Flavour Physics: Status and Perspectives

Flavour in the SM

SM: flavour properties

- * SM FCNCs and CP-violating processes occur at the loop level
- * SM quark FV and CPV are governed by the weak interactions and suppressed by mixing angles
- * SM quark CPV comes from a single source (neglecting θ_{QCD})

SM: "flavour problems"

* fermion masses span several orders of magnitude

* The pattern of the CKM (and PMNS?) matrix is non-trivial

Marco Ciuchini

Marco Ciuchini

The CKM matrix

UTfit coll., Summer '10

 $\begin{array}{rl} 0.9742(2) & 0.2255(7) & 3.6(1) \cdot 10^{-3} e^{-i70(3)^{\circ}} \\ -0.2253(6) e^{i0.035(1)^{\circ}} & 0.9734(2) e^{-i0.0018(1)^{\circ}} & 4.12(4) \cdot 10^{-2} \\ 8.7(2) \cdot 10^{-3} e^{-i22.5(7)^{\circ}} & -4.04(4) \cdot 10^{-2} e^{-i1.09(4)^{\circ}} & 0.99915(2) \end{array}$

Standard parametrization (PDG) $sin\Theta_{12}$ = 0.2255±0.0007 $sin\Theta_{23}$ = (4.117±0.043)·10⁻² $sin\Theta_{13}$ = (3.64±0.11)·10⁻³ δ = (69.7±2.9)°

Wolfenstein parametrization $\lambda = 0.2255 \pm 0.0007$ $A = 0.81 \pm 0.01$ $\rho = 0.135 \pm 0.021$ $\eta = 0.367 \pm 0.013$

SM <u>predictions</u>: B_d & K

	Prediction	Measurement	Pull(σ)
sin2 B	0.771±0.036	0.654±0.026	+2.5
γ	(74±11)°	(69.6±3.1)°	< 1
α	(88±3)°	(91±6)°	< 1
V _{cb} ·10 ³	42.7±1.0	40.8±0.5	+1.7
V _{ub} ·10 ³	3.55±0.14	3.76±0.20	< 1
ε _κ ·10 ³	1.92±0.18	2.229±0.010	-1.7
B(B→τν)	(81±7)·10 ⁻⁶	(172±28)·10⁻ ⁶	-3.2

SM predictions: B_s

	Prediction	Measurement	Pull(σ)
Δ m _s [ps ⁻¹]	18.3±1.3	17.77±0.12	< 1
β _s	(1.08±0.04)°	Tevatron	+2.1
$\Delta\Gamma_{s}$ [ps ⁻¹]	0.11±0.02	average	0.0*
a ^s sl ·10 ⁵	1.7±0.4	-170±910	< 1
a _{μμ} ·10 ⁴	-1.7±0.5	-95.7±29.0	+3.2

2010 CDF measurement of $\beta_{s}{-}\Delta\Gamma_{s}$ not included yet

What about FCNC?

BaBar measurement of $A_{\tau}(0)$ in $B \rightarrow K^*\ell\ell$ is 3.95 away from zero

Marco Ciuchini

\mathbf{E}_{γ} (MeV) In the lepton sector... 56 55 54 No evidence of lepton flavour 53 52 violation so far... SM is fine 51 50 **MEGA:** 49 48 50 52 53 51 $BR(\mu^+ \to e^+ \gamma) < 1.5 \times 10^{-11}$ G. Cavoto, 1012.2110 (90% C.L.) ter (nsec) **MEG**: 0.5 7.• $BR(\mu \to e\gamma) \le 1.2 \times 10^{-11}$ (90% C.L.) 8.9 -0.5 -1 Waiting for further (hopefully -1.5 good) news from MEG soon! -0.9995 Marco Ciuchini SuperB: Flavour Physics – Benasque, 18-21 January 2011

58

57

cos Θ_{ev}

-0.9985

54

-0.999

55

E. (MeV)

56

Flavour in the SM: summary

- * SM UT analysis (still) displays a good overall consistency and no significant failure
- * Tensions are present in BR(B $\rightarrow \tau v$) and sin2 β (and to a lesser extent in ϵ_{κ}). The two tensions pull $|V_{ub}|$ in opposite directions: no " V_{ub} explanation" possible
- * Predictions for B_s physics also show tensions in $a_{\mu\mu}$ and $B_s \rightarrow J/\psi\phi$. They point to large but different value of ϕ_s (assuming standard Γ_{12}). $a_{\mu\mu}$ also suggests a nonstandard Γ_{12} (tree-level new physics or failure of the OPE?)
- * ~4 σ deviation from the SM in $A_{I}(B \rightarrow K^{\ell})$?
- * No surprises in charm data (as far as one can tell!)

