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1-Introduction

* Two types of parameters
1-Fixed by physical arguments (uniqueness)
2-Environamental (diversity)
It is difficult to distinguish!
 Which is the case for
1-The Standard Model (Quantum ,G, =0) 3
2-The Cosmological Model (class., h=0) -
 Both incomplete. A candidate: String Theory
* An observable for both: The angular stone
Vacuum energy The CC
QFT GR

~

String Theory!



The CC problem (the greatest crisis)

Theoretical framework to address the problem
i) Eternal Inflation (generic)
- Relaxation of vacuum energy
-Coleman-de Luccia instanton

ii) The string landscape
-10=(3+1)+6  CY, 10~% vacua

i) +ii)— Multiverse to solve the CC problem
(environmentally)

Other ways to attack the CC problem:

1- Dynamical (minimum E) (See Nobbenhuis,S.)

2- Entropic (maximum S)

3- Symmetric

4- Environmental



The BP Landscape (generic)

-A large dimensional (J) lattice
-We have a large number of vacua
with the desired properties
-By relaxation procedure an
environmental resolution
of the CC problem
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Statistical Description

Requires a counting procedure
The naive way to count nodes (BP) has limited validity

We make an exact count N(h) depending on a ‘t Hooft-like
parameter h=1J g?

Two asymptotic regimes are obtained
h-> 0 (BP)
h-> 0o (hew)

Using the exact result we obtain a distribution of occupied
fluxes

a*(h)zjoccup/'jtot
Jsmall a*(h)=1
Jlarge a*(h)=1/h

If the moduli are stabilized by fluxes we have a potential
problem. We study a toy model (work in progress)
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1. Counting in the landscape
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An analogy

* 1+1 constant electric field: capacitor

The production of a pair (e* e*),an S° reduces the

electric field
Eo =
>1 .

=P E<Eo.e+ _

+ + + + + + +

SO (1+1)

*M-theory/ 7 dimensional manifold -> 4 dim= 3+1 The
reduction of the CC is due to the formation of an S?
sphere (two legs of the M5 brane, the other three
wrapping a 3-cycle of the 7-dim part)



The discretum

* Fluxes quantized => Finely spaced levels=> A#0
* Chances for non environmental mechanisms:

i) Entropic (A. Linde). Use the event horizon +
holographic principle

S=# of d.o.f’s = Area Hor. /4 = \'1
P(A)=exp S=exp A
‘In the continuum P(A) not well behaved

-In the discretum the smallest value A, is strongly
peaked

-The next to the smallest P(A,) = P(A\;) exp (—A\,)
ii) Symmetric. Broken by quantum effects (A=A;)



The simplest count $+a,

e BP count: Divide volumes

 Ball: B/(R,) in flux space (A, A< A\=1) % Yo %
* Voronoi cell Q
J -0,
vol B/ (Ry) = H—; vol 71 Ry = \/:’2{;’1 — Ag) '
1 o
vol @) = f:] qi vol 771 = 2>
()
: J
0 (r) — vol B .F”
| vol )

*BP establish the range of validity for its count:
q; < R/ JV/2 for all charges



The large J limit

* In this limit strange things happens
* Whatever the charges, if J>J_:
vol Q> vol B(R)=1/T (J/2)
* This behavior is controlled by the dimensionless ‘t Hooft-like
parameter h=J (q/ R,)? where Ry*= 2|A,| and g’= vol Q. This
strange behavior occurs when:

2
% > 2me > 17
* Assuming a common charge q; = q there is a value where the
semi-diagonal of the Voronoi cell exceeds the radius of the
sphere
d=qJY2/2>R, => h>4
The region near the corner is devoid of states (no isotropy)

We need an exact formula valid for any h




The exact count

e “Brute force”

Q(r)=[{reL: A <7} 1 ifter
= 3" xo (1A "o iteg
AEL 50
*The density of statesis  w;(r) = : “j“ )
I
using xio.r (1A = 8(|All) — e(||A]]* — )
we obtain wi(r) Zﬁ r? —||AlI%)

Substituting the delta :
5 5(r* — ||AlI7) = l_ /:-r‘””'! M) g
representation 2mi [,
vy={c+it:TER, >0}




Some manipulation

wylr) = % /. e {Z r:_‘*”“g] ds

Acl

2r : .
wylr) = o e Z Z H SH }
nE ey T:.]-;E njef j=1
ET _51"2 —-a-;r 'I".!-
=5/ € Iy -
An old result! | ;J'J' n; €L
— 2—; i e H T';][qu-z }] ds.
I _-]:]
§ . _en —a . .
Hs) = Z e T =65(0;e7) A particular case of the Jacobi
neZ theta function

5'3[3; q} _ Z ffﬂgﬁgmnz

ned,



Two asymptotic regimes

* S->0; 9(s)->(m/s)¥2: We reproduces the BP count

An Inverse Laplace

& )
wi(r) = e H ds
g\, 9 [ ‘\J qj Transform

| i=1

J J
(r) TT 2r [ 2 s Iz Il
Wiylr) ~ - | £ — =
/ volQ 2mi ). s3 [(Z) volQ

I._l:| .

