

(on behalf of the SuperB collaboration)

Centro de ciencias de Benasque Pedro Pascual, January 18-21, 2011

B-factories overconstrained Standard Model & searched for New Physics

CKM matrix phase main source of CP violation (2008 Nobel prize to M.Kobayashi & T.Maskawa)
 no evidence (but perhaps few glimpses) of Physics beyond the Standard Model

Physics case for SuperB

New Physics (NP) expected beyond Standard Model, perhaps at $\Lambda \sim 1 \text{ TeV}$

SuperB can search for NP, in a complementary & competivive way with LHC, MEG and other expts

case 1 LHC finds New Physics (therefore determining A)

- SuperB can study the flavour structure of NP
- SuperB can measure the flavour couplings
- SuperB can search for effects of states even heavier than the LHC direct reach

case 2 the NP scale is beyond the LHC reach

- SuperB can look for indirect NP signals up to $\Lambda \sim 10$ TeV and more
- LHCb and MEG have similar abilities but
 - some B final states are only measurable by SuperB (with neutrals or missing momentum)
 - SuperB can test tau LFV, CPV, EDM, g-2
 - SuperB can do useful measurements on entangled charm mesons decays

bottom line: SuperB provides valuable, unique & complementary tools to advance Physics

SuperB : Υ(4S)-peak asymmetric energy e⁺e⁻ Super Flavor Factory which:
with L = 10³⁶ cm⁻²s⁻¹, can produce ~100× more Bs than present B-factories
has unique and distictive abilities to search for New Physics
is complementary with LHC (including LHCb), MEG and other experiments advantages w.r.t. Belle2 (Japanese Super Flavor Factory):
will provide fruitful competition like it happened between BABAR and Belle
will not be an upgrade of an existing accelerator and is a modern design for maximum flexibility
will use a 80% polarized electron beam
will be able to collide at the Charm threshold and at

disadvantages w.r.t. Belle2 (Japanese Super Flavor Factory):

will start later (2-3 years, but better comparison needs planned luminosity evolutions)

Announcement of SuperB approval in interactions.org

A COMMUNICATION RESOURCE FROM THE WORLD'S PARTICLE PHY INTERACTIONS.ORG PARTICLE PHYSICS NEWS AND RESOURCES	SICS LABORATORIES
HOME NEWS IMAGE BANK VIDEO CHANNEL SEARCH	SITE ONEWS
nteractions News Wire #65 - 10 3 December 2010 <u>http://www.interactions.org</u> ************************************	Share this page: Email this page Blink
ontent: Press Release ate Issued: 23 December 2010 ***********************************	Del.icio.us
he Italian Government Funds the Super-B Accelerator	Furl

The Ministry for Education, University and Research has decided to select the SuperB project conducted by the Italian National Institute of Nuclear Physics (INFN) as one of its "flagship projects" in Italy over the next few years and has delivered an initial funding for 2010 as a part of a multiannual funding program. Reconstructing the history of the Universe by researching the most infrequent events using high-precision technology. This is the INFN idea underlying the construction of SuperB, the particle accelerator based in Italy and with international involvement, which the Ministry for Education, University and Research has decided to sponsor and finance. A large interest has been expressed in many countries, meanwhile physicists from the United States, Germany, France, Russia, the United Kingdom, Israel, Canada, Norway, Spain, Poland are taking part to the design effort. The purpose of the

🚳 reddit Simpy 🔄 Spurl 💿 StumbleUpon Y! MyWeb

project is to conduct top-level basic research, developing innovative techniques with an important impact in terms of technology and other research areas. In the words of the ministerial decree, "the project involves entities and Universities, as well as companies in various

fisici attirerà scienziati

come al Cern di Ginevra. Il via

dell'Università e della Ricerca

garantendo un finanziamento

iniziale di 19 milioni di euro (già erogati) come parte di una spesa complessiva di 400

milioni di euro nell'arco di

cinque anni. SuperB è un acceleratore di particelle (mesoni B) concepito all'interno dell'Istituto nazionale di fisica nucleare

(Infn) che lo realizzerà e gestirà come uno dei «progetti bandiera» indicati da Maria Stella Gelmini per rilanciare la ricerca e, appunto, far da polo di attrazione di scienziati

stranieri. Il nuovo acceleratore è frutto di una geniale idea del

fisico Pantaleo Raimondi e consente di far scontrare fasci

maggiore rispetto ad altre

primi momenti di vita

dell'universo cogliendo

delle nanotecnologie».

di particelle con una intensità

è stato dato dal ministero

The SuperB project

niettore

Livello 0 mt

-30 mt.

