Lepton Flavor Violation

María J. Herrero

Dpt. Física Teórica/IFT, Universidad Autónoma, Madrid

SuperB: Flavour Physics, Centro de Ciencias de Benasque Pedro Pascual, Spain, 19-21 January 2011

Why Lepton Flavour Violation (LFV) ?

* LFV occurs in Nature: LFV observed in neutral sector $\nu_i - \nu_j$ oscillations DO NOT conserve Lepton Flavour Number Does LFV happen in the charged sector?: Not seen yet

* Challenging exp. bounds in the charged sector : present/future (see next) MEGA, SINDRUM, BaBar, Belle /MEG, SuperB, PRISM/PRIME

* In SM: no LFV if $m_{\nu} = 0$; extremely small if $m_{\nu} \neq 0$. For example:

Highly suppressed by small neutrino masses

Any observation of LFV points to New Physics Beyond SM

Where to look for LFV ?

- Decays of standard leptons: (the most studied ones)
 - τ : BaBar, Belle, SuperB, μ : MEGA/MEG, SINDRUM
 - * Radiative LFV decays: $l_j \rightarrow l_i \gamma$ ($i \neq j$) $l_{3,2,1} = \tau, \mu, e$
 - * Leptonic LFV decays: $l_j \rightarrow l_i l_k l_k$ ($\tau \rightarrow 3\mu$ maybe also at LHC)
 - ***** Semileptonic LFV tau decays
 - $\tau \to \mu \eta, \ \tau \to \mu f_0, \ \tau \to \mu V \ (V = \rho, \phi, \omega, K^*)$ $\tau \to \mu PP \ (PP = \pi \pi, KK, \pi K)$
- Other decays considered in the literature: $D_0 \rightarrow l_j l_i$, $Z \rightarrow l_j l_i$, $H \rightarrow l_j l_i$, $B \rightarrow \mu e$, $K \rightarrow \mu \nu / K \rightarrow e \nu$, ...
- μe conversion in heavy nuclei $\mu^- N \rightarrow e^- N$: SINDRUM-II Coherent process (enhanced by $\sim Z^5 Z =$ protons in N) Clear signal: single mono-energetic e
- New LFV process propossed in a muonic atom (Kolke et al PRL 2010):

 $\mu^-e^-N \rightarrow e^-e^-N$, is a 2-body decay, larger PS than $\mu^+ \rightarrow e^+e^+e^$ overwrap between μ^- and e^- enhanced by $\sim Z^3$ over muonium.

• Decays of non standard particles: SUSY etc One example: LFV stau decays $\tilde{\tau} \rightarrow \mu \chi$ could be seen at LHC.

Experimental Status on LFV

(I thank Simon Eidelman for help in the update)

Present experimental bounds and future sensitivity to LFV decays:

I) radiative $l_i \rightarrow l_j \gamma$ and leptonic $l_i \rightarrow l_j ll$

LFV decay	Current best UL (90%CL)	Future sensitivity (?)
$BR(\mu o e \gamma)$	$1.2 imes 10^{-11}$ (MEGA 1999)	
	$2.8 imes10^{-11}$ (MEG 2010)	$10^{-13} - 10^{-14}$ MEG
$BR(au o e \gamma)$	$3.3 imes10^{-8}$ (BaBar 2010)	$3 imes 10^{-9}~{ m Super}{ m B}$
$BR(au o \mu \gamma)$	$4.4 imes 10^{-8}$ (BaBar 2010)	$2.4 imes10^{-9}~{ m SuperB}$
$BR(\mu o e e e)$	1×10^{-12} (SINDRUM 1988)	$10^{-13} - 10^{-14}$ MEG
BR(au o e e e)	$2.7 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB
$BR(au o \mu \mu \mu)$	$2.1 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB
$BR(au o e\mu\mu)$	$2.7 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB
$BR(au o \mu e e)$	$1.8 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB

(?) = Future sensitivities are under discussion

SuperB potential for LFV also to be discussed here, at Bensaque....

II) Semileptonic tau decays

competitive with leptonic modes					
LFV decay	Current best UL (90%CL)	Future sensitivity (?)			
$\Box BR(\tau \to \mu \eta)$	$5.1 imes 10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$BR(au o \mu f_0)$	$3.4 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$BR(au o \mu \pi)$	$5.8 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$ $ BR $(au ightarrow \mu ho)$	$1.2 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$ $ BR $(au ightarrow \mu \phi)$	$8.4 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$ $ BR $(au ightarrow \mu \omega)$	$4.7 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$BR(\tau \to \mu K^{*0})$	$7.2 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$BR(au o \mu ar{K}^{*0})$	$7.0 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$ BR(\tau \to \mu \pi^+ \pi^-) $	$3.3 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$ BR(\tau \to \mu K^+ K^-) $	$6.8 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$ BR(\tau \to \mu \pi^+ K^-) $	$16 imes 10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			
$ BR(\tau \to \mu K^+ \pi^-) $	$10 imes10^{-8}$ (Belle 2010)	$10^{-9} - 10^{-10}$ SuperB			

Similar bounds for $\tau \to e$ semileptonic modes

(?) = Future sensitivities are under discussion

III) $\mu - e$ conv. in nuclei

(From PDG2010 and Kuno's talk at NOW2010 conf.)

