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Zero point energy
B QFT vacuum to vacuum transition: (0| H |0} o

Spectrum, normal ordering (harm oscill):

1
H = (n%—i))\nana};

h c 1
H - — ANy = = tr
OHIO) = 530 = 3

gives oo physical meaning?

Regularization + Renormalization ( cut-off, dim, ()

L Even then: Has the final value real sense ? J
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Operator Zeta F's In M ®: Origins

® The Riemann zeta function ¢(s) is a function of a complex variable, s. To define it, one
starts with the infinite series =1
>
n=1

which converges for all complex values of s with real Re s > 1, and then defines {(s) as

the analytic continuation, to the whole complex s—plane, of the function given, Re s > 1,
by the sum of the preceding series.

Leonhard Euler already considered the above series in 1740, but for positive integer
values of s, and later Chebyshev extended the definition to Re s > 1.
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Operator Zeta F's In M ®: Origins

® The Riemann zeta function ¢(s) is a function of a complex variable, s. To define it, one
starts with the infinite series =1

ns
n=1

which converges for all complex values of s with real Re s > 1, and then defines {(s) as

the analytic continuation, to the whole complex s—plane, of the function given, Re s > 1,
by the sum of the preceding series.

Leonhard Euler already considered the above series in 1740, but for positive integer
values of s, and later Chebyshev extended the definition to Re s > 1.

® Godfrey H Hardy and John E Littlewood, “Contributions to the Theory of the Riemann
Zeta-Function and the Theory of the Distribution of Primes", Acta Math 41, 119 (1916)

Did much of the earlier work, by establishing the convergence and equivalence of series
regularized with the heat kernel and zeta function regularization methods

G H Hardy, Divergent Series (Clarendon Press, Oxford, 1949)

Srinivasa | Ramanujan had found for himself the functional equation of the zeta function

o -
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the analytic continuation, to the whole complex s—plane, of the function given, Re s > 1,
by the sum of the preceding series.

Leonhard Euler already considered the above series in 1740, but for positive integer
values of s, and later Chebyshev extended the definition to Re s > 1.

Godfrey H Hardy and John E Littlewood, “Contributions to the Theory of the Riemann
Zeta-Function and the Theory of the Distribution of Primes", Acta Math 41, 119 (1916)

Did much of the earlier work, by establishing the convergence and equivalence of series
regularized with the heat kernel and zeta function regularization methods

G H Hardy, Divergent Series (Clarendon Press, Oxford, 1949)
Srinivasa | Ramanujan had found for himself the functional equation of the zeta function

Torsten Carleman, “Propriétés asymptotiques des fonctions fondamentales des
membranes vibrantes" (French), 8. Skand Mat-Kongr, 34-44 (1935)
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Operator Zeta F's In M ®: Origins

® The Riemann zeta function ¢(s) is a function of a complex variable, s. To define it, one
starts with the infinite series =1

ns
n=1

which converges for all complex values of s with real Re s > 1, and then defines {(s) as

the analytic continuation, to the whole complex s—plane, of the function given, Re s > 1,
by the sum of the preceding series.

Leonhard Euler already considered the above series in 1740, but for positive integer
values of s, and later Chebyshev extended the definition to Re s > 1.

® Godfrey H Hardy and John E Littlewood, “Contributions to the Theory of the Riemann
Zeta-Function and the Theory of the Distribution of Primes", Acta Math 41, 119 (1916)

Did much of the earlier work, by establishing the convergence and equivalence of series
regularized with the heat kernel and zeta function regularization methods

G H Hardy, Divergent Series (Clarendon Press, Oxford, 1949)

Srinivasa | Ramanujan had found for himself the functional equation of the zeta function

® Torsten Carleman, “Propriétés asymptotiques des fonctions fondamentales des
membranes vibrantes" (French), 8. Skand Mat-Kongr, 34-44 (1935)

® Zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian
manifold for the case of a compact region of the plane
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® Robert T Seeley, “Complex powers of an elliptic operator. 1967
f Singular Integrals" (Proc. Sympos. Pure Math., Chicago, lll., 1966) T
pp. 288-307, Amer. Math. Soc., Providence, R.I.
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® Robert T Seeley, “Complex powers of an elliptic operator. 1967

f Singular Integrals" (Proc. Sympos. Pure Math., Chicago, lll., 1966) T
pp. 288-307, Amer. Math. Soc., Providence, R.I.

® Extended this to elliptic pseudo-differential operators A on compact
Riemannian manifolds. So for such operators one can define the
determinant using zeta function regularization

o -
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pp. 288-307, Amer. Math. Soc., Providence, R.I.

® Extended this to elliptic pseudo-differential operators A on compact
Riemannian manifolds. So for such operators one can define the
determinant using zeta function regularization

® D B Ray, Isadore M Singer, “R-torsion and the Laplacian on
Riemannian manifolds", Advances in Math 7, 145 (1971)
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Robert T Seeley, “Complex powers of an elliptic operator. 1967
Singular Integrals" (Proc. Sympos. Pure Math., Chicago, lll., 1966) T
pp. 288-307, Amer. Math. Soc., Providence, R.I.

