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Proposed Universe evolution

Big Bang
String inflationary era

Quantum Gravity - Unknown Era

Inflationary Universe:

Scenarios: most popular
Λl - cosmological constant,

or Scalar field,

or ideal fluid p = −ρ.

possibility of quintessence and (or) phantom inflation.
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Intermediate Universe:

a(t) = tα,
radiation / matter dominance.

Late Universe: Dark energy era

Almost de Sitter a(t) = eHt.

Scenarios:
ΛD - cosmological constant,
scalar fields,
ideal fluid: p = wρ, w ' −1 (up to 2 percent).
Possibility of phantom w < −1 or quintessence: −1 < w < − 1

3 .
Oscillating Universe?
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Possible future evolution

ΛCDM most probably continues to be ΛCDM epoch.

If p = f(ρ), where p is negative the following future singularity is possible:

Type I. t→ ts, a(t)→∞, ρ, |p| → ∞, a(t) ∼ 1
(t−ts)

Type II. t→ ts, a→ as, ρ→ ρs, |p| → ∞

Type III. t→ ts, a(t)→ as, ρ→∞, |p| → ∞,

Type IV. Only higher derivatives of H diverge.
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Advantages

1. Modified gravity provides the very natural gravitational alternative for
dark energy.
2. Modified gravity presents very natural unification of the early-time
inflation and late-time acceleration.
3. It may serve as the basis for unified explanation of dark energy and
dark matter.
4. Assuming that universe is entering the phantom phase, modified
gravity may naturally describe the transition from non-phantom phase to
phantom one without necessity to introduce the exotic matter.
5. Modified gravity quite naturally describes the transition from
decceleration to acceleration in the universe evolution.
6. The effective dark energy dominance may be assisted by the
modification of gravity.
7. Modified gravity is expected to be useful in high energy physics.
8. Despite quite stringent constraints from Solar System tests, there are
versions of modified gravity which may be viable theories competing with
General Relativity at current epoch.
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I. Class of viable modified f(R) gravities describing
inflation and the onset of accelerated expansion

Nojiri, SDO, arXiv:0707.1941, 0710.1738; Cognola, Elizalde, Nojiri, SDO,
Sebastiani, Zerbini, PRD77:046009,2008

Starting action:

S =
1

κ2

∫
d4x
√
−g [R+ f(R)] + S(m) (1)

Here f(R) is a suitable function, which defines the modified gravitational
part of the model. The general equation of motion in F (R) ≡ R+ f(R)
gravity with matter is given by

1

2
gµνF (R)−RµνF ′(R)−gµν�F ′(R)+∇µ∇νF ′(R) = −κ

2

2
T(m)µν . (2)



Contents Introduction Section I Section II Section III Section IV Section V Section VI

We investigate ‘viable’ modified gravitational models what means,
roughly speaking, they have to incorporate the vanishing (or fast
decrease) of the cosmological constant in the flat (R→ 0) limit.

This simple model reads

f(R) = −2Λeff θ(R−R0) , (3)

where θ(R−R0) is Heaviside’s step distribution.
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The other class of modified gravitational models contains a sort of
‘switching on’ of the cosmological constant as a function of the scalar
curvature R.
A simplest version of this kind reads:

f(R) = 2Λeff(e−bR − 1) . (4)

Here the transition is smooth. The two above models may be combined
in a natural way, if one is also interested in the phenomenological
description of the inflationary epoch. For example, a two-steps model
may be the smooth version of

f(R) = −2Λ0 θ(R−R0) − 2ΛI θ(R−RI) , (5)

with R0 << RI , the latter being the inflation scale curvature.
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The typical, smooth behavior of f(R) associated with the one- and
two-step models is given, in the smooth case, in Figs. 1 and 2,
respectively.

-

6

R

−f(R)

R0

2Λeff

Figure: 1. Typical behavior of f(R) in the one-step model.
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-

6

R

−f(R)

R0

2Λ0

RI

2ΛI

Figure: 2. Typical behavior of f(R) in the two-step model.
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Let us recall the two sufficient conditions which often lead to realistic
models

f(0) = 0 , lim
R→R1

f(R) = −α , (6)

where α is a suitable curvature scale which represents an effective
cosmological constant, being R1 >> R0, with R0 > 0, the transition
point. The condition f(0) = 0 ensures the disappearance of the
cosmological constant in the limit of flat space-time.
By using these conditions, some models in this class are seen to be able

to pass the local tests (with some extra bounds on the theory
parameters) and are also capable to explain the observed recent
acceleration of the universe expansion, provided that α = Λ0 = 2H2

0 , H0

being the Hubble constant at the epoch of reference.
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Thus, one might also reasonably require that

f(0) = 0 , lim
R→R2

f(R) = −(α+ αI) , (7)

where αI >> α is associated with the inflation cosmological constant,
ΛI , and where R2 >> RI >> R0, RI being the corresponding transition
large scalar curvature.

