again both types of amplitude are present.
If we now consider the supersymmetric combination,
however, then from (3) and (6)

Lyuper = L1jat+ 2L = (@2/12m*) FIF? . (7

The terms involving (F_f + Ff) have cancelled and we
recover, as anticipated, the helicity-conservation rule.
Thus the simple example of scattering of light by light
in supersymmetric QED provides a concrete demon-

stration, in a spin-1 gauge theory, of the connection
between self-duality, helicity, and supersymmetry first
suggested in supergravity.



Nuclear Physics B
Volume 261, 1985

Quantum string theory effective action

E. S. Fradkin and A. A. Tseytlin
Department of Theoretical Physics, P.N. Levedev Physical Institute, Leninsky pr. 53, Moscow 117924, USSR

Abstract

We present a covariant background field method for quantum string dynamics. It is based on the effective action I' for fields corresponding to
different string modes. A formalism is developed for the calculation of I' in the o’ — 0O limit. It is shown that in the case of closed Bose strings I'
contains the standard kinetic terms for the scalar, external metric and the antisymmetric tensor. Our approach makes possible a consistent formulation
and solution of a ground state problem (including the problem of space-time compactification) in the string theory. We suggest a solution to the old
“tachyon problem” based on the generation of non-trivial vacuum values for the scalar field, metric and antisymmetric tensor. It is shown that a
preferred compactification in the closed Bose string theory is to three (anti-de Sitter) space-time dimensions.

Physics Letters B
Volume 163, 1985

Non-linear electrodynamics from quantized strings

E. S. Fradkin and A. A. Tseytlin
P.N. Lebedev Physical Institute, Leninsky pr. 53, Moscow 117924, USSR

Abstract

We compute the effective action for an abelian vector field coupled to the virtual open Bose string. The problem is exactly solved (in the “tree” and
“one-loop” approximation for the string theory) for the case of a constant field strength and the number of space-time dimensions D=26. The resulting
tree-level effective lagrangian is shown to coincide with the Born-Infeld lagrangian, [det(Ou + 2ITal' F\w)] 2.
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General-relativistic quantum field theory: An exactly soluble model

P. Candelas and D. J. Raine*

Department of Astrophysics, University of Oxford, South Parks Road, Oxford, England
(Received 3 March 1975)

The massive scalar and Dirac fields quantized on a de Sitter background geometry prove to be exactly soluble
models in general-relativistic field theory. The Feynman Green’s function is computed for both the scalar and
Dirac fields. A dimensional regularization procedure applied in coordinate space facilitates the calculation of
their respective effective Lagrangians, which describe the vacuum corrections due to closed matter loops. The
model is found to be renormalizable. There is no creation of real particle pairs.

PHYSICAL REVIEW D VOLUME 13, NUMBER 12 15 JUNE 1976

Effective Lagrangian and energy-momentum tensor in de Sitter space

J. S. Dowker and Raymond Critchley
Department of Theoretical Physics, The University, Manchester, 13, England
‘ (Received 29 October 1975)

The effective Lagrangian and vacuum energy-momentum tensor < T*"> due to a scalar field in a de Sitter-
space background are calculated using the dimensional-regularization method. For generality the scalar field
equation is chosen in the form (* + &R + m*)¢p = 0. If £ = 1/6 and m = 0, the renormalized { T*"> equals
g " (9607%a *)~!, where a is the radius of de Sitter space. More formally, a general zeta-function method is
developed. It yields the renormalized effective Lagrangian as the derivative of the zeta function on the curved
space. This method is shown to be virtually identical to a method of dimensional regularization applicable to
any Riemann space.
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We develop an efficient approximation procedure for evaluating the scalar Feynman propagator in arbitrary
spacetimes. In the familiar manner we represent it by an integral over the transition amplitude for a Schrodinger-
type equation (proper-time method). The amplitude is then represented by a Feynman path integral which is
dominated by the contribution of a certain extremal path. The contributions of adjacent paths are then simply
expressed by working in Fermi normal coordinates based on the extremal path. In this manner the path integral
becomes an ordinary multiple integral over “Fourier coefficients” which represent the various paths. For a
conformal field, or for spacetimes with constant scalar curvature, we evaluate the integral in the Gaussian '
approximation in terms of the curvature along the (geodesic) extremal path. We show the result to be related to the
Schwinger-DeWitt expansion for the amplitude, but valid for well-separated end points. In the Einstein universe our
expression gives the exact amplitude and propagator. In the de Sitter spacetime it gives a good approximation for the
‘amplitude even for well-separated points. We also evaluate the post-Gaussian corrections to the amplitude, though
we do not implement them in a concrete spacetime. For nonconformal fields in spacetimes with varying scalar
curvature, we evaluate the amplitude in the Gaussian approximation in terms of the values of the curvature along
the extremal (nongeodesic) path. It is very different in form from the one mentioned earlier, which suggests the
existence of novel effects arising from variation in the scalar curvature.

