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Progress in physics was usually related to the introduction of new
symmetries.

Recent examples are given by gauge theories. QED may be formulated
in the Coulomb gauge, however much more transparent formulation is
presented by the quantization in a manifestly covariant gauge. Yang-
Mills theory became really popular only after its formulation in the
Lorentz covariant terms and explicit proof of its renormalizability.
The gauge invariance of the Higgs model allows to give a manifestly
renormalizable theory describing a massive gauge theory.

In this talk I wish to make a propaganda for a new class of symmetries,
which were introduced in my paper rather long ago (A.A.S., 1991),
but recently were applied successfully to the nonperturbative quantization
of non-Abelian gauge theories.



Equivalence theorems: canonical transformations,
point transformations ϕ = ϕ′+ f(ϕ′)

More general transformations:

ϕ =
∂nϕ′

∂tn
+ f(

∂n−1ϕ′

∂tn−1
, . . .

∂ϕ′

∂t
) = f̃(ϕ′) (1)

The spectrum is changed. What about the unitarity?



Path integral representation for the scattering matrix

S =
∫

exp{i
∫
L(ϕ)dx}dµ(ϕ); limt→±∞ϕ(x) = ϕout,in(x) (2)

If the change (1) does not change the asymptotic conditions, then the
only effect of such transformation is the appearance of a nontrivial
Jacobian

L(ϕ)→ L̃(ϕ′) = L[ϕ(ϕ′)] + c̄a
δϕa

δϕ′b
cb (3)

For all new excitations one should take the vacuum boundary conditions.
Unitarity?



The new Lagrangian is invariant with respect to
the supertransformations

δϕ′a = caε

δca = 0; δc̄a =
δL

δϕa
(ϕ′)ε (4)

On mass shell these transformations are nilpotent and generate a
conserved charge Q. In this case there exists an invariant subspace of
states annihilated by Q, which has a semidefinite norm. (A.A.S.,1991).
For asymptotic space this condition reduces to

Q0|φ >as= 0 (5)

The scattering matrix is unitary in the subspace which contains only
excitations of the original theory. However the theories described by
the L and the L̃ are different, and only expectation values of the
gauge invariant operators coincide. In gauge theories the transition
from one gauge to another may be considered as such a change.



A very nontrivial generalization is obtained if one transforms the L̃

further shifting the fields ϕ′ by constants. It is not an allowed change
of variables in the path integral as it changes the asymptotic of the
fields. The unitarity of the "shifted"theory is not guaranteed and a
special proof (if possible) is needed.

Using this method one can construct a renormalizable formulation of
nonabelian gauge theories free of the Gribov ambiguity.
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A problem of unambiguos quantization of nonabelian gauge
theories beyond perturbation theory remains unsolved. Even in
classical theory the equation

DµFµν = 0 (6)

does not determine the Cauchi problem. Gauge invariance results
in existence of many solutions of this equation. To define the
classical Cauchi problem and subsequently to quantize the model
one imposes a gauge condition, e.g. Coulomb gauge ∂iAi = 0.



Differential gauge conditions: L(Aµ, ϕ) = 0→ Gribov ambiguity.

Algebraic gauge conditions: L̃(Aµ, ϕ) = 0 → absence of the manifest
Lorentz invariance and other problems.



Coulomb gauge

∂iAi = 0

A′i = (AΩ)i

4αa + igεabc∂i(A
b
iα
c) = 0 (7)

This equation has nontrivial solutions fastly decreasing at spatial
infinity→Gribov ambiguity.

In perturbation theory the only solution is α = 0.



A remedy: new (equivalent) formulation of the Yang-Mills theory using
more ghost fields.
Let us consider the classical (SU(2))Lagrangian

L̃ = −
1

4
F aµνF

a
µν + (Dµϕ)∗(Dµϕ)− (Dµχ)∗(Dµχ)

+i[(Dµb)
∗(Dµe)− (Dµe)

∗(Dµb)] (8)

The scalar fields (ϕ, χ are commuting, e, b are anticommuting) are
parametrized by the Hermitean components

Φ =

(
iΦ1 + Φ2√

2
,
Φ0 − iΦ3√

2

)
(9)



Integrating over the fields ϕ, χ, b, e with vacuum boundary conditions
one gets∫

exp{i
∫
L̃dx}dµ̃ =

∫
exp{i

∫
Ldx}(detD2)2(detD2)−2dµ (10)

Here the measure dµ includes the gauge fixing factor and Faddeev-
Popov ghosts and the measure dµ̃ includes also differentials of the
fields ϕ, χ, b, e. The integral reduces to the usual path integral for
the Yang-Mills scattering matrix. The lagrangian L̃ gives for the
gauge invariant correlators the same result as the standard Yang-Mills
Lagrangian:

L = −
1

4
F aµνF

a
µν (11)



Now we consider a different lagrangian, which may be obtained from
L̃ by the shift