Extended this to elliptic pseudo-differential operators A on compact
Riemannian manifolds. So for such operators one can define the
determinant using zeta function regularization

D B Ray, Isadore M Singer, “R-torsion and the Laplacian on
Riemannian manifolds", Advances in Math 7, 145 (1971)

Used this to define the determinant of a positive self-adjoint operator
A (the Laplacian of a Riemannian manifold in their application) with
eigenvalues a1, as, ...., and in this case the zeta function is formally

the trace
Ca(s) =Tr(A)~?

the method defines the possibly divergent infinite product

][ an = exp[—¢a’(0)] J
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® J. Stuart Dowker, Raymond Critchley
“Effective Lagrangian and energy-momentum tensor
f In de Sitter space”, Phys. Rev. D13, 3224 (1976) T
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J. Stuart Dowker, Raymond Critchley
“Effective Lagrangian and energy-momentum tensor
In de Sitter space”, Phys. Rev. D13, 3224 (1976) T

Abstract

The effective Lagrangian and vacuum energy-momentum
tensor < T*” > due to a scalar field in a de Sitter space
background are calculated using the dimensional-regularization
method. For generality the scalar field equation is chosen in the
form (0% 4+ R +m?)p = 0. If ¢ = 1/6 and m = 0, the
renormalized < T#" > equals ¢g"*(96072a*)~!, where a is the
radius of de Sitter space. More formally, a general zeta-function
method is developed. It yields the renormalized effective
Lagrangian as the derivative of the zeta function on the curved
space. This method is shown to be virtually identical to a
method of dimensional regularization applicable to any J
Riemann space.
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Effective Lagrangian and energy-momentum tensor in de Sitter space

J. 8. Dowker and Raymond Critchley

Department of Theoretical Physics, The University, Manchester, 13, England
(Received 29 October 1975)

The effective Lagrangian and vacuum energy-momentum tensor ¢ T**» due to & scalar field in a de Sitter-
space background are calculated using the dimensional-regularization method. For generality the scalar field
equation is chosen in the form (7 + ER + m ¥y = 0. IF € = 1/6 and m = 0, the renormalized ¢ T*"> equals
g "(9607%a *)~", where a is the radius of de Sitter space. More formally, a general zeta-function method is
developed. It yields the renormalized effective Lagrangian as the derivative of the zeta function on the curved
space. This method is shown to be virtually identical to a method of dimensional regularization applicable 1o

any Riemann space.

I. INTRODUCTION

In a previous paper' (to be referred to as I) the
effective Lagrangian £ due to single-loop dia-
grams of a scalar particle in de Sitter space was
computed, It was shown to be real and was evalu-
ated as a principal-part integral. The regulariza-
tion method used was the proper-time one due to
Schwinger? and others. We now wish to consider
the same problem but using different techniques.
In particular, we wish to make contact with the
work of Candelas and Raine,® who first discussed
the same problem using dimensional regulariza-
tion.

Some properties of the various regularizations
as applied to the caleulation of the vacuum expec-
tation value of the energy-momentum tensor have
been contrasted by DeWitt.* We wish to pursue
some of these questions within the context of a
definite situation.

II. GENERAL FORMULAS: REGULARIZATION
METHODS

We use exactly the notation of I, which is more
or less standard, and begin with the expression
for £7" in terms of the quantum-mechanical propa-
gator, K(x",x', 7},

LONx")= =47 lim dTT"K[x”,:C',‘T]B""*'i-X{x'].

(1)

There are two points regarding this expression
which need some further discussion. Firstly, if
we adopt the proper-time regularization method
so that the infinities appear only when the 7 inte-
gration, which is the final operation, is performed,
then we can take the coincidence limit, x*=x’,
through into the integrand. Further, since the
regularized expression is continuous across the
light cone, it does not matter how we let x” ap-

13

proach x'. Secondly, the term X does not have

to be a constant, but it should integrate to give a
metric-independent contribution to the total action,
Wi,

The Schwinger-DeWitt procedure is to derive an
expression for K, either in closed form or as a
general expansion to powers of 7, then to effect
the eoineidence limit in (1), and finally to perform
the 7 integration. This was the approach adopted
in I. We proceed now to give a few more details.

We assume that we are working on a Riemann-
ian space, M, of dimension d. The coincidence
limit K(x, x, 7) ean be expanded,®

K(x,x, )= i(dmiz)=/2 Z; a ()i Ty, (2)
where the a, are scalars constructed from the
curvature tensor on 9l and whose functional form
ig independent of d. The manifold 9 must not
have boundaries, otherwise other terms appear
in the expansion.

The expansion (2) is substituted into (1) to yield

L) =k in) 4 T a ) [ (ipta-tesimtrar,

(3)

The infinite terms are those for which n = d/2
{for d even) or n=(d -1)/2 (for d odd). For d=4,
e.g. space-fime, there are three infinite terms.
These terms are removed by renormalization;
the details are given by DeWitt.!

Another popular regularization technique is di-
mensional regularization.® In this method the di-
mension, d, is considered to be complex and all
expressions are defined in a region of the d plane
where they converge. The infinities appear when
an analytic continuation to d =4 is performed to
regain the physical quantities. This idea was
originally developed for use in flat-space (i.e.,
Lorentz-invariant) situations for the momentum

3224



®» Stephen W Hawking, “Zeta function regularization of path integrals
In curved spacetime", Commun Math Phys 55, 133 (1977)
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Stephen W Hawking, “Zeta function regularization of path integrals
In curved spacetime", Commun Math Phys 55, 133 (1977)