Further restrictions, like small corrections to Newton’s law and the
stability of planet-like gravitational solutions need to be fulfilled too.
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The starting point is the trace of the equations of motion, which is
trivial in the Einstein theory but gives precious dynamical information in
the modified gravitational models. It reads

3∇2f ′(R) = R+ 2f(R)−Rf ′(R)− κ2T . (8)

The above trace equation can be interpreted as an equation of motion
for the non trivial ‘scalaron’ f ′(R) (since it is indeed associated with the
corresponding scalar field in the other frame). For solutions with
constant scalar curvature R∗, the scalaron field is constant and one
obtains the following vacuum solution:

R∗ + 2f(R∗)−R∗f ′(R∗) = 0 . (9)
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Furthermore, we can describe the degree of freedom associated with the
scalaron by means of a scalar field χ, defined by
F ′(R) = 1 + f ′(R) = e−χ. If we consider a perturbation around the
vacuum solution of constant curvature R∗, given by R = R∗ + δR, where

δR = −1 + f ′(R∗)

f ′′(R∗)
δχ , (10)

then the equation of motion for the scalaron field is

�δχ− 1

3

(
1 + f ′(R∗)

f ′′(R∗)
−R∗

)
δχ = − κ2

6(1 + f ′(R∗)
T . (11)

As a result, in connection with the local and with the planetary tests, the
following effective mass plays a very crucial role:

M2 ≡ 1

3

(
1 + f ′(R∗)

f ′′(R∗)
−R∗

)
. (12)
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If M2 < 0, a tachyon appears and this leads to an instability. Even if
M2 > 0, when M2 is small, it is δR 6= 0 at long ranges, which generates
a large correction to Newton’s law. As a result, M2 has to be positive
and very large in order to pass both the local and the astronomical tests.

In order to arrive to a stability condition, we can start by noting that the
scalaron equation can be rewritten in the form

�R+
f ′′′(R)

f ′′(R)
∇ρR∇ρR+

(1 + f ′(R)R

3f ′′(R)
− 2(R+ f(R))

3f ′′(R)
=

κ2

6f ′′(R)
T .

(13)



Contents Introduction Section I Section II Section III Section IV Section V Section VI

If we now consider a perturbation, δR, of the Einstein gravity solution

R = Re = −k
2T
2 > 0, we obtain

0 ' (−∂2
t + U(Re))δR+ C , (14)

with the effective potential

U(Re) ≡
(
F ′′′′(Re)

F ′′(Re)
− F ′′′(Re)

2

F ′′(Re)2

)
∇ρRe∇ρRe +

Re
3
−

−F
′(Re)F

′′′(Re)Re
3F ′′(Re)2

− F ′(Re)

3F ′′(Re)
+

+
2F (Re)F

′′′(Re)

3F ′′(Re)2
− F ′′′(Re)Re

3F ′′(Re)2
. (15)

If U(Re) is positive, then the perturbation δR becomes exponentially
large and the whole system becomes unstable. Thus, the matter stability
condition is, in this case,

U(Re) < 0 . (16)
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We will here present some viable f(R) models. We start with a most
simple one

f(R) = α(e−bR − 1) . (17)

Since f(0) = 0 and f(R)→ −α for large R, conditions (6) are satisfied.
Moreover,

f ′(R) = −bαe−bR , f ′′(R) = b2αe−bR . (18)

With regard to the trivial fixed point R∗ = 0, this model has the
properties

1 + f ′(0) = 1− αb , f ′′(0) = αb2 . (19)

Thus, the effective mass for R∗ = 0 is

M2(0) =
1− αb
3αb2

, (20)

and then Minkowski space time is stable as soon as αb < 1. Such
condition is equivalent to 1 + f ′(0) > 0.
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A simple modification of the above model which incorporates the
inflationary era, namely the requirement (7), is

f(R) = α(e−bR − 1)− αI
ebR − 1

ebR + ebRI
, (21)

or, as a two-step model,

f(R) = −α ebR − 1

ebR + ebR0
− αI

ebR − 1

ebR + ebRI
. (22)

Again, f(0) = 0 and, at the value R = RI , there is a transition to a
higher constant value −(α+ αI) which can be related to inflation.
A possible modification of the previous model is the following:

f(R) = −α(e−bR − 1) + cRN
ebR − 1

ebR + ebRI
, (23)

with N > 2 and c > 0. In this variant, during the inflationary era at
R > RI , f(R), the model acquires also a power dependence on the
scalar curvature, which may help to exit from the inflationary stage.
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We now investigate the correction to the Newton’s law and the matter
instability issue. In the solar system domain, on or inside the earth, where
R� R0, f(R) can be approximated by

f(R) ∼ −2Λeff + 2αe−b(R−R0) . (24)

On the other hand, since R0 � R� RI , it could be also approximated
by

f(R) ∼ −2Λ0 + 2αe−b0(R−R0) , (25)

which has the same expression, after having identified Λ0 = Λeff and
b0 = b. Then, we may check the case of (24) only.
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We find that the effective mass has the following form

M2 ∼ eb(R−R0)

4αb2
, (26)

which could be very large again, and the correction to Newton’s law can
be made negligible. We also find that U(Rb) in (15) has the form

U(Re) = − 1

2αb

(
2Λ +

1

b

)
e−b(Re−R0) , (27)

which could be negative, what would suppress any instability.
The first modified gravity to pass these constraints is introduced in
Nojiri-SDO, hep-th/0307288 The perturbations story?
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Elizalde, Nojiri, SDO, Sebastiani and Zerbini, arXiv:1012.2280.

Viable conditions in F (R)-gravity
In order to avoid anti-gravity effects, it is required that F ′(R) > 0,
namely, the positivity of the effective gravitational coupling.