ϕ→ ϕ− g−1m̂; χ→ χ+ g−1m̂ (12)

The constant field m̂ has a form:

m̂ = (0,m) (13)

The new Lagrangian looks as follows

L = −
1

4
F aµνF

a
µν + (Dµϕ)∗(Dµϕ)− (Dµχ)∗(Dµχ)

−g−1[(Dµϕ)∗+ (Dµχ)∗](Dµm̂)− g−1(Dµm̂)∗[Dµϕ+Dµχ]

+i[(Dµb)
∗(Dµe)− (Dµe)

∗(Dµb)] (14)

Note that because of the negative sign of the χ kinetic term this field
posesses negative energy.This is crucial to insure the cancellation of
the terms quadratic in m in the shifted Lagrangian and provide the
zero mass for the Yang-Mills field.



Higgs model.

The model we consider in many respects reminds the Higgs model.
Instead of one scalar fields we have two scalar fields with different
signs of energy and two more anticommuting scalar fields. The presence
of two commuting scalar fields with different signs of energy allows
to avoid the mass generation for the vector field. As in the Higgs
model these scalar fields become gauge fields, that is by the gauge
transformation they are shifted by arbitrary function.

In the Higgs model one starts with the Lagrangian

L = LYM + (Dµϕ)∗(Dµϕ)− λ2(ϕ∗ϕ− µ2)2 (15)

After the shift ϕ = ϕ′+ µ̂, µ̂ = {0, µ} ϕ′a, a = 1,2,3 becomes a
gauge field:ϕ′a → ϕ′a + µηa(x) + . . .. Unitary gauge ϕ′a = 0 is algebraic,
but Lorentz invariant. However this gauge is nonrenormalizable.



Is it possible to invent Lorentz invariant algebraic gauge for the Yang-
Mills theory in which the theory is renormalizable?

The Lagrangian (14) may be obtained from the gauge invariant
Lagrangian, describing the interaction of the complex scalar doublets
with the Yang-Mills field by the shift

ϕ→ ϕ− g−1m̂; χ→ χ+ g−1m̂ (16)

Hence the Lagrangian (14) is invariant with respect
to the"shifted"gauge transformations.

In particular the transformation of the field ϕa− = ϕ−χ√
2

is

δϕa− = mηa + g
2ε
abcϕb−η

c + g
2ϕ

0
−η

a



This Lagrangian is also invariant with respect to the supersymmetry
transformations

δϕ−α(x) = 2iεbα(x)

δeα(x) = εϕ+
α (x)

δb(x) = 0 (17)

where ε is a constant anticommuting parameter.

This invariance plays a crucial role in the proof of the equivalence
of the model described by the Lagrangian (8) to the standard Yang-
Mills theory. It provides the unitarity of the scattering matrix in the
subspace which includes only three dimensionally transversal components
of the Yang-Mils field.



The field ϕa− is shifted under the gauge transformation by an arbitrary
function mηa. It allows to impose Lorentz invariant algebraic gauge
condition ϕa− = 0.

However imposing the Lorentz invariant gauge condition ϕa− = 0 does
not solve the problem of ambiguity completely. The field ϕa− satisfying
the condition ϕa− = 0 is transformed by the gauge transformation to
ϕ′a− = (m+ g

2ϕ
0
−)ηa. For some x the factor (m+ g

2ϕ
0
−(x)) may vanish,

leading to nonuniqueness of the gauge fixing. Moreover calculation
of the divergency index of Feynman diagrams shows that there are
divergent diagrams with arbitrary numbers of external ϕ0

− lines, that
is the theory is not renormalizable in the usual sense.



To avoid the problem of ambiguity completely we redefine the fields
as follows

ϕ0
− =

2m

g
(exp{

gh

2m
} − 1); ϕa− = M̃ϕ̃a−

ϕa+ = M̃−1ϕ̃a+; ϕ0
+ = M̃−1ϕ̃0

+

e = M̃−1ẽ; b = M̃b̃ (18)

where

M̃ = 1 +
g

2m
ϕ0
− = exp{

gh

2m
} (19)



The new Lagrangian has the form

L̃ = −
1

4
F aµνF

a
µν + ∂µh∂µϕ̃

0
+ −

g

2m
∂µh∂µhϕ̃

0
+

+mϕ̃a+∂µA
a
µ − [((Dµb̃)

∗+
g

2m
b̃∗∂µh)(Dµẽ−

g

2m
ẽ∂µh) + h.c.]

+
mg

2
A2
µϕ̃

0
+ + g∂µhA

a
µϕ̃

a
+ . . . (20)

Here . . . denote the terms ∼ ϕ̃a−. By construction this Lagrangian is
invariant with respect to the gauge transformations written in terms
of the new variables. In particular δϕa− = ηa, and the ambiguity is
absent.