This paper describes a technique for regularizing quadratic path T
Integrals on a curved background spacetime. One forms a

generalized zeta function from the eigenvalues of the differential

operator that appears in the action integral. The zeta function is a
meromorphic function and its gradient at the origin is defined to be the
determinant of the operator. This technique agrees with dimensional
regularization where one generalises to n dimensions by adding extra

flat dims. The generalized zeta function can be expressed as a Mellin
transform of the kernel of the heat equation which describes diffusion
over the four dimensional spacetime manifold in a fifth dimension of
parameter time. Using the asymptotic expansion for the heat kernel,

one can deduce the behaviour of the path integral under scale
transformations of the background metric. This suggests that there

may be a natural cut off in the integral over all black hole background
metrics. By functionally differentiating the path integral one obtains an
energy momentum tensor which is finite even on the horizon of a J
black hole. This EM tensor has an anomalous trace.
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Zeta Function Regularization of Path Integrals
in Curved Spacetime

S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 9EW, England

Abstract. This paper describes a technique for regularizing quadratic path
integrals on a curved background spacetime. One forms a generalized zecta
function from the eigenvalues of the differential operator that appears in the
action integral. The zeta function is a meromorphic function and its gradient at
the origin is defined to be the determinant of the operator. This technique agrees
with dimensional regularization where one generalises to n dimensions by
adding extra flat dimensions. The generalized zeta function can be expressed as
a Mellin transform of the kernel of the heat equation which describes diffusion
over the four dimensional spacetime manifold in a fith dimension of parameter
time. Using the asymptotic expansion for the heat kernel, one can deduce the
behaviour of the path integral under scale transformations of the background
metric. This suggests that there may be a natural cut off in the integral over all
black hole background metrics. By functionally differentiating the path integral
one oblains an energy momentum tensor which is finite even on the horizon ofa
black hole. This energy momentum tensor has an anomalous trace.

1. Introduction

The purpose of this paper is to describe a technique for obtaining finite values to
path integrals for fields (including the gravitational field) on a curved spacetime
background or, equivalently, for evaluating the determinants of differential
operators such as the four-dimensional Laplacian or D’ Alembertian. One forms a
gemeralised zeta function from the eigenvalues A, of the operator

U)=2 2" (1.1)

In four dimensions this converges for Re(s) = 2 and can be analytically extended toa
meromorphic function with poles only at s=2 and s=1. It is regular at s=0. The

derivative at s=0 is formally equal to —} logi, Thus one can define the

determinant of the operator to be exp(—d{/ds)l, . ¢



Pseudodifferential Operator (VDO)

f.ﬁ A DO of order m M., manifold T

® Symbol of A: a(z, &) € S™(R™ x R™) € C* functions such that
for any pair of multi-indices «, 3 there exists a constant C,, g SO
that

9¢0%a(x, )| < Ca g1+ )1



Pseudodifferential Operator (VDO)

f.ﬁ A DO of order m M., manifold T

® Symbol of A: a(z,£) € S™(R™ x R™) C C* functions such that
for any pair of multi-indices «, 3 there exists a constant C,, g SO
that

9¢0%a(x, )| < Ca g1+ )1

Definition of A (in the distribution sense)

Af(x) = 2m)" / e o2, €) F(€) de

® fis a smooth function
fe8={feC®R"); sup,|z’0*f(z)| < co, Vo, € N"}

® S’ space of tempered distributions

L.. f is the Fourier transform of f J
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UDOs are useful tools

The symbol of a ¥DO has the form:
f a(ﬂfag):am(ﬂf,f)—|—am_1(gj,€)—|—..._|_am_j(x7£)_|_... T
being ay(z, &) = by(z) "

a(x, &) is said to be elliptic if it is invertible for large || and if there exists a
constant C such that |a(z, &)Y < C(1 + |€])~™, for |£| > C
— An elliptic ¥DO is one with an elliptic symbol

o -
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UDOs are useful tools

The symbol of a ¥DO has the form:
f a(ﬂfaf):am(ﬂf,f)+am_1(gj,€)—|—..._|_am_j(x7€)_|_... T
being ay(z, &) = by(z) "

a(x, &) is said to be elliptic if it is invertible for large || and if there exists a
constant C such that |a(z, &)Y < C(1 + |€])~™, for |£| > C
— An elliptic ¥DO is one with an elliptic symbol

—— WDOs are basic tools both in Mathematics & in Physics ——
1. Proof of uniqueness of Cauchy problem
2. Proof of the Atiyah-Singer index formula

3. In QFT they appear in any analytical continuation process —as complex
powers of differential operators, like the Laplacian

4. Basic starting point of any rigorous formulation of QFT & gravitational
Interactions through plocalization (the most important step towards the
understanding of linear PDEs since the invention of distributions)
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Existence of(4 for A a VDO

1. A a positive-definite elliptic ¥DO of positive order m € R T
2. A acts on the space of smooth sections of
3. E, n-dim vector bundle over

4. M closed n-dim manifold

o -
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Existence of(4 for A a VDO

1. A a positive-definite elliptic ¥DO of positive order m € R T
2. A acts on the space of smooth sections of
3. F, n-dim vector bundle over
4. M closed n-dim manifold
(a) The zeta function is defined as:
Ca(s) =trA72 =5 A7, Res> I :=sg

{\;} ordered spect of A, sp = dim M /ord A abscissa of converg of (a(s)

o -
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Existence of(4 for A a VDO

1. A a positive-definite elliptic ¥DO of positive order m € R T
2. A acts on the space of smooth sections of
3. E, n-dim vector bundle over
4. M closed n-dim manifold
(a) The zeta function is defined as:
Ca(s) =trA72 =5 A7, Res> I :=sg
{\;} ordered spect of A, sp = dim M /ord A abscissa of converg of (a(s)