LFV process	Current best UL (90%CL)	Fut. sensitivity (?)
$CR(\mu - e, Au)$	$7.0 imes 10^{-13}$ (SINDRUM2 2004)	10 ⁻¹⁶ Mu2E
$CR(\mu - e, AI)$		10 ⁻¹⁶ COMET
$CR(\mu-e,Ti)$	$4.3 imes 10^{-12}$ (SINDRUM2 2004)	10^{-18} PRISM

SINDRUM2 (PSI), Mu2E (Fermilab), COMET (COherent Muon to Electron Transition) (JPARC), PRISM/PRIME (JPARC)

(?) = Future sensitivities are under discussion

LFV Beyond SM

- Many models BSM produce sizeable LFV rates
 - ★ SM + heavy (but not too heavy) neutrinos $m_N \sim O(TeV)$
 - **★** SUSY + SeesawI with heavy neutrinos $m_N \sim 10^{13-15} GeV$
 - **★** SUSY + SeesawII with heavy scalar Triplets $m_T \sim 10^{13-15} GeV$
 - \star SUSY + RPV
 - ***** Models with extended Higgs sector:

Little Higgs Models, Additional doblets, triplets etc.

- ***** Models with extra generations
- ***** Models with extra dimensions, etc....
- Most models produce too much LFV
 - \longrightarrow Flavour problem of BSM

 \longrightarrow Usually some extra condition is required to reduce Flavour mixing. For instance in SUSY: some universality conditions on soft SUSY breaking mass parameters at the GUT scale

 \rightarrow Models with Minimal Lepton Flavour Violation (MLFV)

• SUSY usually preferred due to the Hierachy Problem of BSM

General Theoret. Description of LFV

(see, for example, review by Kuno and Okada 2001)

General Lagrangian for $\mu - e$ transitions (similar for $\tau - \mu$, $\tau - e$):

$$\mathcal{L} = -\frac{4G_F}{\sqrt{2}} (m_\mu A_R \bar{\mu} \sigma^{\mu\nu} P_L eF_{\mu\nu} + m_\mu A_L \bar{\mu} \sigma^{\mu\nu} P_R eF_{\mu\nu})$$

 $-\frac{4G_F}{\sqrt{2}}\sum_f (g_{L,\alpha,f}\bar{e}\mathcal{O}^{\alpha}P_L\mu + g_{R,\alpha,f}\bar{e}\mathcal{O}^{\alpha}P_R\mu)(\bar{f}\mathcal{O}_{\alpha}f) + h.c$

dipole (photonic diag) + contact int.

where $\alpha = S, P, V, A, T$ and $f = l_i, q_i$

the values of the form factors A_L, A_R , and $g_{L/R,\alpha,f}$ depend on model

If photonic diagram dominates \longrightarrow correlations among LFV processes ex.: BR($\mu \rightarrow eee$) ~ $\alpha \times$ BR($\mu \rightarrow e\gamma$); CR($\mu - e, N$) ~ $\alpha \times$ BR($\mu \rightarrow e\gamma$)

 $(l_j \rightarrow l_i \gamma)$ explore less types of new physics than $(l_j \rightarrow l_i l_k l_k)$, $(\mu - e, N)$, LFV τ decays (lep and semilep)

 \longrightarrow ex.: $(l_j \rightarrow l_i \gamma)$ not sensitive to NP in Higgs neutral sector

Generic diagrams in LFV

Applies to : $l_j \rightarrow l_i l_k l_k$, $\tau \rightarrow \mu P \ \tau \rightarrow \mu P P$, $\tau \rightarrow \mu V$, $\mu - e$ conv. in nucl.

New Physics can enter in: 1) shaded areas (via loops),

2) different mediators, ex.: Z' (Bernabeu 1993), Higgs bosons..(tree)

Ex.: If Higgs-mediated diag. dominates over the photon-mediated one, the correlations with $l_j \rightarrow l_i \gamma$ are lost: this is a clear signal of New Physics. Different models give different ratios:

 $\mathsf{BR}(l_j \to l_i l_k l_k) / \mathsf{BR}(l_j \to l_i \gamma)$, $\mathsf{CR}(\mu - e, N) / \mathsf{BR}(\mu \to e \gamma)$, etc.

Ratios of LFV rates in different BSM scenarios

Different LFV models predict different ratios

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\frac{BR(\mu^- \rightarrow e^- e^+ e^-)}{BR(\mu \rightarrow e\gamma)}$	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$	0.062.2
$\frac{BR(\tau^{-} \rightarrow e^{-}e^{+}e^{-})}{BR(\tau \rightarrow e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	0.072.2
$\frac{BR(\tau \rightarrow \mu^{-} \mu^{+} \mu^{-})}{BR(\tau \rightarrow \mu \gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.060.1	0.062.2
$\frac{BR(\tau^- \rightarrow e^- \mu^+ \mu^-)}{BR(\tau \rightarrow e\gamma)}$	0.040.3	$\sim 2\cdot 10^{-3}$	0.020.04	0.031.3
$\frac{BR(\tau^{-} \rightarrow \mu^{-} e^{\dot{+}} e^{-})}{BR(\tau \rightarrow \mu \gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	0.041.4
$\frac{BR(\tau^- \rightarrow e^- e^+ e^-)}{BR(\tau^- \rightarrow e^- \mu^+ \mu^-)}$	0.82	~ 5	0.30.5	1.52.3
$\frac{BR(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{BR(\tau^- \rightarrow \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510	$1.4 \dots 1.7$
$\frac{CR(\mu \top i \rightarrow e \top i)}{BR(\mu \rightarrow e\gamma)}$	$10^{-3} \dots 10^{2}$	$\sim 5\cdot 10^{-3}$	0.080.15	$10^{-12} \dots 26$

(Ex.: table from Buras et al. 2010)

LHT= Littlest Higgs model with T-parity (Blanke(2009),delAguila(2009)) Z-dominance MSSM (dipole)= MSSM without Higgs (Ellis(2002),Brignole(2004)) γ -dominance MSSM (Higgs)= MSSM with Higgs (Paradisi(2006)) γ , H competition SM4= SM + 4th generation (Buras(2010))