Existence of a matter era and stability of cosmological perturbations.
On the critical points, Ḟ ′(R) = 0 and

ρeff =
1

F ′(R)

{
ρ+

1

2κ2
[(F ′(R)R− F (R))]

}
, (28)

peff =
1

F ′(R)

{
p+

1

2κ2
[−(F ′(R)R− F (R))]

}
. (29)

During matter era, peff ' 0 and ρeff ' ρ/F ′(R). As a consequence,

RF ′(R)

F (R)
= 1 ,

d

dR

(
RF ′(R)

F (R)

)
= 0 . (30)

This leads to
F ′′(R)

F ′(R)
= 0⇒ F ′′(R) ' 0 . (31)

Since if F ′′(R) < 0 the theory is strongly unstable, F ′′(R) ' 0+.
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Local tests
The typical value of the curvature in the Solar System far from sources is
R = R∗, where R∗ ' 10−61eV2. If a Schwarzshild-de Sitter solution
exists, it will be stable provided

F ′(R∗)

R∗F ′′(R∗)
> 1 . (32)

The stability of the solution is necessary in order to find the
post-Newtonian parameters as in GR.

Exponential gravity

F (R) = R− 2Λ
(

1− e−R/R0

)
. (33)

Here, Λ ' 10−66eV2 is the cosmological constant and R0 ' Λ a
curvature parameter. In flat space one has F (0) = 0 and recovers the
Minkowski solution. The model satisfied all viable conditions and it is
consistent with the results of ΛCDM Model.
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Inflation
A quite natural possibility is

F (R) = R− 2Λ
(

1− e−
R
R0

)
− Λi

(
1− e

−
(

R
Ri

)n
)

+ γRα . (34)

This is the function discussed above with another one-step function
reproducing the cosmological function during inflation AND a power term
necessary to obtain the exit from inflation (γ ' 1/(4Λi)

α−1).
By taking into account all the viability conditions, the simplest choice of
parameters to introduce in the function of Eq. (34) is

n = 4 , α =
5

2
, (35)

while the curvature Ri is set as

Ri = 2Λi . (36)

In this way, since n > α > 1, we avoid the contribute of inflation and
undesirable instability effects in the small-curvature regime. No
anti-gravity effects. The unstable de Sitter solution describing inflation is

RdS =
2Λi

3− α
≡ 4Λi . (37)



Contents Introduction Section I Section II Section III Section IV Section V Section VI

Dark energy evolution
We will now be interested in the cosmological evolution of the dark
energy density ρDE = ρeff − ρ/F ′(R) in the case of the two-step model
of Eq. (34), near the late-time acceleration era.
We use the variable

yH ≡
ρDE

ρ
(0)
m

=
H2

m̃2
− a−3 − χa−4 . (38)

Here, ρ
(0)
m is the energy density of matter at present time, m̃2 is the mass

scale

m̃2 ≡ κ2ρ
(0)
m

3
' 1.5× 10−67eV2 , (39)

and χ is defined as

χ ≡ ρ
(0)
r

ρ
(0)
m

' 3.1× 10−4 , (40)

where ρ
(0)
r is the energy density of current radiation.

The EoS-parameter ωDE for dark energy is

ωDE = −1− 1

3

1

yH

dyH

d(ln a)
. (41)



Contents Introduction Section I Section II Section III Section IV Section V Section VI

By combining the Equations of motion of modified gravity theories, one
gets

d2yH

d(ln a)2
+ J1

dyH

d(ln a)
+ J2yH + J3 = 0 , (42)

where

J1 = 4 +
1

yH + a−3 + χa−4

1− F ′(R)

6m̃2F ′′(R)
,

J2 =
1

yH + a−3 + χa−4

2− F ′(R)

3m̃2F ′′(R)
,

J3 = −3a−3− (1− F ′(R))(a−3 + 2χa−4) + (R− F (R))/(3m̃2)

yH + a−3 + χa−4

1

6m̃2F ′′(R)
,

and thus, we have

R = 3m̃2

(
dyH

d ln a
+ 4yH + a−3

)
. (43)
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We will study our model,

F (R) = R− 2Λ
(

1− e−
R
R0

)
− Λi

(
1− e

−
(

R
Ri

)n
)

+ γRα . (44)

The parameters of Eq. (44) are chosen as follows:

Λ = (7.93)m̃2 ,

Λi = 10100Λ ,

Ri = 2Λi , n = 4 ,

α =
5

2
, γ =

1

(4Λi)α−1
,

R0 = 0.6Λ , 0.8Λ , Λ . (45)
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Eq. (42) can be solved in a numerical way, in the range of R0 � R� Ri
(matter era/current acceleration). yH is then found as a function of the
red shift z,

z =
1

a
− 1 . (46)

In solving Eq. (42) numerically we have taken the following initial
conditions at z = zi

dyH

d(z)

∣∣∣
zi

= 0 ,

yH

∣∣∣
zi

=
Λ

3m̃2
, (47)

which correspond to the ones of the ΛCDM model. This choice obeys to
the fact that in the high red shift regime the exponential model is very
close to the ΛCDM Model. The values of zi have been chosen so that
RF ′′(z = zi) ∼ 10−7, assuming R = 3m̃2(z + 1)3 + 4Λ. We have
zi = 1.5, 2.2, 2.5 for R0 = 0.6Λ, 0.8Λ, Λ, respectively. In setting the
parameters, we have used the last results of the WMAP, BAO and SN
surveys (Komatsu et al. [WMAP Collaboration], arXiv:0803.0547).
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We can also extrapolate the behavior of the density parameter of dark
energy, ΩDE,