No better starting point for an approximation
scheme offers itself than the Schwinger-DeWitt

proper-time formalism.! ' In this method, one The kernel {x, s |x’ , O) is formally the amplitude
replaces our problem by that of solving the Schré- for a particle coupled to the curvature to propa-~
dinger equation12 gate from spacetime point x’ to ¥ in the course

of a fictitious proper-time inverval s. The

9 . , |
Arydt? slx’, O =(=v*v, + ER)x, s[x", 0) (1.2) Green’s function is recovered by
subject to the boundary condition |

. . ® 2
Gplx, x') =i f (x, s|x!, Qe i %ds (1.4)
0 | |

131551 (x, s lx’O) = | glx) | 'i’zb(x, x'). | (1.3)
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Abstract. This paper describes a technique for regularizing quadratic path
integrals on a curved background spacetime. One forms a generalized zeta
function from the eigenvalues of the differential operator that appears in the
action integral. The zeta function is a meromorphic function and its gradient at
the origin is defined to be the determinant of the operator. This technique agrees
with dimensional regularization where one generalises to n dimensions by
adding extra flat dimensions. The generalized zeta function can be expressed as
a Mellin transform of the kernel of the heat equation which describes diffusion
over the four dimensional spacetime manifold in a fith dimension of parameter
time. Using the asymptotic expansion for the heat kernel, one can deduce the
behaviour of the path integral under scale transformations of the background
metric. This suggests that there may be a natural cut off in the integral over all
black hole background metrics. By functionally differentiating the path integral
one obtains an energy momentum tensor which is finite even on the horizon ofa
black hole. This energy momentum tensor has an anomalous trace.

One forms a generalized zeta function from the eigenvalues of the operator A4:
()= 4" (3.1)

In four dimensions this will converge for Re(s) > 2. It can be analytically extended to
a merophorphic function of s with poles only at s=2 and s=1 [18]. In particular it

is regular at s=0. The gradient of zeta at s=0 is formally equal to—) log4,. One
can therefore define det A to be exp(—d{/ds|,_,) [19]. Thus the partition function
log Z[$]=3L'(0)+ 3 log(Gru*){(0) . (3.2)
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function from the eigenvalues of the differential operator that appears in the
action integral. The zeta function is a meromorphic function and its gradient at
the origin is defined to be the determinant of the operator. This technique agrees
with dimensional regularization where one generalises to n dimensions by
adding extra flat dimensions. The generalized zeta function can be expressed as
a Mellin transform of the kernel of the heat equation which describes diffusion
over the four dimensional spacetime manifold in a fith dimension of parameter
time. Using the asymptotic expansion for the heat kernel, one can deduce the
behaviour of the path integral under scale transformations of the background
metric. This suggests that there may be a natural cut off in the integral over all
black hole background metrics. By functionally differentiating the path integral
one obtains an energy momentum tensor which is finite even on the horizon ofa
black hole. This energy momentum tensor has an anomalous trace.

One forms a generalized zeta function from the eigenvalues of the operator A4:
()= 4" (3.1)

In four dimensions this will converge for Re(s) > 2. It can be analytically extended to
a merophorphic function of s with poles only at s=2 and s=1 [18]. In particular it

is regular at s=0. The gradient of zeta at s=0 is formally equal to—) log4,. One
can therefore define det A to be exp(—d{/ds|,_,) [19]. Thus the partition function
log Z[$]=3L'(0)+ 3 log(Gru*){(0) . (3.2)
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Consider the eigenvalues and eigenfunctions of the In other words the harmonicsare the eigenfunctions of
following problem AUt =o0
AU+ =0 with the eigenvalues n(n+k—1). The number of indepen-
u=0or%=o0o0n B, (1) dent solutions of (4) is /, where
where B is the boundary of a bounded Euclidean domain nl (k 1) ( Tan— S

D of k dimensions and a is the Laplace operator,

o 2\ V2T (s44) OOJr_COSh t2_ .--e""”1
z S 72-{—2" o (;) F(QS) SO L.(Sinh tIQ)#k J'
1

o =3 I,_s(vt) dt. (16)
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To proceed, we introduce the multiple gamma function

I'y(w) = exp(¥y(w)) = exp(0,Cn(s, w)ls—o)-



W. Heisenberg & H. Euler, Consequences of Dirac’s theory of the positron,
Zeitschr. Phys., 98, 714 (1936)

this paper was many years ahead of its time

significant scientific legacy continues today

® pair production from vacuum
® light-light scattering

® vacuum polarization physics
o effective field theory

® ocravitational effective actions

® zeta functions
' o0 0
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09:00: Euler-Heisenberg and Beyond, G. Dunne

09:45: Electromagnetic superconductivity of vacuum induced by strong magnetic field, M. N. Chernodub
15.30: A. The Euler-Heisenberg Lagrangian beyond one-loop, C. Schubert

16.00: A. Radiation damping effects in high intensity laser fields, C. Harvey

16.30: A. QED processes in intense laser fields, A. Ilderton

17:30: A. Optical probes of the quantum vacuum - the photon polarization tensor in external fields, F. Karbstein
18.00: A. Generalizations of the Heisenberg-Euler energy to strong electric fields, S. Gavrilov

18.30: A. Creation of Neutral Fermions by Magnetic Barriers, T. Adorno

Friday, September 23

11:00: Strong-Field QED and High-Power Lasers, T. Heinzl

15:30: A. Interference Effects in Vacuum Pair Production in Time Dependent Laser Pulses, C. Dumlu

16:00: C. Effective actions of magnetic flux tubes, D. Mazur