In models with γ -dominance, ratios fixed to: $\frac{BR(l_j \to 3l_i)}{BR(l_j \to l_i \gamma)} = \frac{\alpha}{3\pi} (\log \frac{m_{l_j}^2}{m_{l_i}^2} - \frac{11}{4}) = 6.10^{-3}, 1.10^{-2}, 2.10^{-3} \text{ for } (l_j l_i) = (\mu e), (\tau e), (\tau \mu).$

The most popular scenario for LFV: SUSY + Seesaw with heavy ν_R

How to generate LFV via SUSY loops

(A. Masiero and F. Borzumati 1986)

• 1.- Need flavour off-diagonal slepton mass entries

 Y_{ν} generate at one-loop (for instance via **RGE-running**) flavour off diagonal $M_{\tilde{l}}^{ij}$ and $M_{\tilde{\nu}}^{ij}$ $(i \neq j)$

• 2.- Flavour changing slepton propagators into loops then generate LFV

$$\begin{aligned} \mathsf{Example:} \quad \mu \to e\gamma \\ M_l^2 &= \left(\begin{array}{cc} M_{LL}^{ij2} & M_{LR}^{ij2} & M_{RR}^{ij2} \end{array} \right) \Rightarrow \underbrace{\overset{\mu}{\longrightarrow} \overset{i}{\longrightarrow} \overset{i}{\longrightarrow} \overset{i}{\longrightarrow} \overset{e}{\longrightarrow}} \\ \mathsf{BR simple in LLog and MIA} \\ M_{LL}^{ij2} &= -\frac{1}{8\pi^2} (3M_0^2 + A_0^2); \ (i \neq j) (Y_\nu^+ LY_\nu)_{ij} \\ M_{LR}^{ij2} &= -\frac{3}{16\pi^2} A_0 \frac{v_1}{\sqrt{2}} Y_{l_i} (Y_\nu^+ LY_\nu)_{ij} \\ M_{RR}^{ij2} &= 0; \ L_{ii} \equiv \log \left(\frac{M_X}{m_{N_i}} \right) \\ \mathsf{BR}(\mu \to e\gamma) \simeq \frac{\alpha^3 \tan^2 \beta}{G_F^2 M_{SUSY}^4} \left| \delta_{LL}^{21} \right|^2; \ \delta_{XY}^{ij} \equiv \frac{M_{XY}^{ij2}}{M_{SUSY}^2}; \ XY = LL, LR, RR; \ ij = 21, 31, 32 \end{aligned}$$

LFV need: large Y_{ν} , large $\tan \beta \equiv \frac{\langle H_2 \rangle}{\langle H_1 \rangle}$ and not too large $m_{\rm SUSY}$

Why seesaw mechanism for m_{ν} generation

* The seesaw is the simplest mechanism explaining small m_{ν} * If Majonana ν , the seesaw allows for large Y_{ν} couplings * If Majorana ν , L not preserved, viable BAU via Leptogenesis

$$-\mathcal{L}_{Y+M} = Y^e \overline{l}_L e_R H_1 + Y^\nu \overline{l}_L \nu_R H_2 + \frac{1}{2} m_M \nu_R^T C \nu_R + h.c.$$

 $m_e = Y_e < H_1 >, \ m_D = Y_\nu < H_2 >, \ < H_{1,2} > = 174 \ GeV \times (\cos\beta, \sin\beta)$

Both Dirac mass
$$m_D$$
 and
Majorana mass m_M involved $\longleftrightarrow M^{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & m_M \end{pmatrix}$

 $m_D << m_M \Rightarrow$ seesaw: $m_{\nu} = -m_D m_M^{-1} m_D^T$ (light), $m_N = m_M$ (heavy) For $Y_{\nu} \sim \mathcal{O}(1)$, $m_M \sim 10^{14}$ GeV \Rightarrow For 1 gen. \rightarrow 2 mass eigenstates $\begin{cases} m_{\nu} \sim 0.1 \text{ eV} \text{ (OK with data)} \\ m_N \sim 10^{14} \text{ GeV} \end{cases}$

Generalization to three generations also OK with data

Seesaw parameters versus neutrino data

SeeSaw equation: $m_{\nu} = -m_D m_N^{-1} m_D^T$; $m_N = m_M$; $m_D = Y_{\nu} < H_2 >$

Solution:

$$m_D = i \sqrt{m_N^{diag}} \, R \sqrt{m_\nu^{diag}} \, U_{\rm PMNS}^{\dagger}$$

[Casas, Ibarra ('01)]

R is a 3 \times 3 complex matrix and orthogonal

$$R = \begin{pmatrix} c_2c_3 & -c_1s_3 - s_1s_2c_3 & s_1s_3 - c_1s_2c_3 \\ c_2s_3 & c_1c_3 - s_1s_2s_3 & -s_1c_3 - c_1s_2s_3 \\ s_2 & s_1c_2 & c_1c_2 \end{pmatrix}, c_i = \cos\theta_i, s_i = \sin\theta_i, \theta_{1,2,3} \text{ complex}$$

Parameters: $\theta_{ij}, \delta, \alpha, \beta, m_{\nu_i}, m_{N_i}, \theta_i$ (18); m_{N_i}, θ_i drive the size of Y_{ν}

Hierarchical ν 's : $m_{\nu_1}^2 << m_{\nu_2}^2 = \Delta m_{\rm sol}^2 + m_{\nu_1}^2 << m_{\nu_3}^2 = \Delta m_{\rm atm}^2 + m_{\nu_1}^2$