Canale di

IRWIN ALLAS

raffreddamento

di particelle

Anello SuperB

SuperB LINAC

Supporto

Condotto

1.300 metri

totali

«SuperB» e sarà un grande laboratorio internazionale che Sotto terra oltre a far lavorare i nostri stranieri nella Penisola; un po'

LE SEDI POSSIBILI Una delle possibilità è che SuperB sia costruita nel sottosuolo, a una profondità di 1 Frascati 2 Università poche decine di metri (da 10 a 30). I dati Tor Vergata - Roma raccolti da SuperB saranno distribuiti in 3 Puglia diversi centri di supercalcolo uniti in rete

nerB I INAC

PARTICELLE ELUCE

macchine analoghe. In pratica del fascio riuscirà a vedere in dettaglio SuperB avrà una serie di uscite ciò che il grande acceleratore Piano per la luce di sincrotone. Questa luce Lhc di Ginevra vedrà in dei sensori maniera più generale. Quindi potrà avere moltissime anche SuperB scruterà nei applicazioni di ricerca Magnete e di diagnostica superconduttore dei materiali fenomeni molto rari ma estremamente preziosi per capire ciò che è accaduto nelle remote origini. Il progetto nasce con la collaborazione di Calorimetro a cristalli dieci Paesi e gli Stati Uniti Sistema per identificazione delle particelle partecipano fornendo alcune parti della macchina. «Ma offre Camera a gas per la traccaitura un valore aggiunto importante — nota Roberto Petronzio, Setacciatore interno di silicio presidente dell'Infn — e cioè la possibilità di ricerche anche Sandwich nel campo della biologia e di ferrro e scintillatore © RIPRODUZIONE RISERVAT/

Corriere della Sera, 18/1/2011

funding of 400 MEuro reported

Funding figures

- 270 MEuro in 6 years, starting with 2010
- ♦ 19 MEuro already in our hands in December 2010, ~40 MEuro expected in 2011
- funds from government education and search budget, no increase of Italian science budget
 - all science historical budgets 13% reduced; money used to fund "flagship" projects, incl. SuperB
 - that made it possible to fund SuperB in a period of exceptionally tight government budget
 - pending request of money for science (and SuperB) from outside government science budget
- IIT collaboration to use SuperB synchroton light for nano- and bio-technology research
- later in presentation: proposed spending profiles

SuperB proto-collaboration started in 2005

SuperB: A line	ear high-luminosity E	3 factory, arXiv:	physic
SuperB Meeting	gs (from INFN Indico we	b page)	
SuperB Genera December 2010	al Meetings XV SuperB General Meeting	Caltech	19
May 2010 May 2010 March 2010	XIV SuperB General Meeting XIII SuperB General Meeting XII SuperB General Meeting	Frascati Isola d'Elba LAPP - Annecy	
December 2009 October 2009	XI SuperB General Meeting X SuperB General Meeting	Frascati SLAC	
February 2009 May 2008	VIII SuperB General Meeting VIII SuperB General Meeting VII SuperB General Meeting	Perugia Orsay Isola d'Elba	
January 2008 May 2007 November 2006	VI SuperB General Meeting V SuperB General Meeting IV SuperB General Meeting	Valencia Paris Monte Porzio Catone	
June 2006 March 2006 November 2005	III SuperB General Meeting II SuperB General Meeting I SuperB General Meeting	SLAC Frascati Frascati	
Accelerator Me	etings		67
Detector			173
Computing Me	etings		96
Physics Meetir	ngs		13
Steering Comr	nittee Meetings		33
International R	eview Commitee Interac	tions	4
INFN Referee	Interactions		8

A.Lusiani (INFN & SNS, Pisa)

The SuperB project

Expressions of interests for SuperB (in 2009)

SuperB collaboration activity

2007	 Conceptual Design Report (CDR) (arXiv:0709.0451v2 [hep-ex])
	✓
mid-2010	 accelerator white paper, arXiv:1009.6178v1 [physics.acc-ph]
	 detector white paper, arXiv:1007.4241v1 [physics.ins-det]
	 physics white paper, arXiv:1008.1541v1 [hep-ex]
by Dec 2010	memorandum of understanding with France, USA, Russia, Canada, Spain
Dec 2010	 after several positive national & international reviews, Italy funds SuperB
	 synergies with IIT (synchroton light for nano- and bio-technology)
~now	 select site (panel appointed and working)
	 candidates: Rome/Frascati, Rome/Tor Vergata, Apulia region (Brindisi)
	 prepare European Research Infrastructure Consortium (ERIC)
~end 2011	Technical Design Report (TDR)
~end 2012	Physics Book (schedule to be defined)

