What is QFT ? Beyond Special Relativity

José Luis Cortés (Univ. de Zaragoza)

J. M. Carmona, J. Indurain, J. López-Sarrión, D. Mazón, F. Mercati

Lorentz invariance as a low energy approximation in Quantum Field Theory

1. INTRODUCTION

- What is QFT ? (for a particle physicist)
- Why ?
- Beyond this paradigme:
 - 1) Perturbative non-renormalizability of gravitational interaction
 - 2) Quantum space-time **mass** Beyond Special Relativity
 - 3) Fundamental symmetry tests
 - 4) Deviations from Lorentz symmetry (LV)

Study the observable effects of and limits on $\ensuremath{\mathsf{LV}}$

Three perspectives on Quantum Gravity:

Particle physics:

General relativity:
 Condensed matter:

spontaneous symmetry breaking discrete/non-commutative space-time emergent (not fundamental) symmetry

Observations of BSR Choice of perspective

3. QG / BSR phenomenology

Possible low energy signatures of QG in :

- Quantum decoherence and state colapse
- Initial cosmological perturbations
- Cosmological variations of couplings
- TeV Black Holes (↔ extra dimensions)
- Violation of discrete symmetries
- Violation of space-time symmetries

3.1 BSR : Simple Models

> Bottom – up approach : experiments \Rightarrow approaches to QG

Two steps in the construction of simple models:

- Kinematics : simplicity + inspiration from QG approaches
- Dynamics: EFT (?)

Kinematic ingredients:

Simplest kinematical model:

 \succ

• Modified dispersion relation :

$$E^2 = p^2 + m^2 + f(p, \mu, M)$$

Energy dependence of the velocity:

$$v = \partial E / \partial p$$
 ?

Modified energy-momentum conservation laws

• $f = p^3/M$ universal

$$\cdot v = \partial E / \partial p$$

Standard conservation laws

Second example : beyond a purely kinematic model

Assume validity of EFT

Helicity dependent modified dispersion relation

Beyond universality but still the simplest choice for velocities and energy-momentum conservation laws

- Beyond simplest models :
 - More general non-universal modified dispersion relations
 - Alternatives for velocity (space-time)
 - Beyond standard conservation laws (non-commutativity)
- Results on and strategies to look for departures from SR

depend on details of the model

3.2 LV versus DSR

- Principle of relativity (RP)
- Isotropy and homogeneity
- Notion of causality

LORENTZ INVARIANCE

Preferred reference frame \rightarrow RP lost \rightarrow LV

Alternatives compatible with relativity principle:

- VSR : isotropy breakdown new relativity group
- DSR : energy and velocity scale compatible with RP

Non-linear action of Lorentz group in momentum space Formulation of DSR not complete: dynamics, space-time ? Problems (ph-consistency, internal consistency) - debate

3.3 Relative Locality

Give up notions of:

coincidence of events at large distances

separation of space/momentum in phase space

Non-linear modification of energy-momentum conservation law

New implementation of translational symmetry

Consistent physical interpretation ?

Role of geometry of momentum space ?

3.4 Phenomenology

Observations sensitive to possible departures from SR

$$M_{Pl} = \sqrt{\hbar c/G_N} \simeq 1.22 \times 10^{19} GeV/c^2$$

very small corrections Observable effects

Amplification mechanisms :

- high precision
- accumulative effects
- symmetry tests

> Examples of observations sensitive to Planck scale LV effects :

- Time of flight: γ-ray bursts (propagation/emission), neutrinos
- Vacuum birefringence: polarized light/ γ-rays
- Thresholds: $p \gamma
 ightarrow p \pi$ / $\gamma \gamma
 ightarrow e^+ e^-$
- Forbidden \rightarrow viable reactions:

 $\gamma \rightarrow e^+ e^-$ / $e^\pm \rightarrow e^\pm \gamma$ / $\nu \rightarrow \nu \nu \overline{\nu}$

Synchrotron emission affected by LV: Crab nebula

 $m_{
u}$

Low energy signals:

CPTV matter–antimatter asymmetry atomic interferometry

4. QFT \leftrightarrow BSR

Is it possible to find a QFT including departures from SR and phenomenologically consistent ?

Several attempts to incorporate deviations from SR in QFT:

Lagrangian with all possible terms violating LI

with dimension \leq 4 (perturbative renormalizability)

Phenomenogical consistency

FINE TUNING

Extremely small dimensionless coefficients

➢ perturbative renormalizability → low energy limit

EFT higher (> 4) dimensional terms

natural suppression

 $(1/M_{Pl})^n$

Tree level approximation with D=5,6 LV operators

Consistent framework \leftrightarrow constraints from observations

Beyond tree level

Sensitivity of low energy physics to the details (LV) of the high energy theory in a QFT framework

• Simple illustrative calculation :

One loop scalar self-energy in Yukawa model

LV of high energy theory modeled by

LV regularization factor $f(|\vec{k}|/\Lambda)$ in fermion propagator

$$\xi = \frac{g^2}{6\pi^2} \left[1 + 2 \int_0^\infty dx x f'(x)^2 \right]$$

EFT perspective :

Lagrangian must contain all terms consistent with symmetries of high energy theory

• Add LI to the list of fine-tuning problems

New guide in UV completion

- Physical regularization problem: Is it possible to define QFT as the limit of an ordinary quantum mechanical theory (regularized theory) in which LI is preserved naturally?
 - In normal methods of regularization the regularized theory is not a normal quantum mechanical theory

LV as a regulator of QFT :

higher spatial derivatives

Physical regularization of QFT ? LI fine tuning

> extend the set of renormalizable QFT (Horava-Lifshitz) GR fine tuning ?

> Non-locality as a way to evade the LI fine tuning problem ?

• Illustrative calculation: scalar self-energy

Regularized fermion propagator : $\vec{p} \rightarrow \vec{p} f(|\vec{p}|/\Lambda)$

$$\xi = -\frac{g^2}{2\pi^2} \int_0^\infty dx \frac{1}{xf^3(x)} \left[1 - f^2(x) - \frac{2}{3}xf(x)f'(x) - \frac{1}{3}x^2f'^2(x) \right]$$

LI low energy limit $\rightarrow \quad \xi = 0 \quad \Rightarrow \text{ Condition on } \quad f$
(Nonlocal LI fine tuning)
Fermion self-energy $\rightarrow \quad \text{Condition on } \quad g$
Toy model for LI fine tuning as a quide for

identification of high energy theory

order by order / gauge interactions ? / other fine tuning problems

Non-perturbative formulation of QG free of LI fine tuning problem ?

claim based on two models:

(Euclidean) lattice regularization with different time and space lattice steps
 LV version of Pauli-Villars regularization
 special features of models

LI fine tuning argument based on Wilsonian non-perturbative formulation

> Other attempts of extensions of RQFT:

Non-commutativity:

. . .

canonical (LV, IR/UV mixing)

other cases of non-commutativity ?

• QNCFT: free theory, dynamics ?