2 Scenarios

• Degenerate N's $m_{N_1} = m_{N_2} = m_{N_3} = m_N$ • Hierarchical N's $m_{N_1} << m_{N_2} << m_{N_3}$

Connection between LFV and Neutrino Physics In the MIA the LFV is parameterized by $\delta_{XY}^{ij} \equiv \frac{M_{XY}^{ij2}}{M_{SUSY}^2}$. Within SUSY-Seesaw and in the LLog aprox. δ_{LL}^{ij} dominate. For instance, in the tau-mu sector:

$$\delta_{LL}^{32}|_{\text{LLog}} \equiv \delta_{32} = -\frac{1}{8\pi^2} \frac{(3M_0^2 + A_0^2)}{M_{\text{SUSY}}^2} \left(Y_{\nu}^{\dagger} L Y_{\nu}\right)_{32}$$

 $L_{ii} = \log(M_X/m_{N_i})$; M_{SUSY} is an average SUSY mass

The relation with neutrino physics comes in,

$$v_{2}^{2} \left(Y_{\nu}^{\dagger} L Y_{\nu}\right)_{32} = L_{33} m_{N_{3}} \left[\left(\sqrt{m_{\nu_{3}}}c_{1}c_{2}c_{13}c_{23} - \sqrt{m_{\nu_{2}}}s_{1}c_{2}c_{12}s_{23}\right) \\ \left(\sqrt{m_{\nu_{3}}}c_{1}^{*}c_{2}^{*}s_{23} + \sqrt{m_{\nu_{2}}}s_{1}^{*}c_{2}^{*}c_{12}c_{23}\right) \right] \\ + L_{22} m_{N_{2}} \left[\left(\sqrt{m_{\nu_{3}}}(-s_{1}c_{3} - c_{1}s_{2}s_{3})c_{23} + \sqrt{m_{\nu_{2}}}(s_{1}s_{2}s_{3} - c_{1}c_{3})c_{12}s_{23}\right) \\ \left(\sqrt{m_{\nu_{3}}}(-s_{1}^{*}c_{3}^{*} - c_{1}^{*}s_{2}^{*}s_{3}^{*})s_{23} + \sqrt{m_{\nu_{2}}}(c_{1}^{*}c_{3}^{*} - s_{1}^{*}s_{2}^{*}s_{3}^{*})c_{12}c_{23}\right) \right] \\ + L_{11} m_{N_{1}} \left[\left(\sqrt{m_{\nu_{3}}}(s_{1}s_{3} - c_{1}s_{2}c_{3})c_{12}c_{23} + \sqrt{m_{\nu_{2}}}(s_{1}s_{2}c_{3} + c_{1}s_{3})c_{12}s_{23}\right) \\ \left(\sqrt{m_{\nu_{3}}}(s_{1}^{*}s_{3}^{*} - s_{1}^{*}s_{2}^{*}s_{3}^{*})c_{12}s_{23} - \sqrt{m_{\nu_{2}}}(s_{1}^{*}s_{2}^{*}c_{3}^{*} + c_{1}^{*}s_{3}^{*})c_{12}c_{23}\right) \right]$$

The size of m_{N_i} and θ_i drive the size of δ_{ij} , hence the LFV rates Within SUSY-Seesaw $\delta_{32} > \delta_{21}$, δ_{31} , hence, larger $\tau - \mu$ rates

Size of δ_{32} in Constrained SUSY-Seesaw models

(Plots from Herrero(2009))

Hierarchical N

Degenerate N

- Large size of $|\delta_{32}|$ for large $\theta_{1,2}$ and/or large m_N if degenerate heavy neutrinos (large m_{N_3} if hierarchical. Nearly independent on $m_{N_{1,2}}$)
- Complex $\theta_{1,2}$, with large: mod (2 < $|\theta_{1,2}|$ < 3); arg ($\pi/4$ < arg $\theta_{1,2}$ < $3\pi/4$); large $m_N \sim 10^{14} 10^{15} \text{ GeV} \Rightarrow |\delta_{32}| \sim 0.1 10$
- In contrast to $|\delta_{21}|, |\delta_{31}| < 10^{-3}$

Next: Our contribution to LFV in SUSY-Seesaw Models

From several papers in collaboration with:

various coleagues and PhD students

E.Arganda, A.Curiel, M.H. and D.Temes PRD71,035011(2005) Higgs E.Arganda and M.H. PRD73,055003(2006) $l_j \rightarrow 3l_i$, $l_j \rightarrow l_i \gamma$ S.Antusch, E.Arganda, M.H. and A.Teixeira JHEP11(2006)090 θ_{13} E.Arganda, M.H. and A.Teixeira JHEP10(2007)104 $\mu - e$ conv. nuclei E.Arganda, M.H. and J.Portolés JHEP06(2008)079 semilep. τ decays M.H.,J.Portolés, A.Rodríguez-Sánchez PRD80,015023(2009) $\tau \rightarrow \mu f_0$

Summary of our Work

• Predictions of LFV rates in SUSY-Seesaw

*
$$l_j \rightarrow l_i \gamma; \ l_j \rightarrow 3l_i; \ h^0, H^0, A^0 \rightarrow l_j \bar{l}_i$$

* $\tau \rightarrow \mu P \ (P = \eta, \pi) \text{ and } \tau \rightarrow \mu f_0$
* $\tau \rightarrow \mu PP \ (PP = \pi^+ \pi^-, \pi^0 \pi^0, K^+ K^-, K_0 \bar{K}_0)$
* $\tau \rightarrow \mu V \ (V = \rho, \phi, \text{ related to } \tau \rightarrow \mu PP)$
* $\mu - e \text{ conversion in different nuclei: Ti, Au,...}$

- Full one-loop computation of LFV rates
- Require compatibility with ν data
- Compare predictions with LFV bounds
- Explore sensitivity to SUSY, Higgs and heavy ν_R
- Provide a set of simple formulas that approximate well the full result and are usefull for comparison with data and with other authors

Full 1-loop in $l_j \rightarrow 3l_i$, $\tau \rightarrow \mu P \ \tau \rightarrow \mu PP$, $\tau \rightarrow \mu V$, $\mu - e$ conv. in nucl.