ΩDE ≡
ρDE

ρeff
=

yH

yH + (z + 1)
3

+ χ (z + 1)
4 . (48)

The data we have found are in accordance with the last and very
accurate observations of our present universe, where:

ωDE = −0.972+0.061
−0.060 ,

ΩDE = 0.721± 0.015 . (49)

At the redshift z = 0 we obtain ωDE = −0.994,−0.975,−0.950 and
ΩDE = 0.726, 0.728, 0.732 in the cases of R0 = 0.6Λ, 0.8Λ,Λ,
respectively.
The de Sitter solution is a final attractor of our system and describes an
eternal accelerating expansion.
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II. Cosmological reconstruction of modified F(R)
gravity

Nojiri-SDO-Saez-Gomez, arXiv:0908.1269, Nojiri-SDO, hep-th/0611071,
hep-th/0608008

Let us demonstrate that any FRW cosmology may be realized in specific
F (R) gravity.

The starting action of the F (R) gravity is given by

S =

∫
d4x
√
−g
(
F (R)

2κ2
+ Lmatter

)
. (50)

The field equation corresponding to the first FRW equation is:

0 = −F (R)

2
+ 3

(
H2 + Ḣ

)
F ′(R)− 18(

(
4H2Ḣ +HḦ

)
F ′′(R) + κ2ρ .

(51)
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We now rewrite Eq.(51) by using a new variable
(which is often called e-folding) instead of the cosmological time t,
N = ln a

a0
. The variable N is related with the redshift z by

e−N = a0
a = 1 + z.

Since d
dt = H d

dN and therefore
d2

dt2 = H2 d2

dN2 +H dH
dN

d
dN ,

one can rewrite (51) by

0 = −F (R)

2
+ 3

(
H2 +HH ′

)
F ′(R)

−18(
(

4H3H ′ +H2 (H ′)
2

+H3H ′′
)
F ′′(R) + κ2ρ . (52)

Here H ′ ≡ dH/dN and H ′′ ≡ d2H/dN2.
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If the matter energy density ρ is given by a sum of the fluid
densities with constant EoS
parameter wi,

ρ =
∑
i

ρi0a
−3(1+wi) =

∑
i

ρi0a
−3(1+wi)
0 e−3(1+wi)N . (53)

Let the Hubble rate is given in terms of N via the function g(N) as

H = g(N) = g (− ln (1 + z)) . (54)

Then scalar curvature takes the form: R = 6g′(N)g(N) + 12g(N)2,
which could be solved with respect to N as N = N(R).
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Then by using (53) and (54), one can rewrite (52) as

0 = −18
(

4g (N (R))
3
g′ (N (R))

+g (N (R))
2
g′ (N (R))

2
+ g (N (R))

3
g′′ (N (R))

) d2F (R)

dR2

+3
(
g (N (R))

2
+ g′ (N (R)) g (N (R))

) dF (R)

dR
− F (R)

2

+
∑
i

ρi0a
−3(1+wi)
0 e−3(1+wi)N(R) , (55)

which constitutes a differential equation for F (R), where the variable is
scalar curvature R.
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Instead of g, if we use G(N) ≡ g (N)
2

= H2, the expression (55) could
be a little bit simplified:

0 = −9G (N (R)) (4G′ (N (R)) +G′′ (N (R)))
d2F (R)

dR2

+

(
3G (N (R)) +

3

2
G′ (N (R))

)
dF (R)

dR

−F (R)

2
+
∑
i

ρi0a
−3(1+wi)
0 e−3(1+wi)N(R) . (56)

Note that the scalar curvature is given by R = 3G′(N) + 12G(N).
Hence, when we find F (R) satisfying the differential equation (55) or

(56), such F (R) theory admits the solution (54). Hence, such F (R)
gravity realizes above cosmological solution.
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As an example, we reconstruct the F (R) gravity which reproduces the
ΛCDM-era but without real matter.
In the Einstein gravity, the FRW equation for the ΛCDM cosmology is
given by

3

κ2
H2 =

3

κ2
H2

0 + ρ0a
−3 =

3

κ2
H2

0 + ρ0a
−3
0 e−3N . (57)

Here H0 and ρ0 are constants.
The (effective) cosmological constant Λ in the present universe is given
by Λ = 12H2

0 . Then one gets

G(N) = H2
0 +

κ2

3
ρ0a
−3
0 e−3N , (58)

and R = 3G′(N) + 12G(N) = 12H2
0 + κ2ρ0a

−3
0 e−3N , which can be

solved with respect to N as follows,

N = −1

3
ln

((
R− 12H2

0

)
κ2ρ0a

−3
0

)
. (59)
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Eq.(56) takes the following form:

0 = 3
(
R− 9H2

0

) (
R− 12H2

0

) d2F (R)

d2R
−
(

1

2
R− 9H2

0

)
dF (R)

dR
−1

2
F (R) .

(60)
By changing the variable from R to x by x = R

3H2
0
− 3, Eq.(60) reduces

to the hypergeometric differential equation:

0 = x(1− x)
d2F

dx2
+ (γ − (α+ β + 1)x)

dF

dx
− αβF . (61)

Here

γ = −1

2
, α+ β = −1

6
, αβ = −1

6
, (62)

Solution of (61) is given by Gauss’ hypergeometric function F (α, β, γ;x):

F (x) = AF (α, β, γ;x) +Bx1−γF (α− γ + 1, β − γ + 1, 2− γ;x) . (63)

Here A and B are constant.
Thus, we demonstrated that modified F (R) gravity may describe the

ΛCDM epoch without the need to introduce the effective cosmological
constant.