A.Lusiani (INFN & SNS, Pisa)

Conceptual Design Report (2007)

- arXiv:0709.0451v2 [hep-ex]
- ♦ 440 pages: Accelerator, Detector, Physics
- cost and schedule of accelerator & detector
- 320 signers from \sim 80 institutions

White paper

- accelerator: arXiv:1009.6178v1 [physics.acc-ph
- detector: arXiv:1007.4241v1 [physics.ins-det]
- physics: arXiv:1008.1541v1 [hep-ex]
- updated costs and schedules

SuperB: ~100 B-factories for about the cost of one

- ~100× more intense B-factory using about the same electrical power as BABAR &Belle
- $\sim 10 \times -100 \times$ precision improvements in experimental measurements & searches (75 ab⁻¹ of data)
- Accelerator
 - ► ~100× more luminosity than BABAR &Belle by using thinner beams with similar currents
 - ▶ since design phase, includes polarized *e*[−] beam, charm threshold ability
 - because of luminosity optimization, reduced beam energy asymmetry w.r.t. BABAR, yet ~Belle
 - re-uses part of PEP-II equipment
- Detector is moderately improved BABAR detector
 - compensate smaller energy asymmetry with improved vertex detector & resolution
 - faster DAQ and ~100× more powerful computing (mostly provided by technology advancement)
 - re-uses part of BABAR apparatus
 - $\sim 100 \times BABAR$ for about the same price, plus garbage recycling, and more

The accelerator

- the most innovative element of SuperB is the accelerator
 ~100× more luminosity using same power budget: squeeze beams or larger currents & larger ring
 larger ring: less synchroton radiation energy loss but thicker beam because of less damping
 nano-beams (same strategy as ILC)
 ~25× thinner beam transverse section σ_x×σ_y in storage ring (low emittance)
 ~100× thinner σ_x×σ_y at collision (σ_y from ~3 μm to 20-40 nm) (strong focusing)
 thinner beams → shorter lifetime by factor ~5, i.e. ~5 minutes (need continuous injection) however this does not mean significantly higher RF power:
 to accelerate e⁺/e⁻ one needs 4/7 GeV
 every 1000 turns, synchroton radiation takes away ~17 GeV, providing beam damping
 - nano-beams have side benefit of moderate increase of background w.r.t. B-factories

Beam-beam effects and instabilities: crab waist scheme

- squeezing beams at the interaction point is not enough, must cope with beam-beam effects
- SuperB approach (P.Raimondi et al.): large Piwinski angle beam crossing and crab waist focusing

Piwinski angle is related to beam crossing angle

Crab waist scheme

vertical focus waist transverse to same beam

vertical focus waist along other beam

- crab waist focusing is obtained with sextupole magnets
- combining crab waist + large Piwiski angle effectively reduces beam-beam luminosity limiting effects

Does the crab waist scheme work? Yes, to the best of our understanding

- accelerator simulations confirm that low enough emittance beams can be accelerated and stored
- accelerator simulations for beam-beam effects confirm that LPA+CW scheme works
- simulation code from different sources (SLAC, CERN, KEK and Frascati) gives similar results
- simulated accelerator operation stable in sizeable parameter space
- **test with Frascati Da***\phi***ne** accelerator confirmed predicted 3× luminosity increase
- details in arXiv:1009.6178v1 [physics.acc-ph] superb accelerator
- also Belle2 seriously considering same scheme