el

g
9 1
h < = ~0.736 h = 29 logg= j;lﬂgq;

e




Two asymptotic regimes
* J(s) 2= 1+ 2 related with the previous

L1

one by Poisson summation formula

,!__Jll:-,_ﬁ.:l — Z[ — ‘lv'l ﬁ Z! — '1v.' s 1/ -

— rn
T & Ly

*We cannot solve the saddle point equation in
closed form unless g, =q (i=1,...J)

Valid for | — =1+
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3-Typical number of occupied fluxes
* Take a shell of width € = R_ —R with e<<q; but
with a large number of nodes N_>> 1
* We can count the number of states on the
shell, e.g. the WW: R=R, = (2|A,])¥?
R. = \/2(A. = Ao) ~ Ro + %

*The with of the shell is:e=A_ /R,
O<SASA =A,,
*The number of states in the anthropic shell is

SVWW — R AWW
0




Fraction of occupied fluxes

* i) Take a state randomly on the shell

ii) Find the typical # of non-vanishing components
This numberisJ forJ=1,2,...
Q: What happens for large J ?

 We compute the fraction of states in the shell having a
fraction a of turned on fluxes

e Selecting the state at random with unif. prob. => a a discrete
random variable [0,1]

* Assuming equal charges

2R J\ 1 _
P — _- L0(s,2) g :
(@) wi(R) (ﬂ,_f) i [c with

o(s, ) = sR? + o] log [I}(r’fﬂ) — 1]




Results on # of fluxes #0

P (a) Gaussian around its peak o with standard deviation 1/
J1/2

J a’(h)= typical # of occupied fluxes on the shell essentially
also on the whole lattice

Sampling the typical number of non-vanishing fluxes
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*The eff. dimension of the lattice
isle=Ja.
o *When o # 1 : a “fractal”
N, lattice!
g *For large h, o'~
- ge h, a’=1/h
}%ﬁ
I I I M |



4- BP vs KKLT

e A potential problem (to be tested)

i) Consider a landscape with a large fraction of moduli
stabilized by fluxes

ii) Use this landscape to address anthropically the CC
problem

BP vs. KKLT

landscape

Large J to solve the Large fraction of
CC problem. moduli stab. by fluxes
INY JT

We need fine-tuning We need fine-tuning




A Toy Model (caution! Work in progress)
 The simplest case to

i) count fluxes in the landscape

ii) study moduli stabilization by fluxes
e 4D Einstein-Maxwell 4=2(1+1) (cosmological)

(6D see A. Vilenkin) + 2 (k=S?,vol=V)

Only one modulus ! The S% Volume

ds? = e2¢lz:t) (—t;h’2 + {11.1"2) + e2¥(zw) ({1:2 1+ {1“,2)

*A\ (4D) > 0 (dS)

* Monopole: F = v 2= 2 A dw

V =vol K = / 2= 42 A dw / F=0Q
K K )



The Einstein- Liouville equations

- ()
| [ —2¢ Y
D — Dpp )E 7 = A -
( tt . ) (1 ) \ —
o () curvatures
_E-L _L'&l_ | ( L ) _ I‘_}L /

- (il*::‘zz _I_ _IT:J_th) e T == | ‘[F

 g=0and K constant and Gauss-Bonnet =>

1 KV o Am
. Ke¥dzdw=2 = —=2 = V=—
2T Jx 2 K

*An algebraic relation for K with two branches

~ N\ 2 S TN 2
Q QK 2 3\ 2
KN =A -~ = A — . () max : @




A maximum charge
;),,,

2

JA

¢ IfQ>Q,,,, Kis complex, the compact part collapses => a
singularity
* Two branches also forthe 2DCC AL = 2\ — K-

(ﬁ] max —

€
*The Dirac Q condition: Q € =2nn => Nypax = {J
VA
*Our landscape has 0< |[n|< n_,
*n=0 only one branch K=A=A. Unstable, not supported by the
em field
*If A\<0, K.<0and only the K, branch with A_=2 A - K, <0 (always)

n not restricted



Modulus stabilization ( a minimal charge)

11152 — Egétt‘r}_iﬂt"ﬂ (—{jlfz T {1;1‘2) Non CompaCtl

. ) ) ) Exchange V
_|_ € t,u-'{,-;,'?_{-jl—l— f{f—,;l‘} ({1: _|_ [.1 (L ) Compact
. - - 22
¢ Stab|||zat|0n Cond|t|0n => '[:1,) = If;?min — T{:t,l'lli].'{

otherwise decompactification
* All states in the dS, branch

with n <n_. are unstable (including n=0)
 Number of stable states in this one-flux landscape
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5- Conclusions

We have developed an exact way to count on a BP
landscape

Two asymptotic regimes, controlled by a ‘t Hooft- like
parameter (h), have been studied

We have obtained the typical fraction of active fluxes
a’(h). For large h, a’= 1/h

We speculate on the tension between a large J (to
solve the CC problem) and the previous result

We have begun to explore the landscape of a toy
model. Preliminary results for the one-flux case are
presented

The extension to a large number of moduli using a
g>0 surface is under scrutiny
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A richer landscape (g>0)

* A complex Riemann curve
yz = Fr(u)
Pr(u) = u® +ap_ouF Tt 4o+ aqu + ag

The genus is related with the polynomial degree by
k=2g+2
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