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1-Introduction
• Two types of parameters

1-Fixed by physical arguments (uniqueness)
2-Environamental (diversity)

It is difficult to distinguish!
• Which is the case for

1-The Standard Model (Quantum ,GN =0)
2-The Cosmological Model (class., h=0)

• Both incomplete. A candidate: String Theory
• An observable for both: The angular stone

Vacuum energy The CC
QFT GR

String Theory!

?



The CC problem (the greatest crisis)

Theoretical framework to address the problem

i) Eternal Inflation (generic)

- Relaxation of vacuum energy

-Coleman-de Luccia instanton

ii) The string landscape

-10=(3+1)+6     CY3 10500 vacua

i) + ii)       Multiverse to solve the CC problem 
(environmentally)

Other ways to attack the CC problem:

1- Dynamical (minimum E)

2- Entropic (maximum S)

3- Symmetric

4- Environmental

(See Nobbenhuis,S.)



The BP Landscape (generic)

-A large dimensional (J) lattice

-We have a large number of vacua

with the desired properties

-By relaxation procedure an 

environmental resolution 

of the CC problem

WEINBERG WINDOW

RELAXATION



Statistical Description
• Requires a counting procedure
• The naive way to count nodes (BP) has limited validity
• We make an exact count N(h) depending on a ‘t Hooft-like 

parameter h= J q2

• Two asymptotic regimes are obtained
h-> 0 (BP)
h->      (new)

• Using the exact result we obtain a distribution of occupied 
fluxes

α*(h)=Joccup / J tot

J small      α*(h) ≈ 1
J large α*(h) ≈ 1 /h

• If the moduli are  stabilized by fluxes we have a potential 
problem.  We study a toy model (work in progress)
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1. Counting in the landscape

Λ>0

Λ<0
 Λ 0 ≈ -1           (8πGN= h =c =1 ) 
 (n1,… nJ)   integers
 { qi } i=1,…J     J  quantized fluxes

( Λ≈ - E0 +  ½  |E| 2 )



An analogy

• 1+1 constant electric field: capacitor

The production of a pair (e+ e- ),an S0, reduces the 
electric field

•M-theory/ 7 dimensional manifold -> 4 dim= 3+1 The 
reduction of the CC is due to the formation of an S2

sphere (two legs of the M5 brane, the other three 
wrapping a 3-cycle of the 7-dim part) 
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e- e+E < E0

S0 (1+1)



The discretum

• Fluxes quantized => Finely spaced levels=> Λ≠0

• Chances for non environmental mechanisms:

i) Entropic (A. Linde). Use the event horizon + 
holographic principle 

S≈# of d.o.f.’s = Area Hor. /4 ≈ Λ-1

P(Λ)≈exp S≈exp Λ-1

-In the continuum P(Λ) not well behaved 

-In the discretum the smallest value Λ0 is strongly  
peaked

-The next to the smallest P(Λ1) ≈ P(Λ0) exp (–Λ0)

ii) Symmetric. Broken by quantum effects  (Λ = Λ0 )



The simplest count

• BP count: Divide volumes 

• Ball: BJ(RΛ) in flux space (Λ0≤ Λ≤ Λ1≈1)

• Voronoi cell Q 

•BP establish the range of validity for its count:
qi < R/ J1/2 ,for all charges

+q1-q1 0

+q2

-q2



The large J limit
• In this limit strange things happens
• Whatever the charges, if J>Jc :

vol Q > vol BJ(R) ≈ 1/ Γ (J/2) 
• This behavior is controlled by the dimensionless ‘t Hooft-like 

parameter h=J (q/ R0)2 where R0
2= 2|Λ0| and qJ= vol Q. This 

strange behavior occurs when:

• Assuming a common charge qi = q there is a value where the 
semi-diagonal of the Voronoi cell exceeds the radius of the 
sphere  

d= q J1/2 / 2 > R0 =>  h > 4 
The region near the corner is devoid of states (no isotropy)

We need an exact formula valid for any h



The exact count

• “Brute force”

•The density of states is

using

we obtain

Substituting the delta
representation



Some manipulation

An old result!

