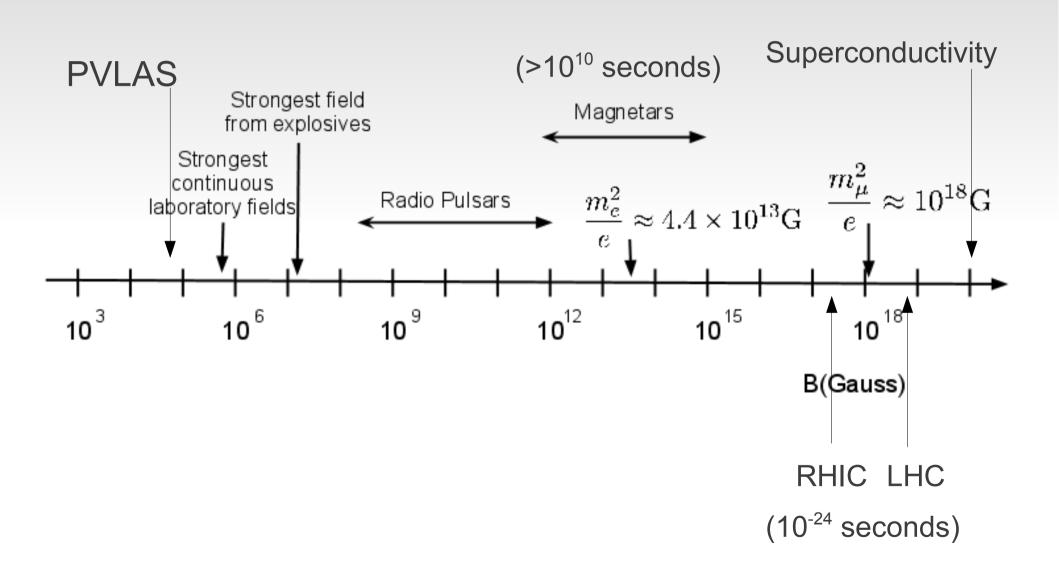


Image: christianjoore

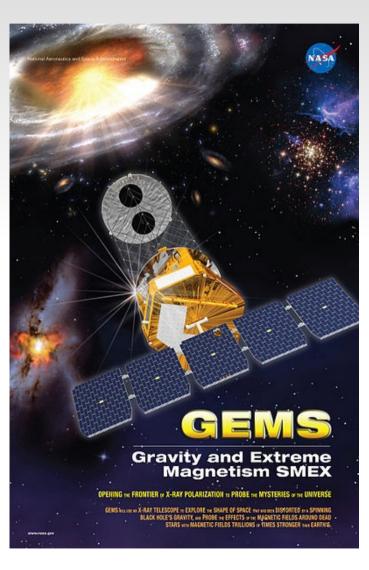
# Magnetic Flux Tubes in Neutron Stars

- Neutron Stars
  - Magnetic fields
  - Superconductivity
- Worldline numerics
  - Brief Overview
  - GPGPU parallelization
- Effective action for magnetic flux tubes
  - Wide tubes, constant field approx.
  - Narrow tubes