(b) Ca(s) has a meromorphic continuation to the whole complex plane C
(regular at s = 0), provided the principal symbol of A, a,,(x, &), admits a
spectral cut: Lo = {\ € C;ArgA =0,0, <0 < 0y}, SpecANLy=10
(the Agmon-Nirenberg condition)

o -
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Existence of(4 for A a VDO

1. A a positive-definite elliptic ¥DO of positive order m € R T
2. A acts on the space of smooth sections of
3. E, n-dim vector bundle over
4. M closed n-dim manifold
(a) The zeta function is defined as:
Ca(s) =trA72 =5 A7, Res> I :=sg
{\;} ordered spect of A, sp = dim M /ord A abscissa of converg of (a(s)

(b) Ca(s) has a meromorphic continuation to the whole complex plane C
(regular at s = 0), provided the principal symbol of A, a,,(x, &), admits a
spectral cut: Lo = {\ € C;ArgA =0,0, <0 < 0y}, SpecANLy=10
(the Agmon-Nirenberg condition)

(c) The definition of (4(s) depends on the position of the cut Ly

o -
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Existence of(4 for A a VDO

1. A a positive-definite elliptic ¥DO of positive order m € R T
2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold

(a) The zeta function is defined as:
Ca(s)=trA=—*=>"-X.°, Res> = 8g

377 7
{\;} ordered spect of A, sp = dim M /ord A abscissa of converg of (a(s)

(b) Ca(s) has a meromorphic continuation to the whole complex plane C
(regular at s = 0), provided the principal symbol of A, a,,(x, &), admits a
spectral cut: Lo = {\ € C;ArgA =0,0, <0 < 0y}, SpecANLy=10
(the Agmon-Nirenberg condition)

(c) The definition of (4(s) depends on the position of the cut Ly

@ The only possible singularities of {4 (s) are poles at J
s;j=(n-—yj)/m, i=0,1,2,....n—1,n+1,...
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Definition of Determinant
f H WDO operator {w;; \;} spectral decomposition T



Definition of Determinant
f H WDO operator {w;; \;} spectral decomposition T

Hie[ Ai 7 In Hie] Ai = Z@'e] In A;

o -
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Definition of Determinant
f H WDO operator {w;; \;} spectral decomposition T
[Licr A 7 InJlicrAi = 2iern A
Riemann zeta func: ((s) => 2 ,n"° Res>1 (& analytic cont)
Definition: zeta function of H Cr(s) = e Ay =tr HS
As Mellin transform: ¢z (s) = ﬁ [oodetsr et Res > sg

Derivative: (7, (0) = = >,/ In\;

o -
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Definition of Determinant
f H WDO operator {w;; \;} spectral decomposition T
[Licr A 7 InJlicrAi = 2iern A
Riemann zeta func: ((s) => 2 ,n"° Res>1 (& analytic cont)
Definition: zeta function of H Cr(s) = e Ay =tr HS
As Mellin transform: ¢z (s) = ﬁ [oodetsr et Res > sg

Derivative: (7, (0) = = >,/ In\;

Determinant. Ray & Singer, '67 /
dets H = exp [—(p(0)]

o -
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Definition of Determinant
f H WDO operator {w;; \;} spectral decomposition T

[Licr A 7! InJLicr i = 2ierIn N
Riemann zeta func: ((s) => 2 ,n"° Res>1 (& analytic cont)
Definition: zeta function of H Cr(s) = e Ay =tr HS
As Mellin transform: ¢z (s) = ﬁ [oodetsr et Res > sg

Derivative: (7, (0) = = >,/ In\;

Determinant:
dets H = exp [—(p(0)]

Welerstrass def. subtract leading behavior of A; in 7, as i — oo,
until series ) .. ;In \; converges —> hon-local counterterms !!

o -
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Definition of Determinant
f H WDO operator {w;; \;} spectral decomposition T

[Licr A 7! InJLicr i = 2ierIn N
Riemann zeta func: ((s) => 2 ,n"° Res>1 (& analytic cont)
Definition: zeta function of H Cr(s) = e Ay =tr HS
As Mellin transform: ¢z (s) = ﬁ [oodetsr et Res > sg

Derivative: (7, (0) = = >,/ In\;

Determinant. Ray & Singer, '67 /
dets H = exp [—(p(0)]

Welerstrass def. subtract leading behavior of A; in 7, as i — oo,
until series ) .. ;In \; converges —> hon-local counterterms !!

L“,._Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,...J
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Properties

#® The definition of the determinant det: A only depends on the

v homotopy class of the cut T

® A zeta function (and corresponding determinant) with the same
meromorphic structure in the complex s-plane and extending the
ordinary definition to operators of complex order m € C\Z (they do not
admit spectral cuts), has been obtained

®» Asymptotic expansion for the heat kernel:

—tA tA

/ _
re — Z)\ESpecA €

~ Q{n(A) + Zn#]ZO Q4 (A)t_sj — ZkZl 5k(A)tk lnt, t J, 0
an(A) =¢a(0), a;(A) =T(s;j) Ress—s; Ca(s), s; € —N

aj(A) = E PP Ca(—k) + (k + 1) Res,— 1, Ca(s)]

(=D** s;j=—k, keN
Br(A) = —— Ress—_r Ca(s), k€ N\{0}

L PP ¢ := lim,_, |¢(s) — JeSe=2 8(5) J

S$—Pp
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°

e o o o

The Wodzickl Residue

The Wodzicki (or noncommutative) residue is the only extension of the
Dixmier trace to ¥DOs which are notin £(1:>) T

Only trace one can define in the algebra of Y'DOs (up to multipl const)
Definition: res A =2 Res,_otr (AA™%), A Laplacian
Satisfies the trace condition: res (AB) =res (BA)