Crab waist scheme successfully tested in Frascati with $Da\phi ne$

Present options for accelerator parameters

		Base	Line	Low Er	nittance	High C	Current	Tau-c	harm
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)
LUMINOSITY	cm ⁻² s ⁻¹	1.00	E+36	1.00	E+36	1.00	E+36	1.001	E+35
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61
Circumference	m	125	58.4	12:	58.4	12:	58.4	125	8.4
X-Angle (full)	mrad	6	6	e	56	6	56	6	6
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32
β _y @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25
Emittance x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4
Emittance y	pm	5	6.15	2.5	3.075	10	12.3	13	16
Bunch length (full current)	mm	5	5	5	5	4.4	4.4	5	5
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766
Buckets distance	#	1	2		2		1	1	
Ion gap	%	1	2		2		2	2	
RF frequency	MHz	47	76.	4	76.	476.		476.	
Revolution frequency	MHz	0.238 0.238		0.238		0.238			
Harmonic number	#	1998 1998		1998		19	98		
Number of bunches	#	91	78	9	78	19	956	19	56
N. Particle/bunch (10 ¹⁰)	#	5.08	6.56	3.92	5.06	4.15	5.36	1.83	2.37
σ_x effective	μm	165.22	165.30	165.22	165.30	145.60	145.78	166.12	166.67
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.0254	0.092	0.092
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15
$\Sigma_{\rm x}$ effective	μm	233	3.35	233	3.35	20:	5.34	233	.35
Σ _y	μm	0.0)50	0.0	030	0.0	076	0.1	31
Hourglass reduction factor		0.9	950	0.9	950	0.950		0.950	
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080
Tune shift y		0.097	0.097	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910
Longitudinal damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.17
Momentum compaction (10 ⁻⁴)		4.36	4.05	4.36	4.05	4.36	4.05	4.36	4.05
Energy spread (10 ⁻⁴) (full current)	dE/E	6.43	7.34	6.43	7.34	6.43	7.34	6.43	7.34
CM energy spread (10 ⁻⁴)	dE/E	5	.0	5	.0	5	.0	5.	0
Civi energy spread (10)									
Total lifetime	min	4.23	4.48	3.05	3	7.08	7.73	11.4	6.8

SuperB Detector

- similar requirement as B-factories
 - ► Large solid angle coverage, good lepton ID, πK PID up to 4 GeV
 - resolve B mesons decay time difference
 - good low momentum resolution, good low energy photon energy resolution
- main differences
 - lower machine boost ($\beta \gamma = 0.24$ vs. $\beta \gamma = 0.56$ in BABAR)
 - \rightarrow need to improve vertex detector resolution \rightarrow SVT layer 0
 - much higher luminosity (and L-scaling background rates)
 - → faster & more robust detectors
 - → open, 100% efficient trigger
- thanks to low currents, can re-use parts of BABAR detector

SuperB Detector

SuperB Physics reach

- physics reach recently updated in SuperB white paper, arXiv:1008.1541v1 [hep-ex]
- some results assume reasonable progress in QCD lattice computations
- in some cases, experimental measurements, e.g. on charm mesons, can reduce limiting systematics
- fair share of measurements is **not systematically limited** $\rightarrow L = 1.10^{36}$ worth doing Super*B* strong-points:
- B physics measurements and searches with π^0 , γ or many K^0 's cannot be done at LHC
- most tau measurements and searches cannot be done at LHC
- charm threshold production: no competitor for measurements based on entanglement
- beam polarization allows
 - improved tau physics, with advantages over Belle2
 - even precision electro-weak physics (not presented here, see white paper)

SuperB Y(4S) B Physics reach, 1

Observable	B Factories (2 ab^{-1})	Super <i>B</i> (75 ab ⁻¹)	$\left[\right]$
sin(2β) (J/ψ K ⁰)	0.018	0.005 (†)	
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	0.05	
$sin(2\beta)$ (Dh^0)	0.10	0.02	
$\cos(2\beta)$ (Dh ⁰)	0.20	0.04	Ι.
$S(J/\psi \pi^0)$	0.10	0.02	Ľ
$S(D^+D^-)$	0.20	0.03	
$S(\phi K^0)$	0.13	0.02 (*)	
$S(\eta' K^0)$	0.05	0.01 (*)	
$S(K_S^0K_S^0K_S^0)$	0.15	0.02 (*)	
$S(K_{\rm S}^0\pi^0)$	0.15	0.02 (*)	
$S(\omega K_S^0)$	0.17	0.03 (*)	
$S(f_0K_S^0)$	0.12	0.02 (*)	
γ (B \rightarrow DK, D \rightarrow CP eigenstates)	$\sim 15^{\circ}$	2.5°	
$\gamma (B \rightarrow DK, D \rightarrow \text{suppressed stat})$	es) $\sim 12^{\circ}$	2.0°	
$\gamma (B \rightarrow DK, D \rightarrow multibody states)$	s) ~ 9°	1.5°	
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1–2°	
$\alpha (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	
$\alpha (B \to \rho \rho)$	$\sim 7^{\circ}$	1–2° (*)	
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2 °	
α (combined)	$\sim 6^{\circ}$	1–2° (*)	
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, \ D^{\pm}K^0_S\pi^{\mp})$	20°	5°	