Contents Introduction Section I Section II Section III Section IV Section V Section VI

III. The formulation of modified gravity as General
Relativity with generalized fluid and finite time

future singularities
Bamba-Nojiri-SDO,JCAP 0810:045,2008; Nojiri-SDO, PRD 78,046006,
2008

Let us start from the general modified gravity with the action:

S =

∫
d4x
√
−g{

1

2κ2

(
R+ f

(
R,RµνR

µν , RµναβR
µναβ ,�R,�−1R, · · ·

))
+ Lm

}
,(64)

where all combinations of local and non-local terms are possible, Lm is
matter Lagrangian and the function f(R, · · · ) may also contain
gravitational partner (say, dilatons, axion, etc. in string-inspired gravity).
In all cases for theory (64), it is possible to write the gravitational field
equations in the form of standard FRW equations with effective
energy-density ρeff and pressure peff produced by the extra gravitational
terms F (R, · · · ) and Lm.
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For instance, when f = f(R), one gets

ρeff =
1

κ2

(
−1

2
f(R) + 3

(
H2 + Ḣ

)
f ′(R)

−18
(

4H2Ḣ +HḦ
)
f ′′(R)

)
+ρmatter , (65)

peff =
1

κ2

(
1

2
f(R)−

(
3H2 + Ḣ

)
f ′(R)

+6
(

8H2Ḣ + 4Ḣ2 + 6HḦ +
...
H
)
f ′′(R)

+36
(

4HḢ + Ḧ
)2

f ′′′(R)

)
+pmatter . (66)
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In case of Gauss-Bonnet modified gravity:

ρeff =
1

2κ2

[
Gf ′G(G)− fG(G)− 242H4

(
2Ḣ2 +HḦ + 4H2Ḣ

)
f ′′G

]
+ρmatter ,

peff =
1

2κ2

[
fG(G) + 242H2

(
3H4 + 20H2Ḣ2 + 6Ḣ3 + 4H3Ḧ +H2

...
H
)

f ′′G (G)− 243H5
(

2Ḣ2 +HḦ + 4H2Ḣ
)2

f ′′′G (G)

]
+ pmatter . (67)

In the same way one can get the effective gravitational pressure and
energy density so that the equations of motion for arbitrary modified
gravity can be rewritten in the universal FRW form typical for General
Relativity:

3

κ2
H2 = ρeff , peff = − 1

κ2

(
2Ḣ + 3H2

)
. (68)

There are just standard FRW gravitational equations.
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• Type I (“Big Rip”) : For t→ ts, a→∞, ρeff →∞ and |peff | → ∞.
This also includes the case of ρeff , peff being finite at ts.

• Type II (“sudden”) : For t→ ts, a→ as, ρeff → ρs and |peff | → ∞

• Type III : For t→ ts, a→ as, ρeff →∞ and |peff | → ∞

• Type IV : For t→ ts, a→ as, ρeff → 0, |peff | → 0 and higher
derivatives of H diverge.
This also includes the case in which peff (ρeff) or both of peff and
ρeff tend to some finite values, while higher derivatives of H diverge.

Curing singularity with R2-term: M.Abdalla, Nojiri, SDO,
CQG22,L35(2005)



Contents Introduction Section I Section II Section III Section IV Section V Section VI

IV. Modified non-local-F(R) gravity as the key for
the inflation and dark energy

Nojiri-SDO, PLB 569, 821, 2008
The starting action of the non-local gravity is given by

S =

∫
d4x
√
−g
{

1

2κ2
R
(
1 + f(�−1R)

)
+ Lmatter

}
. (69)

The above action can be rewritten by introducing two scalar fields φ and
ξ:

S =

∫
d4x
√
−g
[

1

2κ2
{R (1 + f(φ)) + ξ (�φ−R)}+ Lmatter

]
=

∫
d4x
√
−g
[

1

2κ2
{R (1 + f(φ))− ∂µξ∂µφ− ξR}+ Lmatter

]
.(70)
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Varying (70) with respect to the metric tensor gµν gives

0 =
1

2
gµν {R (1 + f(φ)− ξ)− ∂ρξ∂ρφ} −Rµν (1 + f(φ)− ξ)

+
1

2
(∂µξ∂νφ+ ∂µφ∂νξ)

− (gµν�−∇µ∇ν) (f(φ)− ξ) + κ2Tµν . (71)

On the other hand, the variation with respect to φ gives

0 = �ξ + f ′(φ)R . (72)
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Now we assume the FRW metric

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dxi
)2

, (73)

and the scalar fields φ and ξ only depend on time. Then Eq.(71) has the
following form:

0 = −3H2 (1 + f(φ)− ξ) +
1

2
ξ̇φ̇− 3H

(
f ′(φ)φ̇− ξ̇

)
+ κ2ρ ,(74)

0 =
(

2Ḣ + 3H2
)

