Casimir forces via stochastic quantization

Rodrigo Soto^1 , Ricardo Brito^2 , and Pablo $\mathsf{Rodriguez\text{-}Lopez}^2$

¹Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile. ²Departamento de Física Aplicada I, Universidad Complutense, Madrid, Spain http://www.dfi.uchile.cl/~rsoto

P. Rodriguez-Lopez, R. Brito, RS, (submitted)
P. Rodriguez-Lopez, R. Brito, RS, Phys. Rev. E **83**, 031102 (2011)

QFEXT11, Benasque, September 2011

Outline

- Casimir forces and stress tensor
- Parisi-Wu formalism of stochastic quantization
- Ultraviolet divergences
- 4 Applications
 - Piston of arbitrary cross section
 - Force fluctuations
 - Numerical calculation in the torus-sphere geometry
- Conclusions

Casimir force via the stress tensor

The Casimir force can be calculated averaging the the stress tensor, \mathbb{T} on the quantum-thermal probability distribution of the fields ϕ .

The stress tensor is a bilinear form $\mathbb{T} = \mathcal{T}[\phi, \phi, \mathbf{r}]$.

With a single scalar field satisfying Dirichlet boundary conditions.

$$T_{ik} = \frac{1}{2} \delta_{ik} (\nabla \phi)^2 - \frac{\partial \phi}{\partial x_i} \frac{\partial \phi}{\partial x_k}$$

and therefore the bilinear form is

$$\mathcal{T}_{ik}[\psi,\varphi,\mathbf{r}] = \frac{1}{2}\delta_{ik}\left(\nabla\psi\cdot\nabla\varphi\right) - \frac{\partial\psi}{\partial x_i}\frac{\partial\varphi}{\partial x_k}$$

The extension to vectorial Electromagnetism is direct, considering the Transverse Electric and the Transverse Magnetic decomposition.

Casimir force via the stress tensor

The fields ϕ display the quantum-thermal probability distribution

$$P[\phi] = Z^{-1}e^{-S[\phi]/\hbar}$$

where $S[\phi]$ is the action, Wick-rotated in the time variable $(t = i\tau)$.

In the case of a scalar field with zero mass

$$S[\phi] = -rac{1}{2} \int_0^{\beta\hbar} d au \int d\mathbf{r} \, \phi \left(rac{1}{c^2} rac{\partial^2}{\partial au^2} +
abla^2
ight) \phi$$
 $Z = \int D\phi \, \mathrm{e}^{-S[\phi]/\hbar}$

is the partition function.

For the bosonic case, $\phi(\tau + \beta \hbar, \mathbf{r}) = \phi(\tau, \mathbf{r})$.

The probability distribution can be built via a fictitious stochastic process. A Langevin equation is written in an auxiliary time s: $\phi(\tau, \mathbf{r}) \rightarrow \phi(\tau, \mathbf{r}; s)$

$$\begin{split} \frac{\partial \phi(\tau, \mathbf{r}; s)}{\partial s} &= -\frac{\delta S[\phi]}{\delta \phi} + \eta(\tau, \mathbf{r}; s) \\ &= \left(\frac{1}{c^2} \frac{\partial^2}{\partial \tau^2} + \nabla^2\right) \phi + \eta(\tau, \mathbf{r}; s) \end{split}$$

The term $\eta(\tau, \mathbf{r}; s)$ is a Gaussian white noise

$$\langle \eta(\tau, \mathbf{r}; s) \rangle = 0$$

$$\langle \eta(\tau, \mathbf{r}; s) \eta(\tau', \mathbf{r}'; s') \rangle = 2k_B T \delta(\tau - \tau') \delta(\mathbf{r} - \mathbf{r}') \delta(s - s')$$

The solution of the Langevin equation in the limit $s \to \infty$ reproduces the probability distribution.

Eigenfunction expansion

For a given geometry (and BC), the field ϕ and the noise are expanded

$$\phi(\tau, \mathbf{r}; s) = \sum_{n,m} \phi_{nm}(s) g_m(\tau) f_n(\mathbf{r})$$

with

$$\nabla^2 f_n(\mathbf{r}) = -\lambda_n^2 f_n(\mathbf{r}), \quad \frac{1}{c^2} \frac{\partial^2}{\partial \tau^2} g_m(\tau) = -\omega_m^2 g_m(\tau)$$

Considering a bosonic field that obeys periodic boundary conditions in τ , the eigenvalues are the Matsubara frequencies $\omega_m = 2\pi m/\beta\hbar c, \ m\in\mathbb{Z}$ and $g_m(\tau) = \exp(-i\omega_m\tau)$.