Important!: it can be expressed as an integral (local form)

res A= [o.,, tra_n(z,§) d§

with S*M C T* M the co-sphere bundle on M (some authors put a
coefficient in front of the integral: Adler-Manin residue)

If dim M =n=—ord A (M compact Riemann, A elliptic, n € N)
it coincides with the Dixmier trace, and  Res;—;Ca(s) = tres A1

The Wodzicki residue makes sense for ¥DOs of arbitrary order.
Even if the symbols a;(z,&), j < m, are not coordinate invariant,
the integral is, and defines a trace

OFEXT 2011. CC Pedro Pascual. Benasaue. Sep 18-24. 2011 — p. 13/



o

Singularities of (4

A complete determination of the meromorphic structure of some zeta

functions in the complex plane can be also obtained by means of the
Dixmier trace and the Wodzicki residue

Missing for full descript of the singularities: residua of all poles

As for the regular part of the analytic continuation: specific methods
have to be used (see later)

Proposition. Under the conditions of existence of the zeta function of
A, given above, and being the symbol a(x,&) of the operator A
analyticin ¢t at ¢! =0:

Res,—;, Ca(s) = tres A= = L [ tra”}*(z,&)d" ¢

Proof. The homog component of degree —n of the corresp power of
the principal symbol of A is obtained by the appropriate derivative of
a power of the symbol with respectto ¢t at ¢! =0:

w9 = () [ tat ]| 6 .
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Multipl or N-Comm Anomaly, or Defect

f ® Given A, B, and AB ¢¥DOs, even if (4, (5, and (45 exist, T
It turns out that, in general,

detc(AB) 7& detcA detcB



Multipl or N-Comm Anomaly, or Defect

f ® Given A, B, and AB ¢¥DOs, even if (4, (5, and (45 exist, T
It turns out that, in general,

detc(AB) 7& detcA detcB

#® The multiplicative (or noncommutative) anomaly (defect)
IS defined as

. detC(AB) Y. / /
5(4,B) = In | 22D — (0 + Gh0)+ G500

o -
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Multipl or N-Comm Anomaly, or Defect

f ® Given A, B, and AB ¢¥DOs, even if (4, (5, and (45 exist, T
It turns out that, in general,

detc(AB) 7& detcA detcB

#® The multiplicative (or noncommutative) anomaly (defect)
IS defined as

detC(AB)
detc A detc B

5(A, B) = In [ ] = —Cp(0) + C4(0) + Ch(0)

#» Wodzicki formula
res {[Ino(A, B)]*}
2 ord A ord B (ord A + ord B)

5(A, B) =

_ where o(A, B) = A°rdBp-orda -
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Conseguences of the Multipl Anomaly
f.. In the path integral formulation T

/[dé[)] exp{—/de {@T(x)( )@(x)+...j|}

Gaussian integration: —  det ( )i

A1 A, A

—
As Ay B
det(AB) or det A - detB 7

#® In a situation where a superselection rule exists, AB has no
sense (much less its determinant): — det A - det B

® But if diagonal form obtained after change of basis (diag.
L process), the preserved quantity is: = det(AB) J
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Basic strategies
f.o Jacobi’s identity for the 6—function T

O3(z,7) =1+ 22,20:1 q" cos(2nz), q:=e", 7eC

93(,2 T) = A= et/ ( =1) equivalently:

—(n—l—z)2t \/f Z
n=0

# Higher dimensions: Poisson summ formula (Riemann)

> f) =Y f)

nezp meEZP

a COS (2mnz), z,t€C, Ret >0

n=—oo

f Fourier transform
|Gelbart + Miller, BAMS '03, Iwaniec, Morgan, ICM '06]

_® Truncated sums  __ asymptotic series -
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Extended CS Formulas (ECS)

® Consider the zeta function (Res > p/2, A > 0,Req > 0) T

azal) = X [ aT A +d] = Y@@+ +q”

nELP nezp

point 7 =0 to be excluded from the sum
(inescapable condition when ¢; =--- =¢, = q = 0)

Q(n+¢)+q=Q(n)+ L) +q

-
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Extended CS Formulas (ECS)

f.. Consider the zeta function (Res > p/2, A > 0,Req > 0) T
11 T . 5 / . i
Creale) = 3 O A+ 4| = Y@ +a

point 7 =0 to be excluded from the sum
(inescapable condition when ¢; =--- =¢, = q = 0)

Q (M +¢)+q=Q(7) + L(7i) + q
® Case ¢ #0 (Req > 0)
(2 )PI2qPI2=5 T(s — p/2)  28/2+p/4+2 s g=s/2+p/4
Ca,cq(s) Jdet A (s) + Jdet A I(s)
x Y cos(2m - &) (mTAT) T K (2my/2gmT AT
MELY ) [ECS1]

o -
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Extended CS Formulas (ECS)

f.. Consider the zeta function (Res > p/2, A > 0,Req > 0) T
11 T . 5 / . i
Creale) = 3 O A+ 4| = Y@ +a

point 7 =0 to be excluded from the sum
(inescapable condition when ¢; =--- =¢, = q = 0)

Qi+ ¢)+q=QM) + L) + q
® Case ¢ #0 (Req > 0)
(27T)p/2qp/2—s F(S - p/2) 23/2—|—p/4—|—27.‘.8q—3/2—|—p/4
CA,E,q(S) \/m (s) T \/m I(s)
x Y cos(2m - &) (mTAT) T K (2my/2gmT AT