(1 + f(φ)− ξ) +
1

2
ξ̇φ̇+(

d2

dt2
+ 2H

d

dt

)
(f(φ)− ξ) + κ2p . (75)
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On the other hand, scalar equations are:

0 = φ̈+ 3Hφ̇+ 6Ḣ + 12H2 , (76)

0 = ξ̈ + 3Hξ̇ −
(

6Ḣ + 12H2
)
f ′(φ) . (77)

We now assume deSitter solution H = H0, then Eq.(76) can be solved
as

φ = −4H0 − φ0e−3H0t + φ1 , (78)

with constants of integration, φ0 and φ1. For simplicity, we only consider
the case that φ0 = φ1 = 0. We also assume f(φ) is given by

f(φ) = f0ebφ = f0e−4bH0φ . (79)

Then Eq.(77) can be solved as follows,

ξ = − 3f0

3− 4b
e−4bH0t +

ξ0
3H0

e−3H0t − ξ1 . (80)

Here ξ0 and ξ1 are constants. For the deSitter space a behaves as
a = a0eH0t. Then for the matter with constant equation of state w, we
find

ρ = ρ0e−3(w+1)H0t . (81)
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Then by substiruting (78), (80), and (81) into (74), we obtain

0 = −3H2
0 (1 + ξ1) + 6H2

0f0 (2b− 1) e−4H0bt + κ2ρ0e−3(w+1)H0t . (82)

When ρ0 = 0, if we choose

b =
1

2
, ξ1 = −1 , (83)

deSitter space can be a solution. Even if ρ 6= 0, if we choose

b =
3

4
(1 + w) , f0 =

κ2ρ0

3H2
0 (1 + 3w)

, ξ1 = −1 , (84)

there is a deSitter solution.

In the presence of matter with w 6= 0, we may have a deSitter solution
H = H0 even if f(φ) given by

f(φ) = f0eφ/2 + f1e3(w+1)φ/4 . (85)
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Then the following solution exists:

φ = −4H0t ,

ξ = 1 + 3f0e−2H0t +
f1

w
e−3(w+1)H0t ,

ρ = −3(3w + 1)H2
0f1

κ2
e−3(1+w)H0t . (86)

Note that H0 in (78) can be arbitrary and can be determined by an
initial condition. Since H0 can be small or large, the theory with b = 1/2
could describe the early-time inflation or current cosmic acceleration.
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Motivated by this, we may propose the following model:

f(φ) =


f0eφ/2 0 > φ > φ1

f0eφ1/2 φ1 > φ > φ2

f0e(φ−φ2+φ1)/2 φ < φ2

. (87)

Here φ1 and φ2 are constants. We also assume that matter could be
neglected when 0 > φ > φ1 or φ < φ2. Since the above function f(φ) is
not smooth around φ = φ1 and φ2, one may replace the above f(φ) with
a more smooth function. When 0 > φ > φ1 or φ < φ2, the universe is
described by the deSitter solution although corresponding H0 might be
different.
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When φ1 > φ > φ2, since f(φ) is a constant, the universe is described by
the Einstein gravity, where effective gravitational constant κeff is given by

1

κ2
eff

=
1

κ2

(
1 + f0eφ1/2

)
. (88)

Then due to the matter contribution there could occur matter dominated
phase. In this phase, the Hubble rate H behaves as H = 2

3(t0+t) with a

constant t0 and the scalar curvature is given by R = 4
3(t0+t)2

. Now we

assume that the universe started at t = 0 with a rather big but constant
curvature R = RI = 12H2

I with a constant HI , that is, the universe is in
deSitter phase. Then in the model (87), by following (78), φ behaves as
φ = −4HIt. Subsequently, at t = t1 ≡ −φ1/4HI , we have φ = φ1 and
the universe enters into the matter dominated phase. If the curvature is
continuous at t = t1, t0 can be found by solving

R =
4

3 (t0 + t1)
2 = 12H2

I . (89)
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If φ and φ̇ are also continuous, when φ1 > φ > φ2, φ is given by solving
(76) as

φ = −4

3
ln

(
t

t1

)
− φ̃ (t− t1)+φ1 , φ̃ ≡ −4HI (t0 + t1)

2
+

4

3
(t0 + t1) .

(90)
When φ = φ2, the deSitter phase, which corresponds to the accelerating

expansion of the present universe, could have started. The solution
corresponds to deSitter space (with some shifts of parameters) and
H0 = HL could be given by solving

12H2
L =

4

3 (t0 + t2)
2 . (91)

if the curvature is continuous at φ = φ2. In (91), t2 is defined by
φ(t2) = φ2. Thus, we got the cosmological FRW model with inflation,
radiation/matter dominated phase, and current accelerating expansion.
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V. Late-time cosmology in modified Gauss-Bonnet
gravity f(G) gravity

Nojiri-SDO, Phys.Lett.B631,1,2006

Our example is modified Gauss-Bonnet gravity.