The equation

$$\frac{\partial \phi(\tau, \mathbf{r}; s)}{\partial s} = \left(\frac{1}{c^2} \frac{\partial^2}{\partial \tau^2} + \nabla^2\right) \phi + \eta(\tau, \mathbf{r}; s)$$

reduces to

$$\frac{d\phi_{nm}(s)}{ds} = -\left[\lambda_n^2 + \omega_m^2\right]\phi_{nm}(s) + \eta_{nm}(s)$$

which can be integrated to give

$$\phi_{nm}(s) = \int_{-\infty}^{s} d\sigma e^{(\lambda_n^2 + \omega_m^2)(\sigma - s)} \eta_{nm}(\sigma),$$

Finally, the field

$$\phi(\tau, \mathbf{r}; s) = \sum_{n,m} \phi_{nm}(s) \exp(-i\omega_m \tau) f_n(\mathbf{r})$$

reproduces the probability distribution.

Eigenfunction expansion

Substituting and computing in the limit $s \to \infty$.

$$\begin{split} \langle \mathbb{T}(\mathbf{r}) \rangle &= \langle \mathcal{T}[\phi, \phi, \mathbf{r}] \rangle = \sum_{n_1, m_1, n_2, m_2} \langle \phi_{n_1 m_1} \phi_{n_2, m_2}^* \rangle \mathcal{T}[f_{n_1}, f_{n_2}^*, \mathbf{r}] \\ &= \frac{1}{\beta} \sum_{nm} \frac{\mathcal{T}_{nn}(\mathbf{r})}{\lambda_n^2 + \omega_m^2} \end{split}$$

where $\mathcal{T}_{nm}(\mathbf{r}) = \mathcal{T}[f_n, f_m^*, \mathbf{r}]$ Summing over ω_m

$$\left\langle \mathbb{T}(\mathbf{r})
ight
angle = rac{\hbar c}{2} \sum_{n} rac{\mathcal{T}_{nn}(\mathbf{r})}{\lambda_{n}} \left[1 + rac{2}{e^{eta \hbar c \lambda_{n}} - 1}
ight]$$

The total force over a body is

Quantum and classical limits

$$\langle \mathbb{T}(\mathbf{r})
angle = rac{\hbar c}{2} \sum_{n} rac{\mathcal{T}_{nn}(\mathbf{r})}{\lambda_{n}} \left[1 + rac{2}{e^{eta \hbar c \lambda_{n}} - 1}
ight]$$

In the limit of vanishing temperature or high temperature the stress tensor reduces to

$$\begin{pmatrix} \lim_{T \to 0} \langle \mathbb{T}(\mathbf{r}) \rangle &= \frac{\hbar c}{2} \sum_{n} \frac{\mathcal{T}_{nn}(\mathbf{r})}{\lambda_{n}} \\ \lim_{\hbar \to 0} \langle \mathbb{T}(\mathbf{r}) \rangle &= \frac{1}{\beta} \sum_{n} \frac{\mathcal{T}_{nn}(\mathbf{r})}{\lambda_{n}^{2}} \end{pmatrix}$$

To compute the Casimir force, the spectral decomposition of the Laplacian is needed.

Regularization of the ultraviolet divergences

Eigenvalues of the Laplacian: $\lambda \sim |ec{k}|$

Contribution of each mode to the stress tensor: $\mathcal{T} \sim k^2$

Therefore:

$$\langle \mathbb{T}(\mathbf{r}) \rangle = rac{\hbar c}{2} \sum_{n} rac{\mathcal{T}_{nn}(\mathbf{r})}{\lambda_{n}} \left[1 + rac{2}{e^{\beta \hbar c \lambda_{n}} - 1}
ight]$$

is divergent for large wavevectors.

The ultraviolet divergence does not contribute to net forces.

Needs regularization.

Cylinder of arbitrary cross section

The plates and the mantle are metallic.

On each cylinder (L finite and $L_{\infty} \to \infty$) there are transverse electric and transverse magnetic modes.

$$\int_{1 \text{ side}} \langle \mathbb{T}_{xx} \rangle dS_{x} = \frac{2}{\beta L} \sum_{m \in \mathbb{Z}} \sum_{n_{x}=1}^{\infty} \sum_{n} \frac{k_{x}^{2}}{\omega_{m}^{2} + k_{x}^{2} + \lambda_{n}^{2}}$$

where $k_x^2 = (n_x \pi/L)^2$ and λ_n^2 are the 2D Laplace eigenvalues with Dirichlet and Neumann BC on the perimeter.

Cylinder of arbitrary cross section

The sum is divergent. Using the Chowla-Selberg summation formula: the divergent *L*-independent contribution is separated from the convergent *L*-dependent part.