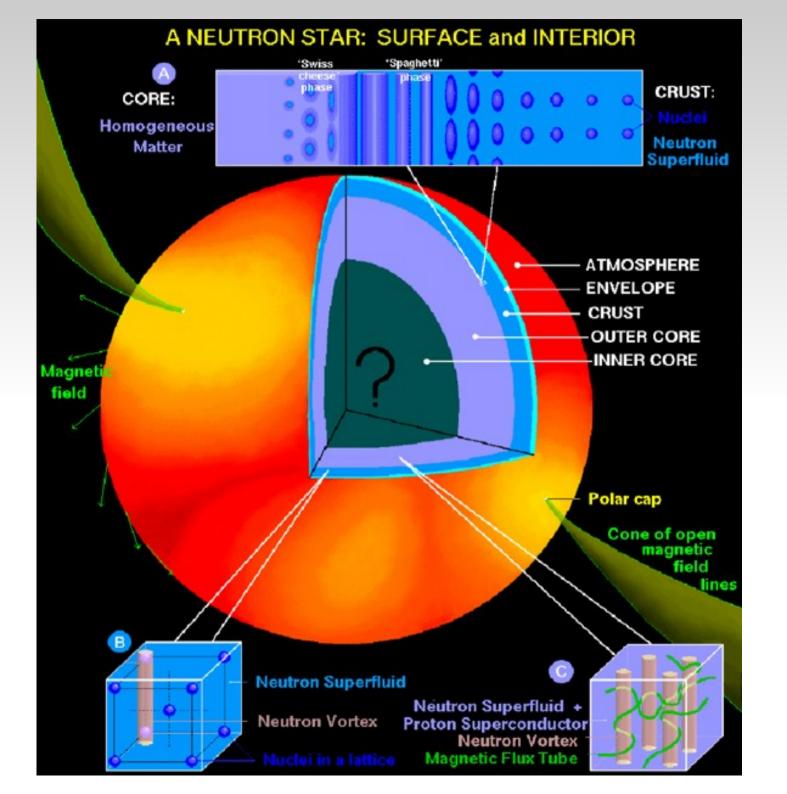
# **Magnetic Field Scales**



# **Gravity and Extreme Magnetism SMEX**



- Launch July 2014
- High angular resolution polarization measurements of neutron stars
- Probe of QED effects from neutron star magnetospheres



#### **Neutron Stars**

- Compact stars with magnetic fields ranging from 10<sup>8</sup>-10<sup>15</sup> Gauss
- Proton superconductivity and neutron superfluidity in the core
- Likely Type-II superconductivity with large magnetic fields
  - Flux tube lattice with mean field (~10<sup>15</sup> Gauss) exceeding the quantum critical field (4.4 x 10<sup>13</sup> Gauss)

# **Comparing Superconductors**

# <u>Laboratory</u> <u>superconductors</u>

- Magnetic field strength varies over a few microns
- Background fields are small
- QED corrections small

#### Neutron Stars

- Magnetic field strength varies over fraction of a Compton wavelength (10<sup>-6</sup> microns)
- Background fields are large
- QED corrections larger?

# 1-loop Effective Action

- Average quantum correction to the classical action at the 1 fermion loop level
- Must compute the fermion determinant

$$\Gamma[A_{\mu}^{0}] = \int d^{4}x \left(-\frac{1}{4}F_{\mu\nu}^{0}F^{0,\mu\nu}\right) - \frac{i\hbar}{2}\ln \operatorname{Det}\left[\frac{(\not p + e\cancel{A}^{0})^{2} - m^{2}}{\not p^{2} - m^{2}}\right]$$

#### **Worldline Numerics**

Express the Euclidean 1-loop effective action in the Schwinger proper time formalism

$$\frac{\Gamma_{\text{ferm}}^{(1)}}{TL_z} = \frac{1}{4\pi} \int_0^\infty \rho_{\text{cm}} \left[ \int_0^\infty \frac{dT}{T^3} e^{-m^2 T} \left\{ \langle W[A_\rho(\rho(T))] \rangle_{\rho_{\text{cm}}} - 1 - \frac{1}{3} (eB_{\text{cm}}T)^2 \right\} \right] d\rho$$

Approximate the weighted average over an infinite ensemble of closed, continuous paths with a sum over a finite ensemble of discrete loops

$$\langle \mathcal{O}[(\tau)] \rangle pprox \frac{1}{N_l} \sum_{i=1}^{N_l} \mathcal{O}[(\tau)]$$