Marco Ciuchini

UT parameters in the presence of NP

Parameterization of generic NP contributions to the mixing amplitudes B_d and B_g mixing amplitudes (2+2 real parameters): C_{Bq} & ϕ_{Bq} or A_q^{NP}/A_q^{SM} & ϕ_q^{NP} $A_{q}e^{2i\phi_{q}} = C_{B_{q}}e^{2i\phi_{B_{q}}}A_{q}^{SM}e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}}e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right)A_{q}^{SM}e^{2i\phi_{q}^{SM}}$ $\phi_d^{SM} = \beta$, $\phi_s^{SM} = -\beta_s$ **Observables**: $\Delta m_{q/K} = C_{B_{q}/\Delta m_{\kappa}} (\Delta m_{q/K})^{SM}$ $\varepsilon_{\kappa} = C_{\varepsilon} \varepsilon_{\kappa}^{SM}$ $a_{CP}^{B_d \to J/\psi K_s} \to \sin 2(\beta + \phi_B)$ $a_{CP}^{B_s \to J/\psi \phi} \to -\beta_s + \phi_{B_s}$ $\Delta \Gamma^{q} / \Delta m_{q} = \operatorname{Re} \left(\Gamma_{12}^{q} / A_{q} \right)$ $a_{SI}^q = \operatorname{Im}\left(\Gamma_{12}^q / A_q\right)$

Marco Ciuchini

SuperB: Flavour Physics – Benasque, 18-21 January 2011

Page 13

Results for the NP parameters

Implications for the NP amplitudes

The ratio of NP/SM contributions is:
 35% @95% p. (preferred ~10%) in B_d mixing
 220% @95% p. (preferred ~60% & ~180%) in B_s see also Lunghi & Soni, 0903.5059, Ligeti et al., 1006.0432

Marco Ciuchini

EFT approach to New Flavour Physics

$$\mathscr{L}_{eff} = \mathscr{L}_{SM} + \sum_{k=1} (\sum_{i} C_{i}^{k} Q_{i}^{(k+4)}) / \Lambda^{k}$$

NP flavour effects are governed by two players:

- i) the value of the new physics scale Λ
- ii) the effective flavour-violating couplings C's

In explict models:

Λ ~ mass of virtual particles (Fermi th.: M_W)
 C ~ loop coupling x flavour coupling
 (SM/MFV: α_w x CKM)

EFT analysis of
$$\Delta F=2$$
 transitions
The mixing amplitudes $A_q e^{2i\phi_q} = \langle \overline{M}_q | H_{eff}^{\Delta F=2} | M_q \rangle$
 $H_{eff}^{\Delta B=2} = \sum_{i=1}^5 C_i(\mu) Q_i(\mu) + \sum_{i=1}^3 \widetilde{C}_i(\mu) \widetilde{Q}_i(\mu)$
 $Q_1 = \overline{q}_L^{\alpha} \gamma_{\mu} b_L^{\alpha} \overline{q}_L^{\beta} \gamma^{\mu} b_L^{\beta}$ (SM/MFV)
 $Q_2 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_R^{\beta} b_L^{\beta}$ $Q_3 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_R^{\beta} b_L^{\beta}$
 $Q_4 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $Q_5 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_R^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
7 new operators beyond MFV involving
quarks with different chiralities

Marco Ciuchini

H_{eff} can be recast in terms of the $C_i(\Lambda)$ computed at the NP scale Λ

- $C_i(\Lambda)$ can be extracted from the data (one by one)
- the associated NP scale Λ can be defined from

$$C_i(\Lambda) = \frac{LF_i}{\Lambda^2}$$

tree/strong interact. NP: $L \sim 1$ perturbative NP: $L \sim a_s^2$, a_W^2

Flavour structures:

MFVNext-to-MFVgeneric $- F_1 = F_{SM} \sim (V_{tq}V_{tb}^*)^2$ $- |F_i| \sim F_{SM}$ $- |F_i| \sim 1$ $- F_{i\neq 1} = 0$ - arbitrary- arbitraryphasesphasesphases

PRELIMINARY update of hep-ph/0509219, see also Lunghi, Soni and Isidori, Nir, Perez, 1002.0900 present lower bound on the NP scale (TeV):