Our framework for computation of LFV rates

- Use seesaw (Type I) for ν mass generation
- Within SUSY-seesaw (MSSM content+ $3\nu_R$ + $3\tilde{\nu}_R$) Two simple scenarios for soft parameters at $M_X = 2 \times 10^{16}$ GeV:
 - ★ Universal soft parameters: CMSSM-seesaw $(M_0, M_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu))$
 - ★ Non-universal soft Higgs masses: NUHM-seesaw $(M_0, M_{1/2}, A_0, \tan \beta, \operatorname{sign}(\mu), M_{H_1} = M_0 \sqrt{1 + \delta_1}, M_{H_2} = M_0 \sqrt{1 + \delta_2})$
- LFV generated by 1-loop running from M_X to M_Z Full RGEs including ν and $\tilde{\nu}$ sectors (No Llog approx)
- Mass eigenstates for SUSY, neutrinos and Higgs (No MI approx)
- Numerical estimates:
 - ★ SPheno (W.Porod) for int. of RGEs and SUSY spectrum
 - ★ Additional subroutines for all LFV processes (by us) Also subroutines for checks of BAU, EDM and $(g-2)_{\mu}$

Lighter H in NUHM than in CMSSM \Rightarrow larger LFV

- In CMSSM ($\delta_{1,2} = 0$) a heavy SUSY spectrum (large M_0 , $M_{1/2}$) \Rightarrow heavy H^0 and A^0 .
- In NUHM, a proper choice of δ_1 and δ_2 , even for very large SUSY masses of $\mathcal{O}(1 \text{ TeV})$, can lead to light H^0 and A^0 , $m_{H^0,A^0} \lesssim 200 \text{ GeV}$ H^0 and A^0 become lighter with the increase of tan β .
- h^0 remains always light (for all tan β and M_{SUSY}), $m_{h_0} < 150$ GeV.
- H^0 and/or A^0 relevant Higgses in H-mediated LFV processes: Their couplings to I = -1/2 fermions are enhanced at large tan β .

Other works on LFV from SUSY loops (etc..)

- Seminal: Masiero, Borzumati (86): LFV in μe , MSSM-seesaw
- **Improved:** Hisano, Moroi, Tobe, Yamaguchi (96): $l_j \rightarrow l_i \gamma$, $l_j \rightarrow 3l_i$ (without Higgs), μe (without Higgs)

• SUSYGUT-Seesaw, lepton-quark relations:

Barbieri, Hall; Barbieri, Hall, Strumia; Hisano, Nomura, Yanagida; Hisano, Nomura; Hisano, Moroi, Tobe, Yamaguchi; Fukuyama, Kikuchi, Okada; Bi, Dai, Qi; Masiero, Vempati, Vives; Carvalho, Ellis, Gomez, Lola; Calibbi, Faccia, Masiero, Vempati.

• CMSSM-Seesaw: Without Higgs

Casas, Ibarra; Lavignac, Masina, Savoy; Blazek, King; Kuno, Okada; Ellis, Hisano, Raidal, Shimizu; Petcov, Rodejohann, Shindou, Takanishi; Deppisch, Pas, Redelbach, Rueckl, Shimizu; Petcov, Profumo, Takanisi, Yaguna; Illana, Masip.

• Higgs-Mediated LFV:

Babu, Kolda; Sher; Kitano, Koike, Komine, Okada; Dedes, Ellis, Raidal; Brignole, Rossi; Paradisi.

• muon-electron conversion in nuclei:

Hisano, Moroi, Tobe, Yamaguchi; Kitano, Koike, Komine, Okada; Kuno, Okada; Calibbi, Faccia, Masiero, Vempati.

• semileptonic LFV tau decays:

Sher; Brignole, Rossi; Cheng, Geng; Fukuyama, Illakovac, Kikuchi.

Results for LFV radiative and leptonic decays

Predictions for $\tau \rightarrow \mu \gamma$ and $\mu \rightarrow e \gamma$ in CMSSM-seesaw

* Most relevant seesaw param.: m_{N_3} if ν_R hierarchical (m_N if degenerate) BR ~ $|m_{N_3} \log m_{N_3}|^2$. Next θ_i ; Ex.: BR ×10 – 100 if θ_2 : 0 \rightarrow 3 $e^{i\pi/4}$ * Relevant SUSY parameters: tan β and M_{SUSY} (explains BR_{SPS}) $BR(\mu \rightarrow e\gamma) \simeq 0.1 |\delta_{21}|^2 (\frac{100}{M_{SUSY}})^4 (\frac{\tan\beta}{60})^2$; $BR(\tau \rightarrow \mu\gamma) \simeq 0.015 |\delta_{32}|^2 (\frac{100}{M_{SUSY}})^4 (\frac{\tan\beta}{60})^2$ $BR(\mu \rightarrow e\gamma)/BR(\tau \rightarrow \mu\gamma)$ ratio nearly independent on SUSY parameters.

It depends just on neutrino parameters: correlations fixed by seesaw (see next) \star BR($\mu \rightarrow e\gamma$), BR($\tau \rightarrow \mu\gamma$) reach exp. lim. at large (m_{N_3} , tan β , θ_i)

Sensitivity to θ_{13}

* $\mu \rightarrow e\gamma$ very sensitive to θ_{13} (see also Masiero et al 04) Ordrs of mag change!!