#### **GPU Worldlines**

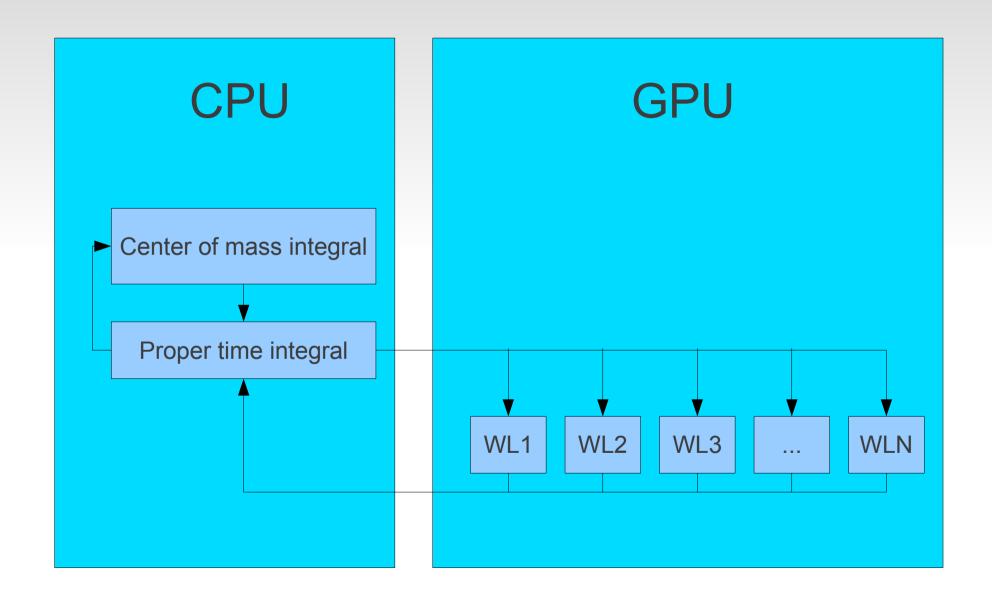
- The Worldline technique is embarrassingly parallel
- GPUs support 1000s/10000s of parallel threads with very little overhead
- Ideal for this application
  - Very large number of lightweight threads



#### **GPU Worldlines**

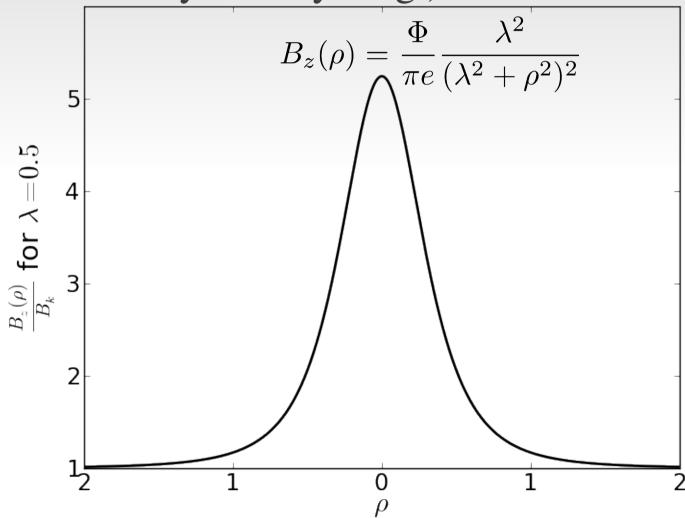
- e.g.) <Wilson Loop> w/ 5000 loops
  - 4.8s on serial MATLAB
  - 0.0013s on CUDA (Nvidia GPU language)
- Speedup of 3600x
- ~1200€ Nvidia Tesla C1060
  - 30,720 simultaneous parallel threads
  - Power ~ 1-2 CPUs