- $\Lambda_{GFN}(TeV)$ $C_{4}(GeV^{-2})$ sector $\Lambda_{NMFV}(TeV)$ $(47/5/1.5) \times 10^{4}$ 107/11/3.5 4.6×10⁻¹⁸ K (33/3.3/1.1)×10² 7/0.7/0.2 9.3×10⁻¹⁴ Bd 8/0.8/0.3 1.5×10⁻¹¹ 260/26/9 B
 - * △F=2 chirality-flipping operators are RG enhanced and thus probe larger NP scales
 * suppression of the 1 ↔ 2 transitions weakens the lower bounds easing the flavour problem

Bounds on Λ_{MFV} from $\Delta F=2$ processes: for low tanß $F_{tt} \in [-0.326, 0.487] \rightarrow \Lambda_{MFV} > 8.4$ (6.9) TeV $\Lambda_{0}= 2.4 \text{ TeV, cfr}$ D'Ambrosio et al. Implications for the SuperB case

- 1. NP at the TeV scale
- new particles found at LHC
- flavour problem effective,
 but suppressed FC couplings
 could be measured (MFV?)
- 2. NP beyond the TeV scale
- flavour problem in K only
- flavour physics can probe the multi-TeV scales

MSSM: reconstructing the Lagrangian

	Parameters	MSSM		SM
	gauge+Higgs	14		6
	masses	30(+v _R 36) 9	(+v _R 12)
	mixing angles	39 (+v _R 54) 3	(+v _R 6)
	phases	41 (+v _R 56) 1	(+v _R 2)
	Total	124 (+v _R 16	0) 19	(+v _R 26)
	SM parameter m	natch: Fe	C vs FV&CPV	16-8
	MSSM paramete	er match: Fo	C vs FV&CPV	50-110
>	* fast increase of	f the # of F	V&CPV parar	neters
>	* FV&CPV are rel	ated to basi	c properties	of the
	NP Lagrangian ((e.g. SUSY b	oreaking in th	ne MSSM

Marco Ciuchini

Flavour violation in the squark sector

In the superCKM basis, all NP FV effects come from squark mass matrices

NP scale: $(M^{d}{}_{iA}M^{d}{}_{jB})^{1/2}$ FV & CPV couplings: $(\delta^{d}{}_{ij})_{AB} = (\Delta^{d}{}_{ij})^{AB} / (M^{d}{}_{iA}M^{d}{}_{jB})$

$Im(\delta^{d}_{23})_{LR} vs Re(\delta^{d}_{23})_{LR}$ reconstruction of $(\delta^{d}_{23})_{LR}=0.028 e^{i\pi/4} \text{ for}$ $\Lambda = m_{\tilde{g}} = m_{\tilde{q}} = 1 \text{ TeV}$

Determination of (δ^d23)_{LR} using SuperB data

i) sensitive to $m_{\tilde{q}} < 20 \text{ TeV}$ ii) sensitive to $|(\delta^{d}_{23})_{LR}| > 10^{-2}$ for $m_{\tilde{q}} < 1 \text{ TeV}$

Marco Ciuchini

An example: hierarchical soft terms

Sparticles at the EW scale Sparticles at the EW scale Cohen, Kaplan, Nelson, hep-ph/9607394but for 1st and 2nd generation squarks and sleptons - no "unnatural" correction to the Higgs mass - alleviate the flavour problem - indicate "natural" values for the δ 's:

$$\hat{\delta}_{db}^{LL} \approx V_{td}^* \sim 0.01 \qquad \hat{\delta}_{sb}^{LL} \approx V_{ts}^* \sim 0.05$$
$$\hat{\delta}_{i3}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \qquad i, j = 1, 2$$

$$\hat{\delta}_{ij}^{LL} \equiv \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{LL*} \quad \hat{\delta}_{ij}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{RR*}$$

these figures are in the ballpark of SuperB sensitivities

Flavour BSM: summary

- * general UT analysis provides a NP-friendly determination of the CKM parameters
- * NP contribution to the B_d mixing amplitude are at 10% level (<30%@95% p.), to B_s mixing at 60% or 180% (<220%@95% p.)
- * present tensions suggest non-MFV new physics contributions
- * SuperB can study the flavour structure of TeV NP with CKM-like FV couplings
- * SuperB can probe the 10+ TeV region

Perspectives

Backup

Marco Ciuchini

independent of lattice

UT lattice+UT angles: <u>SM</u> determination of hadronic parameters

<u>Additional constraints</u>:

* BR($B_s \rightarrow \mu\mu$) < 5.8×10⁻⁸ @95% C.L. * $\Delta m_s = (17.77 \pm 0.12) \text{ ps}^{-1}$

- * additional constraints exclude the "fine-tuned" region at very large tanβ
- * bound similar to 2HDM

 $\tan \beta < 7.3 m_{H^+} / (100 \text{ GeV})$

In addition: BR(B_s $\rightarrow \mu\mu$) < 19x10⁻⁹ (5xSM) @95% prob.

