

Image: christianjoore

Magnetic Flux Tubes in Neutron Stars

- Neutron Stars
 - Magnetic fields
 - Superconductivity
- Worldline numerics
 - Brief Overview
 - GPGPU parallelization
- Effective action for magnetic flux tubes
 - Wide tubes, constant field approx.
 - Narrow tubes

Magnetic Field Scales

Gravity and Extreme Magnetism SMEX

- Launch July 2014
- High angular resolution polarization measurements of neutron stars
- Probe of QED effects from neutron star magnetospheres

Neutron Stars

- Compact stars with magnetic fields ranging from 10⁸-10¹⁵ Gauss
- Proton superconductivity and neutron superfluidity in the core
- Likely Type-II superconductivity with large magnetic fields
 - Flux tube lattice with mean field (~10¹⁵ Gauss) exceeding the quantum critical field (4.4 x 10¹³ Gauss)

Comparing Superconductors

<u>Laboratory</u> <u>superconductors</u>

- Magnetic field strength varies over a few microns
- Background fields are small
- QED corrections small

Neutron Stars

- Magnetic field strength varies over fraction of a Compton wavelength (10⁻⁶ microns)
- Background fields are large
- QED corrections larger?

1-loop Effective Action

- Average quantum correction to the classical action at the 1 fermion loop level
- Must compute the fermion determinant

$$\Gamma[A_{\mu}^{0}] = \int d^{4}x \left(-\frac{1}{4}F_{\mu\nu}^{0}F^{0,\mu\nu}\right) - \frac{i\hbar}{2}\ln \operatorname{Det}\left[\frac{(\not p + e\cancel{A}^{0})^{2} - m^{2}}{\not p^{2} - m^{2}}\right]$$

Worldline Numerics

Express the Euclidean 1-loop effective action in the Schwinger proper time formalism

$$\frac{\Gamma_{\text{ferm}}^{(1)}}{TL_z} = \frac{1}{4\pi} \int_0^\infty \rho_{\text{cm}} \left[\int_0^\infty \frac{dT}{T^3} e^{-m^2 T} \left\{ \langle W[A_\rho(\rho(T))] \rangle_{\rho_{\text{cm}}} - 1 - \frac{1}{3} (eB_{\text{cm}}T)^2 \right\} \right] d\rho$$

Approximate the weighted average over an infinite ensemble of closed, continuous paths with a sum over a finite ensemble of discrete loops

$$\langle \mathcal{O}[(\tau)] \rangle pprox \frac{1}{N_l} \sum_{i=1}^{N_l} \mathcal{O}[(\tau)]$$

GPU Worldlines

- The Worldline technique is embarrassingly parallel
- GPUs support 1000s/10000s of parallel threads with very little overhead
- Ideal for this application
 - Very large number of lightweight threads

GPU Worldlines

- e.g.) <Wilson Loop> w/ 5000 loops
 - 4.8s on serial MATLAB
 - 0.0013s on CUDA (Nvidia GPU language)
- Speedup of 3600x
- ~1200€ Nvidia Tesla C1060
 - 30,720 simultaneous parallel threads
 - Power ~ 1-2 CPUs

Co-processing Worldlines

Flux Tube Model

Cylindrical Symmetry. e.g.)

Wide Flux Tubes

Intermediate Flux Tubes

Narrow Flux Tubes

The Fermion Term

Total Action

Implications

- Quantum effects are large contribution to the action
- Instanton-like effect
 - Tunnelling to narrow flux tubes?

Notes

- Effect is robust to changes in profile shape: confirmed also for Gaussian profiles
- Effect occurs for both spinor and scalar electrons
- Bordag & Kirsten (1998)
 - Homogeneous Step-Function profile
 - "From this it is clear that the complete energy, remaining a monotone decreasing function of the radius, deviates only slighly from the classical energy for all values of the radius R except for very small ones." (i.e. $\lambda = 10^{-1122}$)

Signs and Locality

$$(\langle W \rangle - 1) - \frac{(eB_{\rm cm}T)^2}{3}$$

• Negative 1-loop contribution implies the local counter-term (T=0) is dominant (e.g. Constant

 Positive 1-loop contribution implies non-local contributions are dominant

Open Questions

- Worldline Method lends itself to arbitrary field configurations
 - Perform calculation for step-function flux tube
 - Perform calculation for a flux tube lattice
- What other physics is important for narrow flux tubes
 - 2-loop EA is small for constant fields
 - Worldline method can be expanded to include 2-loop effects
 - Other standard model fields

Summary

- Neutron Stars are a great arena for exploring vacuum effects in large magnetic fields
- GPU Worldline numerics can quickly calculate effective actions of arbitrary field configurations
- Quantum term can exceed the classical action due to strong non-local effects in rapidly changing fields
- Work still to be done on understanding these results

- Nature is unlikely to squeeze an isolated flux tube to such small sizes
- In a lattice, flux tubes can't expand to infinity
 - Strong uniform field is the limiting case
- Is it possible for flux tubes to collapse in a strong lattice?

Consider the effective action per cell

Consider the effective action per cell