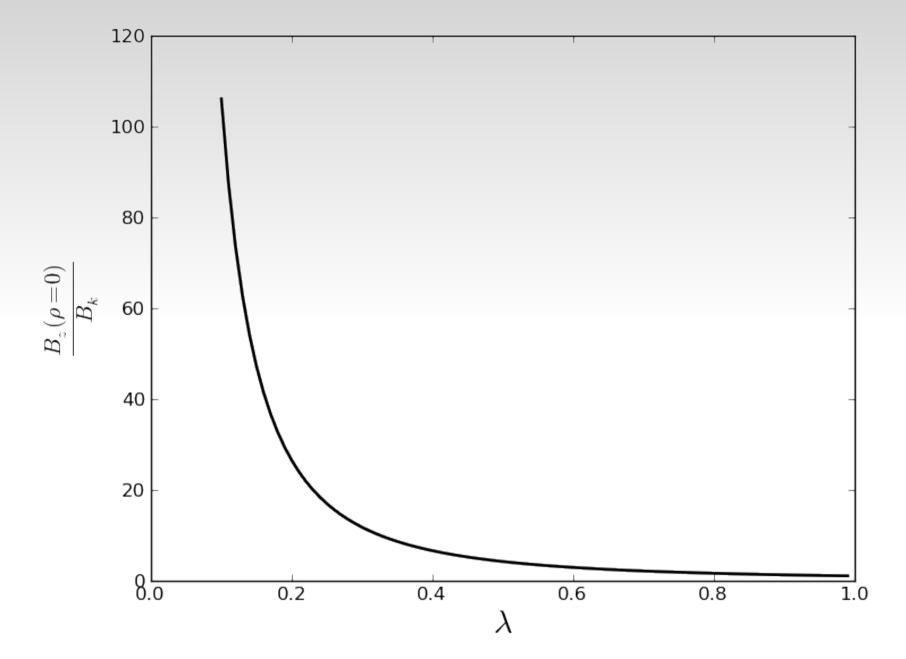
# **Co-processing Worldlines**



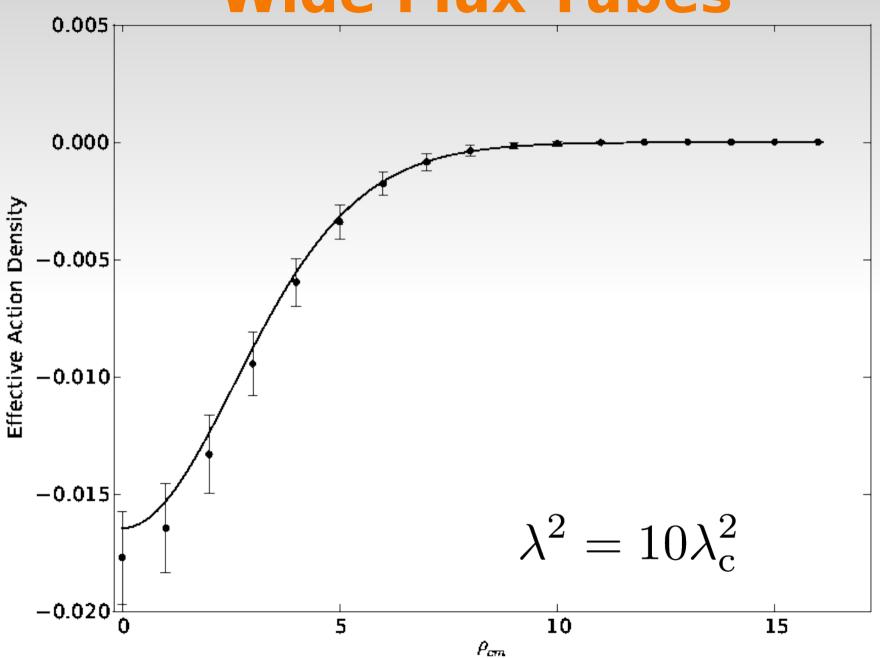
#### Flux Tube Model

Cylindrical Symmetry. e.g.)