- * the theory error in sin2β from B → J/ΨK is small and fully under control. A conservative bound obtained from data is included in the analysis
- * BR(B $\rightarrow \tau v$) wants a large $|V_{ub}|$. Its theoretical uncertainty, due to f_B , is controlled by the fit
- * the ϵ_{κ} deviation is triggered by improvements in B_{κ} from the lattice and the inclusion of the ξ term à la Buras-Guadagnoli(+Isidori). Yet the ϵ_{κ} formula is not under control at the few percent level
- * $|V_{ub}|$ from semileptonic decays is debatable (incl. vs excl., models, f.f.,...). Yet a simple shift of the central value cannot reconcile sin2 β and BR(B $\rightarrow \tau v$) (and ε_{κ})

Marco Ciuchini

- * the new CDF measurement of B_s → J/Ψφ reduces the significance of the deviation, but large values are still possible. The likelihood is not available yet, a CDF Bayesian study is also underway
- the new DØ measurement of $a_{\mu\mu}$ points to large β_s , but also to a large $\Delta \Gamma_s$ requiring a non-standard Γ_{12} . If confirmed, two options (both unlikely IMO): i. huge (tree-level-like) NP contributions to Γ_{12} : needed a factor ~2.5 (question: why in Γ_{12} only?) ii. bad failure of the OPE for Γ_{12} . Yet no evidence of it in lifetimes. If true, can we trust semileptonic decays to ~5% level or less?

Marco Ciuchini

SuperB: Flavour Physics – Benasque, 18-21 January 2011

2. the
$$\Delta F=2$$
 effective Hamiltonian
The mixing amplitudes $A_q e^{2i\phi_q} = \langle M_q | H_{eff}^{\Delta F=2} | \overline{M}_q \rangle$
 $H_{eff}^{\Delta B=2} = \sum_{i=1}^{5} C_i(\mu) Q_i(\mu) + \sum_{i=1}^{3} \widetilde{C}_i(\mu) \widetilde{Q}_i(\mu)$
 $Q_1 = \overline{q}_L^{\alpha} \gamma_{\mu} b_L^{\alpha} \overline{q}_L^{\beta} \gamma^{\mu} b_L^{\beta}$ (SM/MFV)
 $Q_2 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_R^{\beta} b_L^{\beta}$ $Q_3 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_R^{\beta} b_L^{\beta}$
 $Q_4 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $Q_5 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_1 = \overline{q}_R^{\alpha} \gamma_{\mu} b_R^{\alpha} \overline{q}_R^{\beta} \gamma^{\mu} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
7 new operators beyond SM/CMFV involving quarks with different chiralities

Marco Ciuchini

 H_{eff} can be recast in terms of the high-scale $C_i(\Lambda)$

- $C_i(\Lambda)$ can be extracted from the data (one by one)
- the associated NP scale Λ can be defined as

$$\Lambda = \sqrt{\frac{LF_i}{C_i(\Lambda)}}$$

tree/strong interact. NP: L ~ 1 perturbative NP: L ~ $\alpha_s^2 \alpha_W^2$

Flavour structures:

MFVnext-to-MFVgeneric $- F_1 = F_{SM} \sim (V_{tq}V_{tb}^*)^2$ $- |F_i| \sim F_{SM}$ $- |F_i| \sim 1$ $- F_{i\neq 1} = 0$ - arbitrary- arbitraryphasesphases

Pictorially:

- exp. constraints give
 a bound on A for any
 given C and vice-versa
- curves correspond to different model classes

For example: present lower bound on the NP scale from $\Delta F=2$ transitions (TeV @95% p.) B + K UTfit, arXiv:0707.0636 B only (w/o new Φ_s) Scenario strong/tree α_s loop α_W loop MFV 5.5 0.5 0.2 - - - -

MFV	5.5	0.5	0.2
NMFV	62	6.2	2
General	24000	2400	800

$\mathrm{strong}/\mathrm{tree}$	α_s loop	$lpha_W$ loop
_	_	_
14	1.4	0.4
2200	220	66

Marco Ciuchini

SuperB: Flavour Physics – Benasque, 18-21 January 2011

Page 39