Subtracting the contributions from both sides of he plate

$$F_C = -\frac{1}{\beta} \sum_{p} \sum_{m \in \mathbb{Z}} \frac{\sqrt{\omega_m^2 + \lambda_p^2}}{e^{2L\sqrt{\omega_m^2 + \lambda_p^2}} - 1}; \qquad \omega_m = 2\pi m/\beta \hbar c$$

In the limit $T \rightarrow 0$, the sum over m can be replaced by an integral

$$\lim_{T\to 0} F_C = -\frac{\hbar c}{2\pi} \sum_{p} \sum_{n=1}^{\infty} \lambda_p^2 \left[K_0(2nL\lambda_p) + K_2(2nL\lambda_p) \right]$$

Cylinder of arbitrary cross section

At short distances, the sum over p can be replaced by an integral using the Laplacian density of states $\rho(\lambda_p) = \frac{A}{2\pi}\lambda_p$

$$\lim_{T\to 0} F_C = -\frac{\hbar c \pi^2}{240L^4} A$$

At large distances, larger eigenvalues are exponentially suppressed

$$\lim_{T\to 0} F_C = -\frac{\hbar c}{2\sqrt{\pi L}} g_1 \lambda_1^{3/2} e^{-2L\lambda_1}$$

At intermediate distances (summing numerically the eigenvalues for a circular piston)

$$\sigma_F^2 = \oint_{\Omega} \oint_{\Omega} \langle [\mathbb{T}(\mathbf{r}_1) \cdot d\mathbf{S}_1] [\mathbb{T}(\mathbf{r}_2) \cdot d\mathbf{S}_2] \rangle - F_C^2; \quad F_C = \oint_{\Omega} \langle \mathbb{T}(\mathbf{r}) \cdot d\mathbf{S} \rangle$$

Gaussian noise allows factorization of the four-field terms.

$$\langle \mathbb{T}(\mathbf{r}_1)\mathbb{T}(\mathbf{r}_2)\rangle = \frac{(\hbar c)^2}{4} \sum_{nm} P(\lambda_n)P(\lambda_m) \left[\mathcal{T}_{nn}(\mathbf{r}_1)\mathcal{T}_{mm}(\mathbf{r}_2) + 2\mathcal{T}_{nm}(\mathbf{r}_1)\mathcal{T}_{mn}(\mathbf{r}_2) \right]$$

where

$$P(\lambda) = rac{1}{\lambda} \left[1 + rac{2}{e^{eta\hbar c \lambda} - 1}
ight]$$

In the case of planar geometry

$$\sigma_F^2 = 2F_C^2; \quad \forall T$$

The variance is finite, independent of the regularizing procedure.

Numerical calculation

Sphere aligned with a torus

Torus: Large radius R_1 , small radius R_2

Sphere: Radius R_3 , height H.

Using the FreeFEM++ software, the eigenvalues and eigengunctions are computed numerically in cylindrical coordinates.

A kernel regularization is applied to compute the force on each object

$$F_C^{\mathrm{reg}} = rac{\hbar c}{2} \sum_n rac{K(\lambda_n/\Lambda)}{\lambda_n} \oint_{\Omega} \mathcal{T}_{nn}(\mathbf{r}) \cdot d\mathbf{S}$$

where K(x) is a regularizing kernel (e.g. $K(x) = e^{-x^2}$) and Λ is the cutoff eigenvalue.

Numerical calculation

The sum converges when $\Lambda \to \infty$.

There are numerical errors at at large eigenvalues.

Numerical details: Grid size: 100×100 .

Eigenvalues by ARPACK (Implicitly Restarted Arnoldi Method).

Numerical calculation

The force is obtained in the plateau

Geometrical parameters:

Torus: $R_1 = 1$, $R_2 = 5$

Sphere: $R_3 = 1$, H = 0, ..., 1, 0.

- The stochastic quantization method allows to compute the average stress due to quantum-thermal fluctuations
- Integrating the stress over the surface bodies gives the Casimir force
- The computation needs only the spectral decomposition of the Laplacian in a given geometry
- The force on a piston of arbitrary cross section is obtained at any temperature as a function of the 2D Laplace eigenvalues
- The force fluctuations can be computed; in the case of a planar geometry a universal result is obtaine
- The method is amenable for numerical computations

```
P. Rodriguez-Lopez, R. Brito, RS, (submitted)
P. Rodriguez-Lopez, R. Brito, RS, Phys. Rev. E 83, 031102 (2011)
```

Casimir forces via stochastic quantization

Rodrigo Soto^1 , Ricardo Brito^2 , and Pablo $\mathsf{Rodriguez\text{-}Lopez}^2$

¹Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile. ²Departamento de Física Aplicada I, Universidad Complutense, Madrid, Spain http://www.dfi.uchile.cl/~rsoto

P. Rodriguez-Lopez, R. Brito, RS, (submitted)
P. Rodriguez-Lopez, R. Brito, RS, Phys. Rev. E **83**, 031102 (2011)

QFEXT11, Benasque, September 2011