A particular case of the Jacobi
theta function



Two asymptotic regimes

• S -> 0;  ϑ (s) -> ( π/s)1/2: We reproduces the BP count

The validity of the BP count is given by

An Inverse Laplace 
Transform



Two asymptotic regimes
• related with the previous 

one by Poisson summation formula

•We cannot solve  the saddle point equation in 
closed form unless qi =q (i=1,…J)

Valid for





3-Typical number of occupied fluxes

• Take a shell of width ε = Rε –R with ε<<qi but 
with a large number of nodes Nε >> 1

• We can count the number of states on the 
shell, e.g. the WW:  R= R0 = (2|Λ0|)1/2

•The with of the shell is: ε = Λε / R0

0 ≤ Λ ≤ Λε = Λww

•The number of states in the anthropic shell is



Fraction of occupied fluxes
• i) Take a state randomly on the shell

ii) Find the typical # of non-vanishing components

This number is J for J= 1,2,…

Q: What happens for large J ?

• We compute the fraction of states in the shell having a 
fraction α of turned on fluxes

• Selecting the state at random with unif. prob. => α a discrete 
random variable [0,1]

• Assuming equal charges

with



Results on # of fluxes ≠ 0
• P (α) Gaussian around its peak α* with standard deviation 1/ 

J1/2

• J α*(h)= typical # of occupied fluxes on the shell essentially 
also on the  whole lattice

•The eff. dimension of the lattice
is Jeff = J α* .
•When α* ≠ 1 : a “fractal” 

lattice!
•For large h, α*≈ 1/h



4- BP vs KKLT
• A potential problem (to be tested)

i) Consider a landscape with a large fraction of moduli 
stabilized by fluxes
ii) Use this landscape to address anthropically the CC 
problem

BP vs. KKLT
landscape

Large J to solve the 
CC problem.

Large fraction of
moduli stab. by fluxes

J↓ J↑

We need fine-tuning We need fine-tuning



A Toy Model (caution! Work in progress)
• The simplest case to

i) count fluxes in the landscape

ii) study moduli stabilization by fluxes 

• 4D Einstein-Maxwell 4=2(1+1) (cosmological)

(6D see A. Vilenkin) + 2 (κ=S2,vol=V) 

Only one modulus ! The S2 Volume

•Λ (4D) > 0 (dS)
• Monopole:



The Einstein- Liouville equations

• g=0 and K constant and Gauss-Bonnet =>

Gaussian 
curvatures

•An algebraic relation for K with two branches



A maximum charge

• If Q> Qmax , K is complex, the compact part collapses => a 
singularity 

• Two branches also for the 2D CC

•The Dirac Q condition: Q e =2πn => 

•Our landscape has  0 ≤ |n|≤  nmax

•n=0 only one branch K=λ=Λ. Unstable, not supported by the 
em field

•If Λ < 0, K- < 0 and only the K+ branch with  λ- = 2 Λ - K+ < 0 (always)                  
n not restricted



Modulus  stabilization ( a minimal charge)

• Stabilization condition  => 

otherwise  decompactification

• All states in the dS2 branch 

with n < nmin are unstable (including n=0)

• Number of stable states in this one-flux landscape

Non compact
Exchange V

Compact



Stable
Unstable

Ueff’’( ξ=0) = 2 K -3 Λ > 0



Qmax = 50.265 => N =53 (50 AdS, 3 dS)

dS
AdS



5- Conclusions
1. We have developed an exact way to count on a BP 

landscape

2. Two asymptotic regimes, controlled by a ‘t Hooft- like 
parameter (h), have been studied

3. We have obtained the typical fraction of active fluxes 
α*(h). For large h, α*≈ 1/h

4. We speculate on the tension between a large J (to 
solve the CC problem) and the previous result

5. We have begun to explore the landscape of a toy 
model. Preliminary results for the one-flux case are 
presented

6. The extension to a large number of moduli using a 
g>0 surface is under scrutiny
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A richer landscape (g>0)

• A complex Riemann curve

The genus is related with the polynomial degree by
k=2g+2 
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