MELY ) [ECS1]
® Pole: s =p/2 Residue:

\P/2
L Res,—,/2Ca,64(5) = (2( )/2) (detA)_1/2 J
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® Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

- .

o -
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation T
—with the corresponding residua— explicitly

-
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® Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

® Exhibits singularities (simple poles) of the meromorphic continuation T
—with the corresponding residua— explicitly

® Only condition on matrix A: corresponds to (non negative) quadratic
form, (). Vector ¢ arbitrary, while ¢ is (to start) a non-neg constant

o -
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation T
—with the corresponding residua— explicitly

Only condition on matrix A: corresponds to (non negative) quadratic
form, (). Vector ¢ arbitrary, while ¢ is (to start) a non-neg constant

K, modified Bessel function of the second kind and the subindex 1/2
In me means that only half of the vectors m € ZP participate in the
sum. E.g., if we take an m € 7ZP we must then exclude —m

[simple criterion: one may select those vectors in Z?\{0} whose

first non-zero component is positive]

-
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® Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

f’ Exhibits singularities (simple poles) of the meromorphic continuation T
—with the corresponding residua— explicitly

® Only condition on matrix A: corresponds to (non negative) quadratic
form, (). Vector ¢ arbitrary, while ¢ is (to start) a non-neg constant

® K, modified Bessel function of the second kind and the subindex 1/2
In me means that only half of the vectors m € ZP participate in the
sum. E.g., if we take an m € 7ZP we must then exclude —m

[simple criterion: one may select those vectors in Z?\{0} whose

first non-zero component is positive]

® Case ¢y = -=c¢,=q =0 T[true extens of CS, diag subcase]
a(s) = 2 Z (det ;)72 [20)%° T (5= ) Cal2s—i) +
Ap F(S) a p—J 9 | Sk

47TSCL§ ]%S‘ S‘n]/Q s m A % )S/2j/4Kj/2_3(27m\/ap Y A J)]
P [ECS3d]
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Emilio Elizalde

Ten Physical Applications
of Spectral Zeta Functions

PIZEN
®): Springer



QFT In s-t with non-commtoroidal part

f.. D—dim non-commut manifold: M =R"“ QTS D=d+p+1
T a p—dim non-commutative torus: [z;,z;] = 0oy,
o, areal, nonsingular, antisymmetric matrix of £1 entries
6 the non-commutative parameter.

o -
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QFT In s-t with non-commtoroidal part

® D—dim non-commut manifold: M =RY¥QTY, D=d+p+1
T a p—dim non-commutative torus: [z;,z;] = 0oy,
o, areal, nonsingular, antisymmetric matrix of £1 entries
6 the non-commutative parameter.

® Interest recently, in connection with A —theory & string theory

o -
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QFT In s-t with non-commtoroidal part

f.. D—dim non-commut manifold: M =R" @ T, D=d+p+1
T, ap—dim non-commutative torus: [z;,z;] = ifojy
o, areal, nonsingular, antisymmetric matrix of £1 entries
6 the non-commutative parameter.

® Interest recently, in connection with A —theory & string theory

® Unified treatment: only one zeta function, nature of field
(bosonic, fermionic) as a parameter, together with # of
compact, noncompact, and noncommutative dimensions
VI(s—(d+1)/2) - (d+1)/2 s 2—2a o] (d+1)/2—s
(47)@+D/2 T (s) gz:pQ " 1+AGT Q) 7
a = 2bos, a=3ferm, V = Vol (R%*!) of non-compact part

@ﬁ) = ?:1 ajn? a diag quadratic form, R; = aj_l/2 compactific radii

Cals) =
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® After some calculations,

s—H—ﬁ)

ﬁa( ) 47_‘_ (d—l—l)/QZ T F (_A(92_2a)l CQ,6,0(8+&Z - ?)T

for all radii equal to R, with I(7) = >"0_, n3,

(AP Cp(stal- 1)

V (s +1— 4
Cals) = - Z
(47)(d+1)/2 Rd+1-2s T (s)

where we use the notation (z(s) := (;5,(5)
e.g., the Epstein zeta function for the standard quadratic form

o -
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® After some calculations,

s—H—ﬁ)

ﬁa( ) 47_‘_ (d—l—l)/QZ T F (_A92_2a)l CQ,6,0(8+&Z B ?)T

for all radii equal to R, with I(7) = >"0_, n3,
4 (s +1 -4 2—20] d+1
Cals) = (A7) (@+1)/2 Rd+1—282 NT(s) (=AFTT) Cplstal———)

[=0

where we use the notation (z(s) := (;5,(5)
e.g., the Epstein zeta function for the standard quadratic form

® Rich pole structure: pole of Epstein zf at
s=p/2—ak+(d+1)/2 =D/2 — ak, combined with
poles of T', yields a rich pattern of singul for (,(s)

o -
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® After some calculations,

S—l_l_ M) A(92_2a [ l
ﬁa( 5) = (47) (d—H)/QZ 1T (s (= ) Solsta _T>T

for all radii equal to R, with I(7) = >"0_, n3,

@)

V Fs—kl—ﬂ)
Z(

d-+1
Cals) = il
(47)(d+1)/2 Rd+1-25 T (s)

(— NG~ 2O‘) (e (S—H)zl—?)