* $\mu \to 3e$, $\tau \to e\gamma$ and $\tau \to 3e$ also very sensitive to θ_{13} ($\tau \to \mu\gamma$, $\tau \to 3\mu$ are not!!)

- * Sensitivity of $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$ clearly within exp. reach
- ★ BR₄ > BR_{1b} \gtrsim BR_{1a} > BR₃ \gtrsim BR₂ > BR₅ (all > BR^{present} in $\mu \rightarrow e\gamma$ for $\theta_{13} \gtrsim 5^{\circ}$!!)

Correlated study of $\mu \rightarrow e\gamma$ and $\tau \rightarrow \mu\gamma$

 $(-\pi/4\lesssim {
m arg} heta_1\lesssim \pi/4,\ 0\lesssim {
m arg} heta_2\lesssim \pi/4)$

(SP1a: $M_0 = 100$ GeV, $M_{1/2} = 250$ GeV, $A_0 = -100$ GeV, $\tan \beta = 10$, $\mu > 0$)

Present: $\mu \to e\gamma$ still more competitive than $\tau \to \mu\gamma$, unless very small $\theta_{13} < 3^{\circ}$. MEGA bound, BR($\mu \to e\gamma$) < 10⁻¹¹, already excludes $m_{N_3} \gtrsim 10^{14}$ GeV (for SPS 1a) **Future:** Assume θ_{13} is measured. Planned SuperB sensitivity BR($\tau \to \mu\gamma$) ~ 10⁻⁹ will compete and even set better upper bounds on m_{N_3} . Planned MEG 10⁻¹³ will reach further. **BUT:** both are insensitive to Higgs! Some LFV semileptonic tau decays do! (see next)

There is NOT sensitivity to Higgs in $\tau \rightarrow 3\mu$ in CMSSM nor NUHM

Comparison between $l_j \rightarrow l_i l_k l_k$ and $l_j \rightarrow l_i \gamma$

For this comparison, better use the approximate formulas (work well, see our papers)

$$\mathsf{BR}(\tau \to 3\mu)_{\gamma_{\mathsf{approx}}} = 3.4 \times 10^{-5} \left[|\delta_{32}|^2 \left(\frac{100}{M_{\mathsf{SUSY}}(\mathsf{GeV})} \right)^4 \left(\frac{\tan\beta}{60} \right)^2 \right]_1$$

$$\mathsf{BR}(\tau \to 3\mu)_{H_{approx}} = 1.2 \times 10^{-7} \left[|\delta_{32}|^2 \left(\frac{100}{m_{A^0}(\text{GeV})} \right)^4 \left(\frac{\tan \beta}{60} \right)^6 \right]_2$$

$$\mathsf{BR}(\tau \to \mu \gamma)_{\mathsf{approx}} = 1.5 \times 10^{-2} \left[|\delta_{32}|^2 \left(\frac{100}{M_{\mathsf{SUSY}}(\mathsf{GeV})} \right)^4 \left(\frac{\tan \beta}{60} \right)^2 \right]_1$$

For instance: for typical $\delta_{32} = 0.1$, $(m_{N_3} = 10^{14} \text{ GeV}, \theta_2 = 2e^{i\pi/4})$, SPS 4 $(\tan \beta = 50, M_{\text{SUSY}} \sim 500 \text{ GeV}, m_{A^0} \sim 400 \text{ GeV})$, $[\text{factor}]_{1,2} \sim 10^{-5}$, CMSSM maximum rates: $\text{BR}(\tau \to \mu \gamma) \sim 10^{-7}$, $\text{BR}(\tau \to 3\mu) \sim 2 \times 10^{-10}$ (SuperB?)

BR	SPS 1a	SPS 1b	SPS 2	SPS 3	SPS 4	SPS 5
$ au o \mu \gamma$	$4.2 imes 10^{-9}$	$7.9 imes10^{-9}$	$1.8 imes 10^{-10}$	$2.6 imes10^{-10}$	$9.7 imes10^{-8}$	$1.9 imes 10^{-11}$
$ au ightarrow 3\mu$	$9.4 imes 10^{-12}$	$1.8 imes10^{-11}$	$4.1 imes 10^{-13}$	$5.9 imes 10^{-13}$	$2.2 imes 10^{-10}$	$4.3 imes 10^{-14}$

Conclussion 1: $BR(\tau \to 3\mu)$ dominated by γ contrib. in both CMSSM and NUHM, unless extremely light, $m_{A^0} \sim 100 \text{ GeV}$, NUHM: $[factor]_2 \sim 3 \times 10^{-3}$ Conclussion 2: $\tau \to \mu \gamma$ still more competitive than $\tau \to 3\mu$ for LFV searches Conclussion 3: Due to γ -dominance (even for $\tau \to 3\mu$), fixed predicted ratios: $\frac{BR(l_j \to 3l_i)}{BR(l_j \to l_i \gamma)} = \frac{\alpha}{3\pi} (\log \frac{m_{l_j}^2}{m_{l_i}^2} - \frac{11}{4}) = 6.10^{-3}, 1.10^{-2}, 2.10^{-3} \text{ for } (l_j l_i) = (\mu e), (\tau e), (\tau \mu)$

Results for LFV semileptonic tau decays

(Framework for hadronization: we use ChPT, see our papers for details)

Enhanced H coupl. to hadrons with s quark component, $g_{Ass} \sim m_s \tan \beta$, $g_{H^0ss} \sim m_s \frac{\cos \alpha}{\cos \beta}$, Are semileptonic decays into KK, η , f_0 sensitive to Higgs? (see next)