exp. syst. limited

theory syst. limited

most measurements with π^0 , γ , ν , many K^0 's cannot be done at LHCb

SuperB Υ (4S) B Physics reach, 2

Observable	B Factories (2 ab^{-1})	Super <i>B</i> (75 <i>ab</i> ⁻¹)
V _{cb} (exclusive)	4% (*)	1.0% (*)
V _{cb} (inclusive)	1% (*)	0.5% (*)
V _{ub} (exclusive)	8% (*)	3.0% (*)
V _{ub} (inclusive)	8% (*)	2.0% (*)
$\mathcal{B}(B o au u)$	20%	4% (†)
$\mathcal{B}(B \to \mu \nu)$	visible	5%
$\mathcal{B}(B o D au \nu)$	10%	2%
$\mathcal{B}(B \to \rho \gamma)$	15%	3% (†)
$\mathcal{B}(B o \omega \gamma)$	30%	5%
$A_{C\!P}(B o K^* \gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b ightarrow s \gamma)$	0.012 (†)	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K_S^0\pi^0\gamma)$	0.15	0.02 (*)
$S(\rho^{0}\gamma)$	possible	0.10
$A_{CP}(B \to K^* \ell \ell)$	7%	1%
$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$A^{FB}(B \to X_{s}\ell\ell)s_{0}$	35%	5%
$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$\mathcal{B}(B \to \pi v \overline{v})$	-	possible

†	exp.	syst.	limited
---	------	-------	---------

* theory syst. limited

most measurements with π^0 , γ , ν , many K^0 's cannot be done at LHCb

SuperB Υ (5S) B_s Physics reach

Observable	Error with 1 ab^{-1}	Error with 30 ab^{-1}
ΔΓ	0.16 <i>ps</i> ⁻¹	0.03 ps ⁻¹
Г	0.07 ps ⁻¹	0.01 ps ⁻¹
β_s from angular analysis	20 °	8 °
A ^s	0.006	0.004
A _{CH}	0.004	0.004
$\mathcal{B}(B_{S} \to \mu^+ \mu^-)$	-	< 8 × 10 ⁻⁹
$ V_{td}/V_{ts} $	0.08	0.017
$\mathcal{B}(B_{\mathcal{S}} o \gamma \gamma)$	38%	7%
β_{s} from $J/\psi\phi$	10°	3 °
β_{s} from $B_{s} \rightarrow K^{0}\overline{K}^{0}$	24°	11 °

• LHCb in general is more competitive for B_s measurements, but there are a few exceptions

SuperB B Physics reach, CKM fit

bands show 95% constraints

SuperB B Physics reach, MSSM charged Higgs hunt

• $B \rightarrow \tau \nu$ can exclude large MSSM parameters space, competitive with LHC

♦ ATLAS limits for 1 and 30 fb⁻¹ at 14 TeV superposed

SuperB Charm Physics reach

Charm mixing and CPV					
Mode	Observable	B Factories 2 <i>ab</i> ⁻¹	Super <i>B</i> 75 <i>ab</i> ⁻¹		
$D^0 ightarrow K^+ K^-$ $D^0 ightarrow K^+ \pi^-$	УСР У′ _D	$2-3 \times 10^{-3}$ $2-3 \times 10^{-3}$	5×10^{-4} 7×10^{-4}		
$D^0 o K^0_S \pi^+ \pi^-$	x′ ² УD x _D	$1-2 \times 10^{-4}$ $2-3 \times 10^{-3}$ $2-3 \times 10^{-3}$	3×10^{-5} 5×10^{-4} 5×10^{-4}		
Average	УD x _D	$1-2 \times 10^{-3}$ $2-3 \times 10^{-3}$	3×10^{-4} 5×10^{-4}		