=0
where we use the notation (z(s) := (;5,(5)

e.g., the Epstein zeta function for the standard quadratic form

® Rich pole structure: pole of Epstein zf at
s=p/2—ak+(d+1)/2 =D/2 — ak, combined with
poles of T', yields a rich pattern of singul for (,(s)

® Classify the different possible cases according to the
L values of d and D = d + p + 1. We obtain, at s = 0: J
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( =
if D+#2a —

f For d = 2k \ .
if D=2a — (,(0)=finite

For d =2k —1 [

\

\

if D +£32a 4

If D= 2al |

y

\

y

\

finite,
0,

pole,

finite,

for | <k

for | > k

for | < k

for | > k

\

/

\

/

Ca(0> =0 T

—>  (4(0) = finite

—> (4(0) = pole

— Pole structure of the zeta function (,(s), at s = 0, according to the

different possible values of d and D (ﬂ means

o

of 2a)

-
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f For d = 2k X

For d =2k —1 <

\

\

if D +£32a 4

If D= 2al |

;

\

‘

\

( -
if D+#2a —
if D=2a = (,(0) = finite

finite,
0,

pole,

finite,

for | <k

for | > k

for | < k

for | > k

\

/

\

/

Ca(0> =0 T

—>  (4(0) = finite

—> (4(0) = pole

— Pole structure of the zeta function (,(s), at s = 0, according to the

different possible values of d and D (ﬂ means

— Explicit analytic continuation of (,(s), a
& specific pole structure

2.3,

of 2a)

-
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R S G Y o Bt (et V) BNNURIEAL < S
Cal®) = (27T)(d+1)/2f(3)§_:l! ['(s+al—(d+ 1)/2)(_2 Ao )lg(demj)
=

« [Wg/z ;s] al+(d+j+1) /2 T(s+al — (d+ 7 +1)/2)Cr(2s + 20l — d —

stal—(d+1)/2 —(s+al)/2—(d+j5+1)/4 d+j+1)/2—s—al
/P ()/p] S‘S‘n(J)/

n=1m;eZ

1 o\ (stal)/2—(d+5+1) /4
X (mz-Aj 1mj) K(g4j4+1)/2—s—al <27Tn\/ap ]m A )]

o -
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R S G Y o Bt (et V) BNNURIEAL < S
Cals) = (27T)(d+1)/2f(3)§_:l! [(s+al—(d+ 1)/2)(_2 Ao )l;}(demj)
_17

« [,,Ty/2 a " O HIHIORD (s pal — (d 4+ 1)/2)CR(25 +2al —d — j

stal—(d+1)/2 —(s+al)/2—(d+j5+1)/4 d+j+1)/2—s—al
/P ()/p] S‘S‘n(y)/

n=1m,ecZI

1 o\ (stal)/2—(d+5+1) /4
X (mz-Aj 1mj) K(atj+1)/2—s—al (27Tn\/ap ]mtA )]

p\D even odd

odd (1a) pole /finite (I > [y) (2a) pole/ pole
even (1b) double pole/ pole (I > 11,15) | (2b) pole / double pole (I > I5)

— General pole structure of (,(s), for the possible values of D and p
being odd or even. Magenta, type of behavior corresponding to
Llower values of [; behavior in blue corresponds to larger values of [ J
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Future Perspectives: Oper Regulariz
- Operator Regularization (OR) approach -

®» D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);
Phys Rev D35, 3854 (1987)

® Distinct advantage: it can be used with formally non-renormalizable
theories: R B Mann, L Tarasov, D G C McKeon and T Steele,
Nucl Phys B311, 630 (1989); A Y Shiekh, Can J Phys 74, 172 (1996)

o -
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Future Perspectives: Oper Regulariz
- Operator Regularization (OR) approach -

®» D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);
Phys Rev D35, 3854 (1987)

® Distinct advantage: it can be used with formally non-renormalizable
theories: R B Mann, L Tarasov, D G C McKeon and T Steele,
Nucl Phys B311, 630 (1989); A Y Shiekh, Can J Phys 74, 172 (1996)

® Divergences are not reabsorbed, each is removed and replaced
by an arbitrary factor

o -
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Future Perspectives: Oper Regulariz
- Operator Regularization (OR) approach -

® D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);
Phys Rev D35, 3854 (1987)

® Distinct advantage: it can be used with formally non-renormalizable
theories: R B Mann, L Tarasov, D G C McKeon and T Steele,
Nucl Phys B311, 630 (1989); A Y Shiekh, Can J Phys 74, 172 (1996)

® Divergences are not reabsorbed, each is removed and replaced
by an arbitrary factor

® OR does not cure the non-predictability problem of
non-renormalizability, but advantage that the initial Lagrangian
need not be extended with addition of extra terms

o -
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Future Perspectives: Oper Regulariz

-

Operator Regularization (OR) approach -

® D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);

Phys Rev D35, 3854 (1987)

Distinct advantage: it can be used with formally non-renormalizable
theories: R B Mann, L Tarasov, D G C McKeon and T Steele,
Nucl Phys B311, 630 (1989); A Y Shiekh, Can J Phys 74, 172 (1996)

Divergences are not reabsorbed, each is removed and replaced
by an arbitrary factor

OR does not cure the non-predictability problem of
non-renormalizability, but advantage that the initial Lagrangian
need not be extended with addition of extra terms

The OR scheme is governed by the identity:
d" n
H™" = Tim - [1 + (14 are+ ase® + ...+ ape”) = H™

e—0 dem

n!
a;’S are arbitrary, and it is enough that the degree of regularization
IS equal to the loop order, n
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® Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)

- .