LFV tau semileptonic decay rates

★ In scenarios with light H and heavy SUSY (NUHM) we find sensitivity to Higgs ★ Largest rates in CMSSM are for BR($\tau \rightarrow \mu \rho$), BR($\tau \rightarrow \mu \pi^+ \pi^-$) (γ -dom). In NUHM also BR($\tau \rightarrow \mu \eta$), BR($\tau \rightarrow \mu f_0$) (*H*-dom). At the present exp.reach 10⁻⁸

Approx. rates for LFV semilep. τ decays in SUSY-seesaw

Valid at large tan β and MI: agreement with full results within a factor of 2

$$\begin{split} \mathsf{BR}(\tau \to \mu \eta)_{H_{\text{approx}}} &= 1.2 \times 10^{-7} |\delta_{32}|^2 \left(\frac{100}{m_{A^0}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^6 \\ \mathsf{BR}(\tau \to \mu f_0)_{H_{\text{approx}}} &= \left(\frac{7.3 \times 10^{-8} (\theta_S = 7^\circ)}{4.2 \times 10^{-9} (\theta_S = 30^\circ)}\right) |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^6 \\ \mathsf{BR}(\tau \to \mu \pi)_{H_{\text{approx}}} &= 3.6 \times 10^{-10} |\delta_{32}|^2 \left(\frac{100}{m_{A^0}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^6 \\ \mathsf{BR}(\tau \to \mu \rho)_{\gamma_{\text{approx}}} &= 3.4 \times 10^{-5} |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^2 \\ \mathsf{BR}(\tau \to \mu \phi)_{\gamma_{\text{approx}}} &= 1.3 \times 10^{-6} |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^2 \\ \mathsf{BR}(\tau \to \mu \pi^+ \pi^-)_{\gamma_{\text{approx}}} &= 3.7 \times 10^{-5} |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^2 \\ \mathsf{BR}(\tau \to \mu \pi^+ \pi^-)_{H_{\text{approx}}} &= 2.6 \times 10^{-10} |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^2 \\ \mathsf{BR}(\tau \to \mu K^+ K^-)_{\gamma_{\text{approx}}} &= 3.0 \times 10^{-6} |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^2 \\ \mathsf{BR}(\tau \to \mu K^+ K^-)_{H_{\text{approx}}} &= 2.8 \times 10^{-8} |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^6 \\ \end{split}$$

Predicted fixed ratios: $BR(\tau \to \mu \rho)/BR(\tau \to \mu \gamma)$, $BR(\tau \to \mu \pi^+ \pi^-)/BR(\tau \to \mu \gamma) \sim 2 \times 10^{-3} (\gamma \text{-dom})$ Better sensitivity to new physics in: $BR(\tau \to \mu \eta)/BR(\tau \to \mu \gamma)$, $BR(\tau \to \mu f_0)/BR(\tau \to \mu \gamma)$

Constraining the model parameters from $\tau \rightarrow \mu f_0$ (Similarly for $\tau \rightarrow \mu \eta$, replacing H^0 by A^0)

- Sensitivity to Higgs sector \Rightarrow constraining mainly tan β and m_{H^0}
- For fixed $|\delta_{32}|$, comparison with present exp. bound \Rightarrow limits on large tan β and light m_{H^0} . For ex., if $|\delta_{32}| = 1 \Rightarrow \tan \beta \gtrsim 50$, $m_{H^0} \lesssim 115$ GeV excluded.

Results for $\mu - e$ **conversion in nuclei**

We follow the general parameterisation and approxs of Kuno & Okada Review (2001). See our papers for details

$\mu - e$ conversion in nuclei: CMSSM versus NUHM

First estimates of $CR(\mu - e, Nuclei)$ did not include H-contrib. (Hisano et al PRD53(1996)2442)

- ★ CMSSM rates above exp. bound if $M_{SUSY} < 400 \text{ GeV}$
- ★ NUHM: $CR(\mu e, Au)$ above exp. bound,7.10⁻¹³ even for heavy SUSY

Future prospects for $\mu - e$ conversion in nuclei

Degenerate ν_R

Hierarchical ν_R

* Challenging: if sensitivity ~ 10^{-18} reached: m_N down to 10^{12} GeV will be tested Full coverage of SUSY parameter space.

★ CR($\mu - e$) very sensitive to θ_{13} , mainly for hierarchical ν_R (as $\mu \to e\gamma$ and $\mu \to 3e$)

A future meassurement of θ_{13} can help in searches of LFV in $\mu - e$ sector

Conclusions

- At present, if θ_{13} is not very small, $\mu \rightarrow e\gamma$ is still the most competitive channel to search for LFV signals within Constrained MSSM-Seesaw scenarios
- If $\theta_{13} < 3^o$, $\tau \to \mu \gamma$ is better than $\mu \to e \gamma$ and $\mu \to 3e$
- Semileptonic tau decays complement nicely the searches for LFV in $\tau \mu$ sector
- The most competitive semileptonic channels to search for Higgs sector signals are τ → μη (sensitive to A⁰) and τ → μf₀ (sensitive to H⁰)
- The future prospects for μe conversion in Ti are the most challenging for LFV. With sensitivity 10^{-18} will cover the full SUSY parameter space and be able to explore the Higgs sector
- Future prospects for SuperB are the most challenging for $\tau \mu$ and $\tau - e$ transitions via tau decays. Sensitivity up to $10^{-9} - 10^{-10}$ needed to explore Higgs sector. Mainly via semileptonic decays
- Work in progress to constrain the model parameters from a global study of all LFV channels

Additional transparencies

Why Majorana neutrinos are prefered

Massive neutrinos ($Q_{\nu} = 0$) could be either Dirac or Majorana fermions

• Dirac neutrinos:

neutrino \neq anti-neutrino. Four degrees of freedom, ν_L , ν_R Lepton number is preserved $(m\bar{\nu}\nu, \Delta L = 0)$. ν are like other SM fermions $-\mathcal{L}_Y = Y^e \bar{l}_L e_R H + Y^\nu \bar{l}_L \nu_R \tilde{H} + h.c., \ \bar{l}_L = (\bar{\nu}_L \bar{e}_L), \ H \ \text{doublet}, \ \tilde{H} = i\tau_2 H^*$ $m_e = Y^e < H >, \ m_\nu = Y^\nu < H >, \ < H > = 174 GeV$ $m_\nu \sim 0.1 eV \Rightarrow Y^\nu \sim 10^{-12}$!!!