Charm FCNC					
Channel	Sensitivity				
$\begin{array}{c} D^{0} \to e^{+}e^{-}, D^{0} \to \mu^{+}\mu^{-} \\ D^{0} \to \pi^{0}e^{+}e^{-}, D^{0} \to \pi^{0}\mu^{+}\mu^{-} \\ D^{0} \to \eta e^{+}e^{-}, D^{0} \to \eta \mu^{+}\mu^{-} \\ D^{0} \to K^{0}_{S}e^{+}e^{-}, D^{0} \to K^{0}_{S}\mu^{+}\mu^{-} \\ D^{+} \to \pi^{+}e^{+}e^{-}, D^{+} \to \pi^{+}\mu^{+}\mu^{-} \end{array}$	$ \begin{array}{r} 1 \times 10^{-8} \\ 2 \times 10^{-8} \\ 3 \times 10^{-8} \\ 3 \times 10^{-8} \\ 1 \times 10^{-8} \end{array} $				
$D^{0} \rightarrow e^{\pm}\mu^{\mp}$ $D^{+} \rightarrow \pi^{+}e^{\pm}\mu^{\mp}$ $D^{0} \rightarrow \pi^{0}e^{\pm}\mu^{\mp}$ $D^{0} \rightarrow \eta e^{\pm}\mu^{\mp}$ $D^{0} \rightarrow K^{0}_{S}e^{\pm}\mu^{\mp}$	$ \begin{array}{r} 1 \times 10^{-8} \\ 1 \times 10^{-8} \\ 2 \times 10^{-8} \\ 3 \times 10^{-8} \\ 3 \times 10^{-8} \end{array} $				
$\begin{array}{c} D^{+} \to \pi^{-}e^{+}e^{+}, \ D^{+} \to K^{-}e^{+}e^{+} \\ D^{+} \to \pi^{-}\mu^{+}\mu^{+}, \ D^{+} \to K^{-}\mu^{+}\mu^{+} \\ D^{+} \to \pi^{-}e^{\pm}\mu^{\mp}, \ D^{+} \to K^{-}e^{\pm}\mu^{\mp} \end{array}$	1×10^{-8} 1×10^{-8} 1×10^{-8}				

SuperB D^0 -mixing reach, using only $\Upsilon(4S)$ data

Super $B D^0$ – mixing reach, using also charm threshold data

entangled D mesons produced at threshold used to measure Dalitz strong phases

INF

SuperB Tau Physics NP probes

Lepton Flavor violation in tau decays

- many NP models predict tau LFV within SuperB sensitivity
- unambiguous NP probe, negligible theory uncertainties
- ► MSSM-seesaw "naturally" expects some BRs in the sensitivity range of SuperB
- SuperB is complementary with LHC and MEG

 $(\mu \rightarrow e\gamma)$ can be accidentally suppressed, tau measurements are complementary)

▶ best channels: $\tau \rightarrow \mu \gamma, \tau \rightarrow 3\ell, \tau \rightarrow \mu \rho, \tau \rightarrow \mu \eta$

Tau g-2

- ► if MSSM explains today's $\Delta a_{\mu} \approx 3.10^{-9}$ discrepancy $\rightarrow \Delta a_{\tau} \approx m_{\tau}^2/m_{\mu}^2 \cdot \Delta a_{\mu} \approx 1.10^{-6}$
- SuperB sensitivity is in the range of such prediction

Tau EDM and CPV

- SuperB sensitive to some few NP model CPV effects
- tau EDM constrained by electron EDM upper limit to a range inaccessible by SuperB despite SuperB can substantially improve the existing limits
- all: beam polarization improves precision & helps discriminating NP models

SuperB sensitivity to Tau LFV

• repeating BABAR analysis insures an improvement of $\sqrt{\mathcal{L}_{\text{SuperB}}/\mathcal{L}_{\text{BABAR}}} \approx \sqrt{150} \approx 12$

• if n. of expected background events ~1 events, improvement of $\mathcal{L}_{\text{SuperB}}/\mathcal{L}_{\text{BABAR}} \approx 150$

some of previous slide estimates have been refined and updated in the white paper

Process	Expected 90% CL upper limit	3σ evidence reach		
$\mathcal{B}(au o \mu \gamma)$	2.4·10 ⁻⁹	5.4·10 ⁻⁹		
$\mathcal{B}(au o oldsymbol{e} \gamma)$	3.0·10 ⁻⁹	6.8·10 ⁻⁹		
$\mathcal{B}(au o \ell \ell \ell)$	$2.3 - 8.2 \cdot 10^{-10}$	1.2-4.0·10 ⁻⁹		

SuperB beam polarization effects on $\tau \rightarrow \mu \gamma$ LFV search

A.Lusiani (INFN & SNS, Pisa)

The SuperB project

SuperB beam polarization effects on $\tau \rightarrow 3\ell$ LFV search

Tau g-2 at SuperB with beam polarization

MSSM would shift muon g-2 by about the presently observed discrepancy $\Delta a_{\mu} \approx 3.10^{-9}$

Δa_{μ} and Δa_{τ} for various SPS points						
SPS	1a	1 b	2	3	4	5
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1
$\Delta a_{\tau} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3
(specific para	(specific parameters can produce Δa_{τ} as high as 1.10 ⁻⁵)					