o -
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® Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)

|7.9 Effect of OR: replace the divergent poles by arbitrary constants T
1

. N
en n

to yield the finite expression

H ™ =a,c_,+ -+ ajc_1+ ¢

o -
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® Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)

|7.D Effect of OR: replace the divergent poles by arbitrary constants T
1

. N
en n

to yield the finite expression

H ™ =a,c_,+ -+ ajc_1+ ¢

Generalization

o -
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® Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)

|7.D Effect of OR: replace the divergent poles by arbitrary constants T
1

. N
en n

to yield the finite expression

H ™ =a,c_,+ -+ ajc_1+ ¢

Generalization

® OR can be generalized to multiple operators, as in multi-loop cases

n

H7 ™ ... {7 zlimd— [1—|—(1—|—0416—|—04262—|—---—|—04n6”)

e—0 dem

en
> _' H—e—ml . H—e—mqn]
n.

o -
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® Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)

f’ Effect of OR: replace the divergent poles by arbitrary constants T
1

. N
en n

to yield the finite expression

H ™ =a,c_,+ -+ ajc_1+ ¢

Generalization

® OR can be generalized to multiple operators, as in multi-loop cases

n

H7 ™ ... {7 zlimd— [1—|—(1—|—0416—|—04262—|—---—|—04n6”)

e—0 dem

en
> _' H—e—ml . H—e—mqn]
n.

Further Extension

o -
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Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)

Effect of OR: replace the divergent poles by arbitrary constants T
1

. N
en n

to yield the finite expression

H ™ =a,c_,+ -+ ajc_1+ ¢

Generalization

OR can be generalized to multiple operators, as in multi-loop cases

n

H7 ™ ... {7 zlimd— [1—|—(1—|—0416—|—04262—|—---—|—04n6”)

e—0 dem

en
% _' H—e—ml . H—e—mqn]
n.

Further Extension

OR was first introduced in the context of the Schwinger approach,
which is known to be equivalent to the Feynman one J
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® OR of the logarithm in the Schwinger approach

a =t o () B

o -
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® OR of the logarithm in the Schwinger approach
. d™ En—l .
o mH__lﬂ%den(n! " ) -

® OR of the logarithm in the Feynman context

H — lim 2 (E H—G—m)

e—0 de™ n!

o -
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® OR of the logarithm in the Schwinger approach
. d™ En—l .
o mH:_lﬂ%den(n! " ) -

® OR of the logarithm in the Feynman context

H — lim 2 (E H—G—m)

e—0 de™ TL'

® The Schwinger form can be transformed into the Feynman one

(_1)m—1 dm
(m —1)! dH™

H™™ = In H

o -
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® OR of the logarithm in the Schwinger approach
. d™ En—l .
o mH:_lﬂ%den(n! " ) -

® OR of the logarithm in the Feynman context

H — lim 2 (E H—G—m)

e—0 de™ n!

® The Schwinger form can be transformed into the Feynman one

(_1)m—1 dm
(m —1)! dH™

H™™ = In H

® Equivalence with dimensional regularization in many cases

o -
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OR of the logarithm in the Schwinger approach
. d™ En—l .
mH:_lﬂ%den(n! " ) -

OR of the logarithm in the Feynman context

H-™ — lim & (E H—G—m)

e—0 de™ n!

The Schwinger form can be transformed into the Feynman one

(_1)m—1 dm
(m —1)! dH™

H™™ = In H

® Equivalence with dimensional regularization in many cases

® Not always, problems (main one, unitarity), may appear

A Rebhan, Phys Rev D39, 3101 (1989)
its naive application to obtain finite amplitudes breaks unitarity J
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® No symmetry-breaking regulating parameter is ever inserted
Into the initial Lagrangian
f L Culumovic, M Leblanc, R B Mann, D G C McKeon and T
T N Sherry, Phys Rev D41, 514 (1990)

actually use Bogoliubov’s recursion formula
to show how to construct a consistent OR operator

o -
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T N Sherry, Phys Rev D41, 514 (1990)

actually use Bogoliubov’s recursion formula
to show how to construct a consistent OR operator

® Unitarity is upheld by employing a generalized evaluator
consistently including lower-order guantum corrections
to the gquantities of interest
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actually use Bogoliubov’s recursion formula
to show how to construct a consistent OR operator

® Unitarity is upheld by employing a generalized evaluator
consistently including lower-order guantum corrections
to the gquantities of interest

® Unitarity requirements lead to unigue expressions for
guantum field theoretic quantities order by order in A
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No symmetry-breaking regulating parameter is ever inserted

Into the initial Lagrangian

L Culumovic, M Leblanc, R B Mann, D G C McKeon and T
T N Sherry, Phys Rev D41, 514 (1990)

actually use Bogoliubov’s recursion formula
to show how to construct a consistent OR operator

Unitarity is upheld by employing a generalized evaluator
consistently including lower-order guantum corrections
to the gquantities of interest

Unitarity requirements lead to unique expressions for
guantum field theoretic quantities order by order in A

Proven in many cases (®* at two-loop, etc) ... but
(to my knowledge) a universal proof is still missing

-
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No symmetry-breaking regulating parameter is ever inserted

Into the initial Lagrangian

L Culumovic, M Leblanc, R B Mann, D G C McKeon and T
T N Sherry, Phys Rev D41, 514 (1990)

actually use Bogoliubov’s recursion formula
to show how to construct a consistent OR operator

Unitarity is upheld by employing a generalized evaluator
consistently including lower-order guantum corrections
to the gquantities of interest

Unitarity requirements lead to unique expressions for
guantum field theoretic quantities order by order in A

Proven in many cases (®* at two-loop, etc) ... but
(to my knowledge) a universal proof is still missing

THANK YOU! J
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