Let us start from the action :

S =

∫
d4x
√
−g
(

1

2κ2
R+ f(G) + Lm

)
. (92)

Here Lm is the matter Lagrangian density and G is the GB invariant:
G = R2 − 4RµνR

µν +RµνξσR
µνξσ.
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By variation over gµν one gets:

0 =
1

2κ2

(
−Rµν +

1

2
gµνR

)
+ Tµν +

1

2
gµνf(G)

−2f ′(G)RRµν + 4f ′(G)RµρR
νρ − 2f ′(G)RµρστRνρστ

−4f ′(G)RµρσνRρσ + 2 (∇µ∇νf ′(G))R

−2gµν
(
∇2f ′(G)

)
R− 4 (∇ρ∇µf ′(G))Rνρ

−4 (∇ρ∇νf ′(G))Rµρ + 4
(
∇2f ′(G)

)
Rµν

+4gµν (∇ρ∇σf ′(G))Rρσ

−4 (∇ρ∇σf ′(G))Rµρνσ. (93)
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The equation corresponding to the first FRW equation has the following
form:

0 = − 3

κ2
H2 +Gf ′(G)− f(G)− 24Ġf ′′(G)H3 + ρm , (94)

where ρm is the matter energy density. When ρm = 0, Eq. (94) has a
deSitter universe solution where H, and therefore G, are constant. For
H = H0, with constant H0, Eq. (94) turns into

0 = − 3

κ2
H2

0 + 24H4
0f
′ (24H4

0

)
− f

(
24H4

0

)
. (95)

For a large number of choices of the function f(G), Eq. (95) has a
non-trivial (H0 6= 0) real solution for H0 (deSitter universe).
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We now consider the case ρm 6= 0. Assuming that the EoS parameter
w ≡ pm/ρm for matter (pm is the pressure of matter) is a constant then,
by using the conservation of energy: ρ̇m + 3H (ρm + pm) = 0, we find
ρ = ρ0a

−3(1+w). The function f(G) is chosen as

f(G) = f0 |G|β , (96)

with constant f0 and β. If β < 1/2, f(G) term becomes dominant
compared with the Einstein term when the curvature is small. If we
neglect the contribution from the Einstein term in (94), the following
solution may be found

h0 =
4β

3(1 + w)
,

a0 =
[
− f0(β − 1)

(h0 − 1) ρ0

{
24
∣∣h3

0 (−1 + h0)
∣∣}β (h0 − 1 + 4β)

]− 1
3(1+w)

.(97)
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Then the effective EoS parameter weff is less than −1 if β < 0, and for
w > −1 is

weff = −1 +
2

3h0
= −1 +

1 + w

2β
, (98)

which is again less than −1 for β < 0. Thus, if β < 0, we obtain an
effective phantom with negative h0 even in the case when w > −1. Near
this Big Rip , however, the curvature becomes dominant and then the
Einstein term dominates, so that the f(G) term can be neglected.
Therefore, the universe behaves as a = a0t

2/3(w+1) and as a consequence
the Big Rip does not eventually occur. The phantom era is transient.
Unification is againe possible.
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VI. Modified F (R) Hǒrava-Lifshitz gravity
Chaichian, Nojiri,SDO, Oksanen, Tureanu, arXiv:1001.4102

SF (R) =

∫
d4x
√
−gF (R). (99)

Here F is a function of the scalar curvature R. By using the ADM
decomposition.

ds2 = −N2dt2 + g
(3)
ij

(
dxi +N idt

) (
dxj +N jdt

)
, i = 1, 2, 3 . (100)

Here N is called the lapse variable and N i’s are the shift variables. Then
the scalar curvature R has the following form:

R = KijKij −K2 +R(3) + 2∇µ (nµ∇νnν − nν∇νnµ) (101)

and
√
−g =

√
g(3)N . Here R(3) is the three-dimensional scalar curvature

defined by the metric g
(3)
ij and Kij is the extrinsic curvature defined by

Kij =
1

2N

(
ġ

(3)
ij −∇

(3)
i Nj −∇(3)

j Ni

)
, K = Ki

i . (102)

nµ is a unit vector perpendicular to the three-dimensional hypersurface

Σt defined by t = constant and ∇(3)
i expresses the covariant derivative on

the hypersurface Σt.
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Degenerated theory:

SFHL(R) =

∫
d4x
√
g(3)NF (RHL), RHL ≡ KijKij−λK2−EijGijklEkl.

(103)
Here λ is a real constant in the “generalized De Witt metric” or
“super-metric” (“metric of the space of metric”),

Gijkl =
1

2

(
g(3)ikg(3)jl + g(3)ilg(3)jk

)
− λg(3)ijg(3)kl, (104)

defined on the three-dimensional hypersurface Σt, E
ij can be defined by

the so called detailed balance condition by using an action W [g
(3)
kl ] on

the hypersurface Σt √
g(3)Eij =

δW [g
(3)
kl ]

δgij
, (105)

and the inverse of Gijkl is written as

Gijkl =
1

2

(
g

(3)
ik g

(3)
jl + g

(3)
il g

(3)
jk

)
− λ̃g(3)

ij g
(3)
kl , λ̃ =

λ

3λ− 1
. (106)



Contents Introduction Section I Section II Section III Section IV Section V Section VI

In the ultraviolet (high energy) region, the time coordinate and the
spatial coordinates are assumed to behave as

x→ bx , t→ bzt , z = 2, 3, · · · , (107)

under the scale transformation.