- J.Bernabeu et al., JHEP098P1108 estimate SuperB $\sigma(a_{\tau}) = [0.75 1.7] \cdot 10^{-6}$
 - SuperB actually measures $a_{\tau}(q^2)$ from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - however, Δa_{τ} from high energy NP contributions is constant for small q^2
 - \blacktriangleright real part from τ polar angle distribution or transv.&long. polarization

from tau EDM studies (see next slides) with more realistic assumptions \rightarrow SuperB $\sigma(a_{\tau}) \sim 2.4 \cdot 10^{-6}$

Tau EDM at SuperB

- ♦ $|d_e| < 1.6 \cdot 10^{-27} e \text{ cm}$ at 90% CL, 10.1103/PhysRevLett.88.071805 / PDG10
- most NP models expect $|d_{\tau}| \propto (m_{\tau}/m_e)|d_e|$
- SuperB 2010 Physic Report reviews NP models expectations and concludes that: $|d_e|$ upper limit $\rightarrow |d_{\tau}^{NP}| < 10^{-22} e \text{ cm}$
- SuperB actually measures $d_{\tau}(q^2)$ form factor from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - ▶ however, high energy NP contributions are constant for small q^2
- beam polarization permits measurements based on single tau distributions
- ♦ J.Bernabeu et al., arXiv:0707.1658v1 [hep-ph], estimate SuperB $\sigma(d_{\tau}) \approx 7.2 \cdot 10^{-20} e \text{ cm}$
 - 100% electron beam polarization, no uncertainty
 - only $\tau \to \pi \nu, \tau \to \rho \nu$, no reconstruction uncertainty
- with more realistic assumptions, Super $B \sigma(d_{\tau}) \approx 10 \cdot 10^{-20} e \text{ cm}$ (note that information can be obtained also from the other decay channels)
- ♦ extrapolate Belle EDM search, **Phys. Lett. B551, 16 (2003), hep-ex/0210066** → SuperB $\sigma(d_{\tau}) \approx 17-34\cdot10^{-20}e$ cm (both real and imaginary parts)

Tau CPV at SuperB

Direct searches

Precision electroweak measurements

Costs and schedules

- mid-2010 white paper reports cost estimates and proposed schedule for accelerator and detector
- uncertainties from currency rates, not-yet-defined detector responsabilities
- value of recycled components assessed as cost of preplacement from scratch
- INFN 2010-2012 planning report includes proposed spending profiles and INFN budget contributions
- special government budget (270 MEuro) will fund SuperB accelerator
- SuperB detector funds will come from INFN & other collaborating institutes
 - provisional 2011 funds already allocated and partially already assigned

Accelerator cost, from accelerator white paper

	Table	26.1: Accel	erator buc	lget estima	te		
WBS	Item	Number of units	EDIA (mm)	Labor (mm)	M&S (k€)	Total (k€)	Repl. Value (k€) (not in total)
2.00	Overall SuperB Accelerator total		3159	2852	285350	357476	85760
2.01	Contingency and VAT (50%)		1053	951	95117	119159	0
2.02	Overall Super B Project Sub-tot	al	2106	1901	190233	238317	85760

to be compared with 270 MEuro funding in 6-years

Accelerator schedule, from accelerator white paper

	Т	able 25.1: Construction	on schedule					
Year	Quarter 1	Quarter 2	Quarter 3	Quarter 4				
1	 Tunnel design com Injector component s Ring component s Tunnel contracts a Injector component Ring components 	npleted nts designed tudied warded nts ordered designed	 Ring tunnel digging started Injector tunnel digging started Injector components started manufacturing Ring components designed Tunnel digging continued Injector components are in manufacturing Ring components orders started 					
2	 Ring tunnel diggin Injector tunnel fin Injector component Ring components 	ng continues ished nts start to arrive orders finished	 Ring tunnel is con Injector installation Ring components installation PEP-II component SLAC 	Ring components orders started Ring tunnel is completed Injector installation starts Ring components start to arrive for installation PEP-II components shipped from				
3	Injector installatioRing component i	n continues nstallation starts	 Injector installation is complete starts Ring installation continues 					
4	Injector checkoutRing installation c	out startsInjector beam commissioning startson continuesRing installation is completedRing checkout starts						
5	 Ring beam commit 	issioning starts	 SuperB beam del starts 	ivery to detector				