Obviously the lagrangian is also invariant with respect to the supersymmetry
transformations written in terms of the transformed variables. However
imposing the gauge condition ϕa− = 0 we break the invariance of the
effective action with respect to the supersymmetry transformation
(17). The transition from one gauge to the other one may be achieved
by a gauge transformation, and in the gauge ∂iAi = 0 the effective
action is invariant with respect to the supertransformation (17). Therefore
in the gauge ϕa− = 0 it also must be invariant with respect to some
supertransformation. The corresponding gauge function is a solution
of the equation∫

d4xλa(x)∂i(A
Ω)ai (x) =

∫
d4xλa(x)ϕa−(x) (21)

The solution of this equation may be found explicitly.



For asymptotic states it is sufficient to solve this equation to zero
order in g. In this approximation the supersymmetry transformation
acquires the form:

δÃaµ(x) =
1

m
∂µb̃

a(x)

δẽα(x) = ϕ̃α+(x)

δh = −b̃0(x) (22)

Other fields do not change in this approximation



The spectrum:
Ghost exitations: ϕ±, b, e, longitudinal and temporal components of
Aaµ
Physical exitations: three dimensionally transversal components of the
Yang-Mills field.

The supersymmetry of the effective action generates a conserved
nilpotent charge Q. Physical states are separated by the condition

Q|ψ >ph= 0 (23)

the states separated by this condition describe only three dimensionally
transversal components of the Yang-Mills field.

The ghost exitations decouple.



Renormalization

The field h(ϕ0
−) enters interaction only with derivative ∂µh. Hence the

divergency index of a diagram with n external h(ϕ0
−) lines decreases

by n.

The index of divergency of an arbitrary diagram is

n = 4− 2Lϕ0
+
− 2Lϕ0

+
− LA − Le − Lb − Lh (24)

The theory is manifestly renormalizable.

In terms of the old (nontransformed) variables the theory is not
manifestly renormalizable. Transition to the new variables simultaneously
eliminates the residual ambiguity and makes the theory manifestly
renormalizable. Renormalization preserves all the symmetries of the
theory.



Weinberg-Salam model.

In perturbation theory all predictions fit the experiment very well.
However there are certain questions to be answered

1. Where is the Higgs meson? (LHC).

2. Is the model valid beyond perturbation theory?

3. Is it possible to derive the Weinberg-Salam model from some grand-
unified model?

4. Quantization of the Weinberg-Salam model beyond the perturbation
theory?



An alternative formulation of the Higgs-Kibble model.

L = −
1

4
F aµνF

a
µν + (Dµϕ

+)∗(Dµϕ−) + (Dµϕ
−)∗(Dµϕ+)

+(Dµϕ)∗(Dµϕ)− λ2(ϕ∗ϕ− µ2)2

−[(Dµb)
∗(Dµe) + (Dµe)

∗(Dµb)] (25)

Here the field ϕ is the complex doublet describing the Higgs meson,
and the fields ϕ± are new auxiliary fields. The fields b, e have a similar
structure, but correspond to the anticommuting fields. The shift

ϕ−(x)→ ϕ−(x)− m̂; ϕ(x)→ ϕ(x)− µ̂ (26)

where m̂ and µ̂ are the coordinate-independent condensates

m̂ = (0,m/g); µ̂ = (0, µ/g) (27)

generates the mass term for the vector field.



In the same way as before one can show that the theory described by
this Lagrangian is renormalizable and unitary in the space, including
only three polarizations of the vector field and the scalar Higgs meson.

Therefore the extension of the spectrum of non-Abelian gauge theories,
supplemented by the corresponding extension of their symmetry
(supersymmetry), makes possible to perform quantization of these
theories both in the framework of perturbation theory and beyond it.
It allows to study QCD and electroweak models beyond perturbation
theory.



The possible counterterms may be classified on the basis
of ST-Identities, associated with the symmetry, which combines
the gauge invariance of the effective action and supersymmetry
and which are conveniently written in the form proposed
by J.Zinn-Justin

S(Γ) =
∫
d4x

∑
Φ

{
δΓ

δΦ∗(x)

δΓ

δΦ(x)
} = 0 (28)

Φ are the fields:Aµ, ϕα+, e
α, bα, h; Φ∗ are the antifields

introducing the variations of the fields Φ, e.g.
∫
dx{−2i

mA
∗a
µ (Dµb)a}

All ultraviolet divergencies may be removed by a multiplicative
renormalizations and redefinitions of the fields.



Conclusion.

A renormalizable manifestly Lorentz invariant formulation of the non-
Abelian gauge theories which allows a canonical quantization without
Gribov ambiguity is possible.

In particular the Weinberg-Salam model may be formulated in a
manifestly Lorentz invariant, renormalizable and ambiguity free way.

In perturbation theory the scattering matrix and the gauge invariant
correlators coincide with the standard ones.

It would be interesting to carry out semi-analytic and numerical calculations
in this formalism beyond the perturbation theory and compare the
results with the existing calculations.