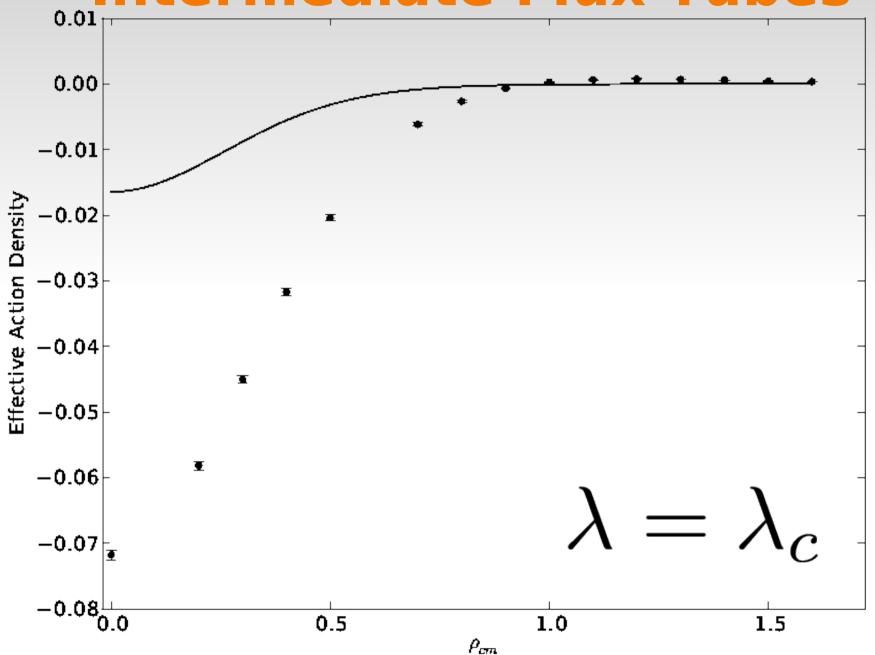




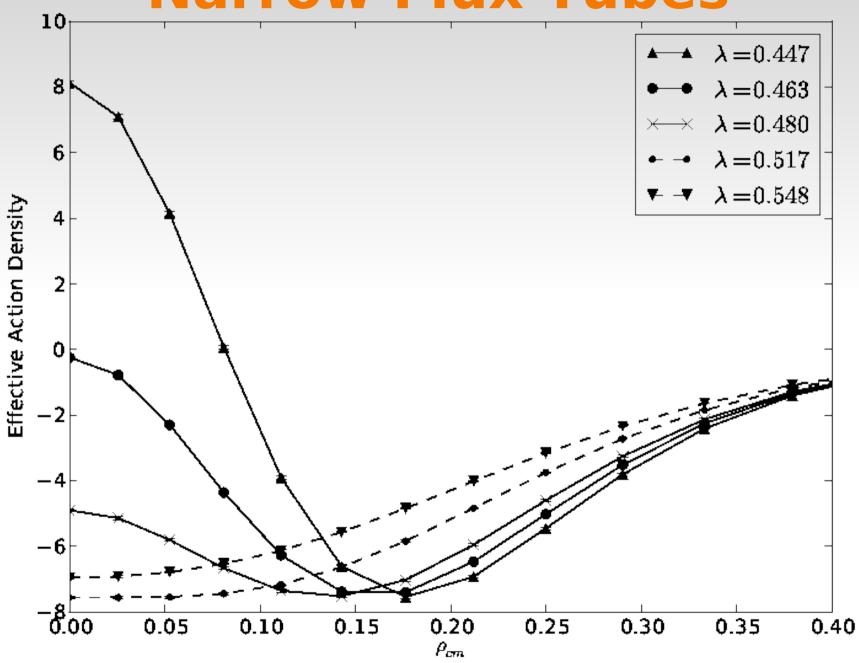
#### **Wide Flux Tubes**



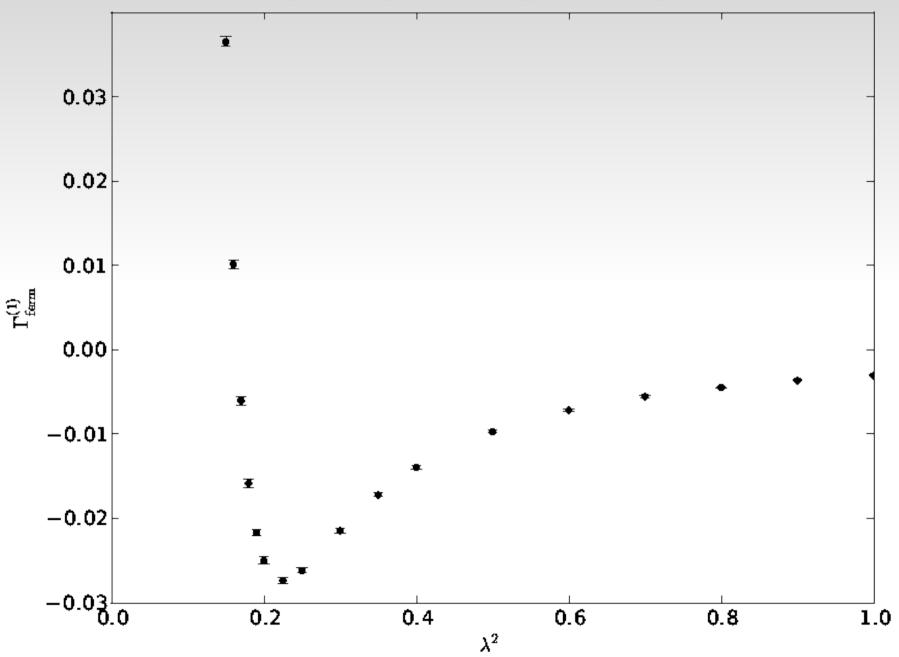
### **Intermediate Flux Tubes**



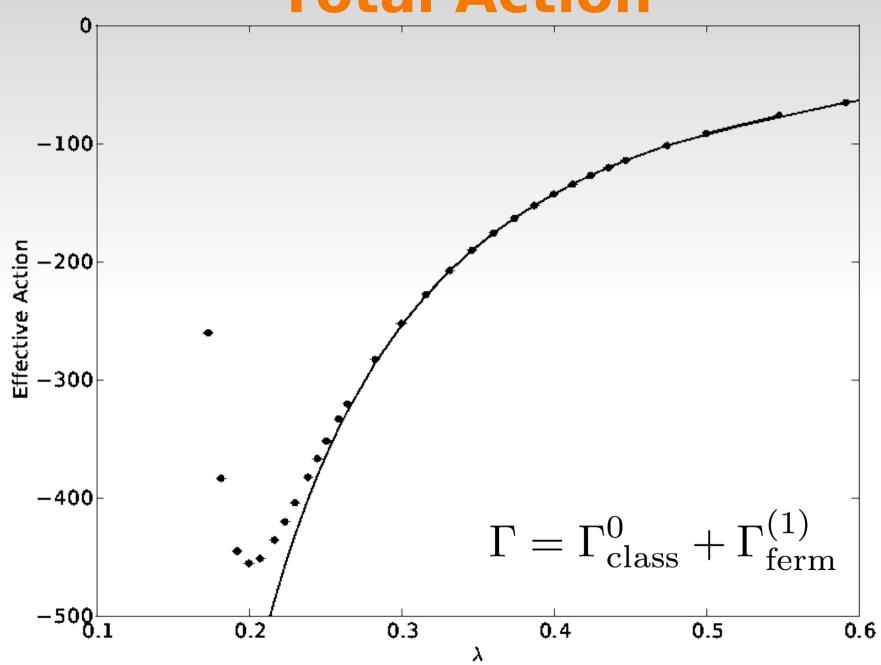
#### **Narrow Flux Tubes**



#### **The Fermion Term**



### **Total Action**



# **Implications**

- Quantum effects are large contribution to the action
- Instanton-like effect
  - Tunnelling to narrow flux tubes?

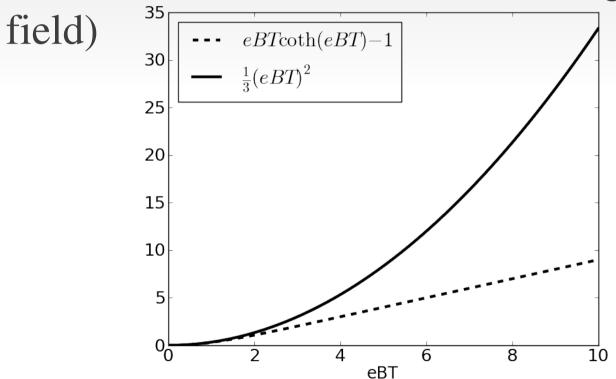
#### **Notes**

- Effect is robust to changes in profile shape: confirmed also for Gaussian profiles
- Effect occurs for both spinor and scalar electrons
- Bordag & Kirsten (1998)
  - Homogeneous Step-Function profile
  - "From this it is clear that the complete energy, remaining a monotone decreasing function of the radius, deviates only slighly from the classical energy for all values of the radius R except for very small ones." (i.e.  $\lambda = 10^{-1122}$ )

# Signs and Locality

$$(\langle W \rangle - 1) - \frac{(eB_{\rm cm}T)^2}{3}$$

• Negative 1-loop contribution implies the local counter-term (T=0) is dominant (e.g. Constant