Detector cost in kEuro, from detector white paper

1	SuperB detector	4037	2422	52953	48922
1.0	Interaction region	21	12	860	0
1.0.1	Be Beampipe	10	4	260	0
1.0.2	Tungsten Shield	9	6	540	0
1.0.3	Radiation monitors	2	2	60	0
1.1	Tracker (SVT + Strip + MAPS)	408	442	6444	0
1.1.1	SVT	222	309	4326	0
1.1.2	L0 Striplet option	36	55	542	0
1.1.3	L0 MAPS option	1 50	78	1576	0
1.1.4	L0 Hybrid Pixel option	156	84	1684	0
1.2	DCH	165	139	3421	0
1.3	PID	116	236	5820	7138
1.3.1	DIRC Barrel (Focusing DIRC)	116	236	5820	7138
1.4	EMC	219	360	12147	31574
1.4.1	Barrel EMC	20	5	205	31574
1.4.2	Forward EMC	171	312	11565	0
1.4.3	Backward EMC	28	43	377	0
1.5	IFR	37	184	1374	0
1.6	Magnet	93	59	3767	10210
1.7	Electronics	994	342	9234	0
1.8	Online System	912	24	2074	0
1.9	Installation and integration	353	624	7596	0
1.A	Project Management	720	0	216	0

Detector schedule, from detector white paper

ID	Task Name		Duration	Y1 H1 H:	Y2	H2	Y3 H1	H2	Y4 H1	H2	Y5 H1	H2	Y6 H1	H2	Y7 H1
1	Approval		0 wks	5/3											
2	Detector Design &	Construction	182 wks												
3	Design SVT		52 wks			1									
4	Construct SVT		130 wks									1			
5	Design DCH		52 wks			1									
6	Construct DCH		130 wks												
7	Design PID		52 wks			L									
8	Construct PID		130 wks												
9	Design forward E	EMC	52 wks												
10	Construct forwar	d EMC	130 wks												
11	Design IFR		52 wks												
12	Construct IFR		120 wks			L									
13	Detector Technic	cal Design Report	0 wks			4/29									
14	Dismantle & Move	Babar	91 wks												
15	Design Tooling		26 wks		<u>1</u>										
16	Dismantle Babar	•	52 wks												
17	Component trans	sportation	26 wks												
18	Detector Installation	on & Commissioning	200 wks												
19	Installation steel		52 wks												
20	Installation magr	net	13 wks						``						
21	Installation IFR		20 wks												
22	Installation EMC		8 wks												
23	Installation PID		8 wks								<u> </u>				
24	Installation DCH		8 wks									1			
25	Installation SVT		8 wks												
26	Commissioning		26 wks												
27	Cosmic Ray test		26 wks												
28	Commissioning of	on beam	15 wks											- -	
29	Detector ready for	collision	0 wks											•	11/27
		Task	Miles	tone	•		Exte	ernal Tas	ks			1			
Project:	SBF_schedule_v1.2	Split	Sum	marv			Exte	ernal Mile	estone			_			
Date: Fri	16/4/10	Progress	Droio	, ot Summary	·	_	Dee	dline		• 1,					
I		riogress	Proje	ci summary			Dea	uine	7	7					

Overall schedule and costs, from INFN 2010-2012 plan

Componenti Super B	Y1	Y2	Y3	Y4	Y5	Y6	¥7	Y8	Y9	Y10
Sviluppo Acceleratore (130 M€)	20	50	60					í		
Costruzione infrastrutture, Sviluppo damping rings, Sviluppo transfer lines, Messa in funzione linac, Damping lines transfer lines, Costruzione facility end-user										
Sviluppo Centri Calcolo (43 M€) Sviluppo progettazione costruzione centro di calcolo per analisi dati	5	15	23							
Completamento Acceleratore (126 M€) Installazione componenti negli archi acceleratore, Installazione zona di interazione, Messa in funzione acceleratore				42	42	42				
Utilizzo installazione (80 M€) Costi operazione e manutenzione acceleratore							20	20	20	20
Totale Infrastrutture tecniche (379 M€)	25	65	83	42	42	42	20	20	20	20
Overheads INFN (34.3 M€ equivalente al 9%)	2.3	5.9	7.5	3.8	3.8	3.8	1.8	1.8	1.8	1.8
Cofinanziamento INFN (150 M€)	15	15	15	15	15	15	15	15	15	15
Costo Totale del progetto (563.3 M€)	42.3	85.9	105.5	60.8	60.8	60.8	36.8	36.8	36.8	36.8

Final remarks

- SuperB CDR and white paper contain much more I could introduce here
- SuperB can do good physics at a reasonable cost
- for many measurements, is competitive & complementary with other experiments
- can provide fruitful competition with Belle2
- has some unique features (luminosity, beam polarization, charm threshold running), which permit distinctive and useful physics accomplishments
- collaboration from Spain is welcome in any topic you prefer
 - physics
 - detector
 - accelerator-related issues (post-docs to be recruited here)