W [g
(3)
kl ] is explicitly given for the case z = 2,

W =
1

κ2
W

∫
d3x

√
g(3)(R− 2λw). (108)
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In the Hǒrava-Lifshitz-like F (R)-gravity, we assume that N can only
depend on the time coordinate t, which is called the projectability
condition. The reason is that the Hǒrava-Lifshitz gravity does not have
the full diffeomorphism invariance, but is invariant only under
“foliation-preserving” diffeomorphisms, i.e. under the transformations

δxi = ζi(t, x) , δt = f(t) . (109)

The FRW universe with a flat spatial part,

ds2 = −N2dt2 + a(t)2
∑

i=1,2,3

(
dxi
)2
. (110)

Then

R =
12H2

N2
+

6

N

d

dt

(
H

N

)
= −6H2

N
+

6

a3N

d

dt

(
Ha3

N

)
,

RHL =
(3− 9λ)H2

N2
. (111)
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Note

∫
d4x
√
−gR =

∫
d4x a3N

{
−6H2

N
+

6

a3N

d

dt

(
Ha3

N

)}
=

=

∫
d4x

{
−6H2a3 + 6

d

dt

(
Ha3

N

)}
. (112)
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Now we propose a new and very general Hǒrava-Lifshitz-like
F (R)-gravity by

SF (R̃) =

∫
d4x
√
g(3)NF (R̃) ,

R̃ ≡ KijKij − λK2 + 2µ∇µ (nµ∇νnν − nν∇νnµ)− EijGijklEkl.(113)

In the FRW universe with the flat spatial part, R̃ has the following form:

R̃ =
(3− 9λ)H2

N2
+

6µ

a3N

d

dt

(
Ha3

N

)
=

(3− 9λ+ 18µ)H2

N2
+

6µ

N

d

dt

(
H

N

)
.

(114)
The case one obtains with the choice of parameters λ = µ = 1
corresponds to the usual F (R)-gravity as long as we consider
spatially-flat FRW cosmology. The µ = 0 version corresponds to some
degenerate limit of the above general Hǒrava-Lifshitz F (R)-gravity.
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For the action (113), the FRW equation given by the variation over g
(3)
ij

has the following form:

0 = F
(
R̃
)
− 2 (1− 3λ+ 3µ)

(
Ḣ + 3H2

)
F ′
(
R̃
)

−2 (1− 3λ)H
dF ′

(
R̃
)

dt
+ 2µ

d2F ′
(
R̃
)

dt2
+ p. (115)

On the other hand, the variation over N gives the global constraint:

0 =

∫
d3xF (R̃)− 6

{
(1− 3λ+ 3µ)H2 + µḢ

}
F ′
(
R̃
)

+ 6µH
dF ′

(
R̃
)

dt
− ρ

 ,(116)

after setting N = 1.
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Eq.(115) can be integrated to give

0 = F
(
R̃
)
−6
{

(1− 3λ+ 3µ)H2 + µḢ
}
F ′
(
R̃
)

+6µH
dF ′

(
R̃
)

dt
−ρ− C

a3
.

(117)
Here C is the integration constant.

Note that Eq. (117) corresponds to the first FRW equation and (115) to
the second one. Specifically, if we choose λ = µ = 1 and C = 0, Eq.
(117) reduces to

0 = F
(
R̃
)
− 6

(
H2 + Ḣ

)
F ′
(
R̃
)

+ 6H
dF ′

(
R̃
)

dt
− ρ

= F
(
R̃
)
− 6

(
H2 + Ḣ

)
F ′
(
R̃
)

+ 36
(

4H2Ḣ + Ḧ
)
F ′′
(
R̃
)
− ρ,(118)

which is identical to the corresponding equation in the standard
F (R)-gravity.
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The Example:

F
(
R̃
)
∝ R̃+ βR̃2. (119)

Then

0 = H2
0

{
1− 3λ+ 9β (1− 3λ+ 6µ) (1− 3λ+ 2µ)H2

0

}
. (120)

In the case of usual F (R)-gravity, where λ = µ = 1 and therefore
1− 3λ+ 2µ = 0, there is only the trivial solution H2

0 = 0, although the
R2-term could generate the inflation when more gravitational terms, like
RµνR

µν etc., are added. For our general case, however, there exists the
non-trivial solution

H2
0 = − 1− 3λ

β (1− 3λ+ 6µ) (1− 3λ+ 2µ)
, (121)

as long as the r.h.s. of (121) is positive. If the magnitude of this
non-trivial solution is small enough, this solution might correspond to the
accelerating expansion in the present universe.
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Instead of (119) one may consider the following model:

F
(
R̃
)
∝ R̃+ βR̃2 + γR̃3 . (122)

Then

0 = H2
0

{
1− 3λ+ 9β (1− 3λ+ 6µ) (1− 3λ+ 2µ)H2

0 + 9γ (1− 3λ+ 6µ)
2

(5− 15λ+ 12µ)H4
0

}
,

(123)
which has the following two non-trivial solutions,

H2
0 = − (1− 3λ+ 2µ)β

2 (1− 3λ+ 6µ) (5− 15λ+ 12µ) γ(
1±

√
1− 4 (1− 3λ) (5− 15λ+ 12µ) γ

9 (1− 3λ+ 2µ)
2
β2

)
, (124)

as long as the r.h.s. is real and positive.
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If ∣∣∣∣∣4 (1− 3λ) (5− 15λ+ 12µ) γ

9 (1− 3λ+ 2µ)
2
β2

∣∣∣∣∣� 1 , (125)

one of the two solutions is much smaller than the other solution.

Possibility:
of unification
of inflation with DE?

Summary

Unification of inflation with DE is natural in modified gravity!
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