 Positive 1-loop contribution implies non-local contributions are dominant

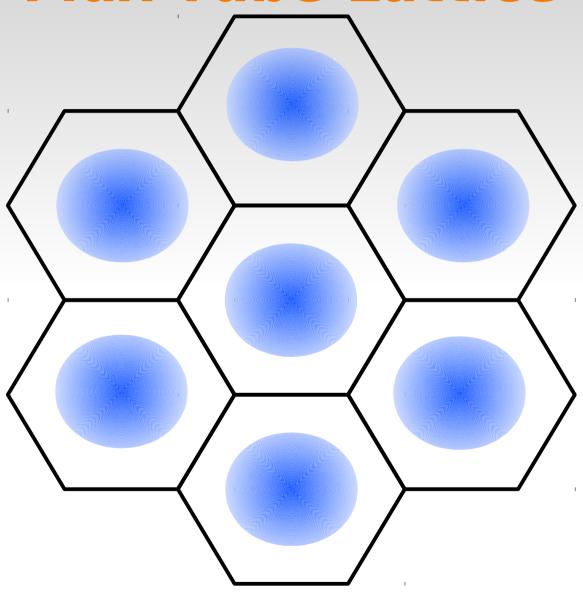
# **Open Questions**

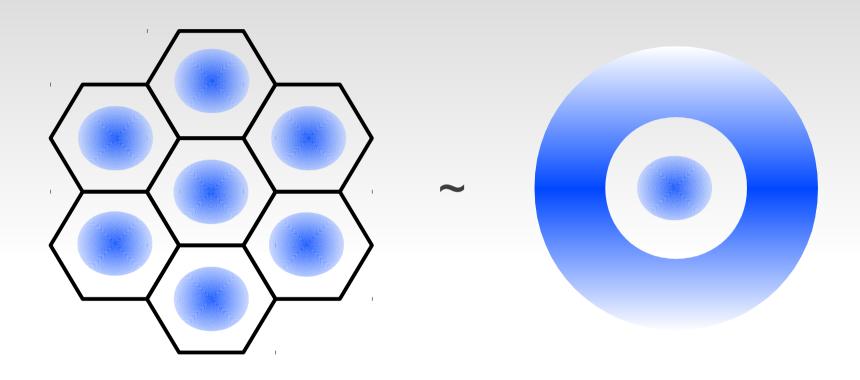
- Worldline Method lends itself to arbitrary field configurations
  - Perform calculation for step-function flux tube
  - Perform calculation for a flux tube lattice
- What other physics is important for narrow flux tubes
  - 2-loop EA is small for constant fields
  - Worldline method can be expanded to include 2-loop effects
  - Other standard model fields

# Summary

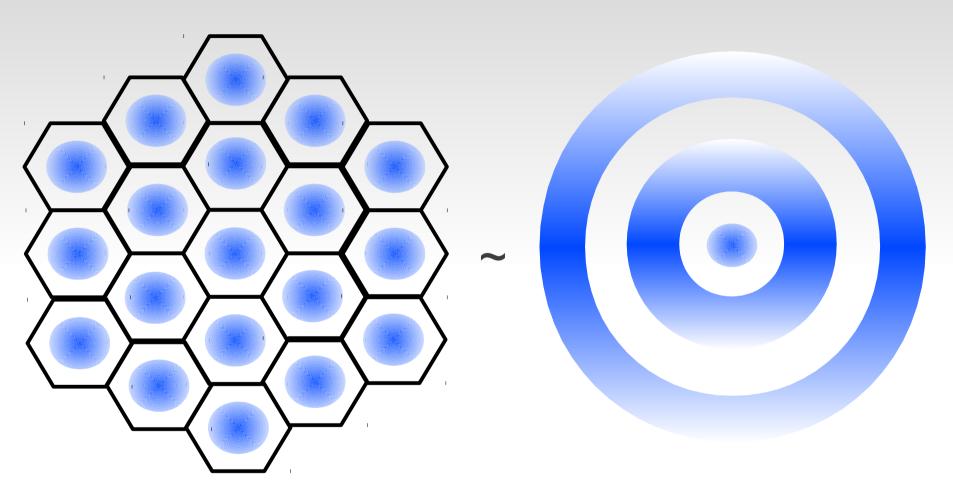
- Neutron Stars are a great arena for exploring vacuum effects in large magnetic fields
- GPU Worldline numerics can quickly calculate effective actions of arbitrary field configurations
- Quantum term can exceed the classical action due to strong non-local effects in rapidly changing fields
- Work still to be done on understanding these results

- Nature is unlikely to squeeze an isolated flux tube to such small sizes
- In a lattice, flux tubes can't expand to infinity
  - Strong uniform field is the limiting case
- Is it possible for flux tubes to collapse in a strong lattice?





Consider the effective action per cell



Consider the effective action per cell

