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Outline

@ Casimir forces and stress tensor
@ Parisi-Wu formalism of stochastic quantization
© Ultraviolet divergences

@ Applications

e Piston of arbitrary cross section
e Force fluctuations
e Numerical calculation in the torus-sphere geometry

© Conclusions
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Casimir force via the stress tensor

The Casimir force can be calculated averaging the the stress tensor,
T on the quantum-thermal probability distribution of the fields ¢.

The stress tensor is a bilinear form T = T, ¢, r].

With a single scalar field satisfying Dirichlet boundary conditions.
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and therefore the bilinear form is
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The extension to vectorial Electromagnetism is direct, considering
the Transverse Electric and the Transverse Magnetic decomposition.
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Casimir force via the stress tensor

The fields ¢ display the quantum-thermal probability distribution
Pl¢] = 7 L1e—Slel/n
where S[¢] is the action, Wick-rotated in the time variable (t = iT).

In the case of a scalar field with zero mass
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is the partition function.

For the bosonic case, ¢(7 + Bh,r) = ¢(T,r).
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Parisi-Wu formalism

The probability distribution can be built via a fictitious stochastic
process. A Langevin equation is written in an auxiliary time s:

o(r,r) = o(7,r;5)

9¢(r,r;s) _ 05[¢]
Os Y

2
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+n(r,r;5)

The term (7, r; s) is a Gaussian white noise

(n(r,r;s)) =0
(e s)n(r', v’ s")) = 2kg To(r — 7')5(r — ¥')d(s — &)

The solution of the Langevin equation in the limit s — oo
reproduces the probability distribution.

R. Soto Casimir forces via stochastic quantization



Eigenfunction expansion

For a given geometry (and BC), the field ¢ and the noise are
expanded
$(7,1;5) qunm 5)8m(7)fa(r)

with

1 92
V2fo(r) = =Xafa(r), ?ﬁgm(T) = —whgm(T)

Considering a bosonic field that obeys periodic boundary conditions

in 7, the eigenvalues are the Matsubara frequencies
wm = 2wm/Bhc, m € Z and gn(7) = exp(—iwmT).
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Eigenfunction expansion

The equation

oo(t,r; s 1 02
¢(gs ) = (c287-2 +V2> o +n(r,r;s)

reduces to

donm(s) _
ds [)‘2 tw ] Pnm(S) + Nam(s)

which can be integrated to give
Gnm(s / doelaten) o=y, (5),
Finally, the field
(1,r;8) Zqﬁnm s) exp(—iwmT)fp(r)

reproduces the probability distribution.



Eigenfunction expansion

Substituting and computing in the limit s — oo.

<T(r)> = <T[¢> ®, r]) = Z <¢n1m1¢:2,m2>7—[fn17 fn*27 r]

ny,ma,nz,m2

= BZ)\2+W2

where T pm(r) = T1fn, 5, 1]

Summing over wp,

[m(r»h; Lol it | ]

The total force over a body is

[FC - 7{2 (T(r)) - dS ]
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Quantum and classical limits

R R R 1

In the limit of vanishing temperature or high temperature the stress
tensor reduces to

lim (T(r)) =%, Tol0

T—0

lim (T(r)) =33, T""“

To compute the Casimir force, the spectral decomposition of the
Laplacian is needed.
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Regularization of the ultraviolet divergences

Eigenvalues of the Laplacian: A ~ ]/?|
Contribution of each mode to the stress tensor: T ~ k2
Therefore:

h T an(r 2
1) = 55 3 Tl [1 + m_l]

is divergent for large wavevectors.
The ultraviolet divergence does not contribute to net forces.

Needs regularization.
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Cylinder of arbitrary cross section

A

Fe

L L, — oo

The plates and the mantle are metallic.
On each cylinder (L finite and Lo, — o0) there are transverse
electric and transverse magnetic modes.

2 © k)%
/ls§3£xx>d5x = ﬁ Z 21; m

meZ Nx=
where k2 = (n,m/L)? and A2 are the 2D Laplace eigenvalues with
Dirichlet and Neumann BC on the perimeter.
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Cylinder of arbitrary cross section

The sum is divergent. Using the Chowla-Selberg summation
formula: the divergent L-independent contribution is separated from
the convergent L-dependent part.

Subtracting the contributions from both sides of he plate

\/ Wi A2
Z Z 5 ; wm = 2wm/Bhc
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In the limit T — 0, the sum over m can be replaced by an integral

lim Fc = —7ZZA [Ko(2nLAp) + Ka(2nLAp)]
p n=1
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Cylinder of arbitrary cross section

At short distances, the sum over p can be replaced by an integral
using the Laplacian density of states p()p) = %Ap
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At large distances, larger elgenvalues are exponentially suppressed
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Force fluctuations

o2 — jiféz([’ﬂ‘(rl)-dSl][’]I‘(rz)'d52]>—F(%; Fc= ]i<T(r)'dS>

Gaussian noise allows factorization of the four-field terms.

<T(I’1)T l’2 (hC Z P [Tnn(rl)Tmm(rZ) + 2Tnm(r1)Tmn(r2)]

where
P(\) = X [1 + eﬁhj—l]
In the case of planar geometry
(02 =2F2 v |

The variance is finite, independent of the regularizing procedure.
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Numerical calculation

Sphere aligned with a torus
Torus: Large radius Ry, small radius R»
Sphere: Radius Rs3, height H.

Using the FreeFEM++ software, the eigenvalues and eigengunctions
are computed numerically in cylindrical coordinates.

A kernel regularization is applied to compute the force on each

object
. he K(\n/N)
eg _ :
Fre = 5 En bW fg‘] an(r)-dS

where K(x) is a regularizing kernel (e.g. K(x) = e*) and A is the
cutoff eigenvalue.
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Numerical calculation

The sum converges when A — oo.
There are numerical errors at at large eigenvalues.
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Numerical details: Grid size: 100 x 100.
Eigenvalues by ARPACK (Implicitly Restarted Arnoldi Method).
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Numerical calculation

The force is obtained in the plateau

0.0005—+

-0.0005+

-0.001—+

H

Geometrical parameters:
Torus: Ry =1, R =5
Sphere: R3 =1, H=0,...,1,0.
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Conclusions

@ The stochastic quantization method allows to compute the
average stress due to quantum-thermal fluctuations

@ Integrating the stress over the surface bodies gives the Casimir
force

@ The computation needs only the spectral decomposition of the
Laplacian in a given geometry

@ The force on a piston of arbitrary cross section is obtained at
any temperature as a function of the 2D Laplace eigenvalues

@ The force fluctuations can be computed; in the case of a
planar geometry a universal result is obtaine

@ The method is amenable for numerical computations
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