• Majorana neutrinos:

neutrino=anti-neutrino. Two degrees of freedom, ν_L ($\nu_R = (\nu_L)^c$)

Lepton number is violated $(M\nu^c\nu, \Delta L \neq 0)$. ν different than other fermions.

It allows for Leptogenesis: Generation of Lepton asymmetry in the Universe by particle interactions (\Rightarrow may induce successful Baryon asymmetry)

Both allow for Lepton Flavor Violation (LFV) ($\Delta L_e \neq 0,...$) but it is more relevant in the Majorana case due to the potential larger size of Y_{ν}

MSSM spectrum and experimental constraints

	SUSY particles			
Extended Standard Model spectrum	$SU(3)_C \times SU(2)_L \times U(1)_Y$ interaction eigenstates		Mass eigenstates	
	Notation	Name	Notation	Name
$q = u, d, s, c, b, t$ $l = e, \mu, \tau$ $\nu = \nu_e, \nu_\mu, \nu_\tau$	$egin{array}{l} \widetilde{q}_L, \widetilde{q}_R \ \widetilde{l}_L, \widetilde{l}_R \ \widetilde{ u} \end{array}$	squarks sleptons sneutrino	$egin{array}{c} ilde{q}_1, ilde{q}_2 \ ilde{l}_1, ilde{l}_2 \ ilde{ u} \ ilde{ u} \end{array}$	squarks sleptons sneutrino
g	${\widetilde g}$	gluino	$ ilde{g}$	gluino
W^{\pm} $H_1^+ \supset H^+$ $H_2^- \supset H^-$	$\begin{array}{c} \tilde{W}^{\pm} \\ \tilde{H}_1^+ \\ \tilde{H}_2^- \end{array}$	wino higgsino higgsino	${ ilde \chi}_i^\pm$ (i=1,2)	charginos
$\begin{array}{c} & \gamma \\ Z \\ H_1^o \supset h^0, H^0, A^0 \\ H_2^o \supset h^0, H^0, A^0 \\ W^3 \\ B \end{array}$	$ \begin{array}{c} \tilde{\gamma} \\ \tilde{Z} \\ \tilde{H}_1^o \\ \tilde{H}_2^o \\ \tilde{W}^3 \\ \tilde{B} \end{array} $	photino zino higgsino higgsino wino bino	$ ilde{\chi}^o_j$ (j=1,,4)	neutralinos

• Mass bounds (95% C.L.) from direct searches (PDG 2008) in GeV $m_{h^0} > 92.8, m_{A^0} > 93.4, m_{H^{\pm}} > 79.3, m_{\tilde{b}} > 89, m_{\tilde{t}} > 95.7, m_{\tilde{q}} > 379, m_{\tilde{g}} > 308,$ $m_{\tilde{e}} > 73, m_{\tilde{\mu}} > 94, m_{\tilde{\tau}} > 81.9, m_{\tilde{\nu}} > 94, m_{\tilde{\chi}_1^0} > 46, m_{\tilde{\chi}_1^{\pm}} > 94$

Full RGE vs Leading Log

$$\mathsf{BR}(l_{j} \to l_{i} \gamma)_{\mathsf{MIA}} = \frac{\alpha^{3}}{14400\pi^{2}} \frac{m_{l_{j}}^{5}}{\Gamma_{l_{j}} \sin^{4} \theta_{W}} \frac{\tan^{2} \beta}{m_{\mathsf{SUSY}}^{4}} |\delta_{ji}|^{2}; \ \delta_{ji}^{\mathsf{LLog}} = \frac{-1}{8\pi^{2}} \frac{(3M_{0}^{2} + A_{0}^{2})}{m_{\mathsf{SUSY}}^{2}} (Y_{\nu}^{\dagger} L Y_{\nu})_{ji}; \ L_{kl} = \log\left(\frac{M_{X}}{m_{N_{k}}}\right) \delta_{kl}$$

- * LLog approximation fails: $BR^{LLog} \approx 10^4 \times BR^{full}$ for SPS 5
- * Scaling of BR^{full} with m_{N_3} is not $|m_{N_3} \log m_{N_3}|^2$ for SPS 5
- * Checked: divergence of BR^{full} vs BR^{LLog} enhanced for large A_0 LLog also fails for low M_0 and large $M_{1/2}$, as in SPS 3

★ Generically: LLog works better for $A_0 = 0$ and not small M_0 (Full vs LLog: see also Petcov et al 04; Chankowski et al 04) (Full vs MIA: see Paradisi 06, departures of up to ~ 50% found for $|\delta_{ji}| \sim 1$)

Predictions for other SPS points

Similar results for SPS1b. Slightly worse prospects for SPS2,3. SPS5 the worst. SPS4 the most restrictive one (due to $\tan \beta = 50$): $m_{N_3} \gtrsim 10^{13}$ GeV disfavoured!!

 γ -dominated at low M_{SUSY} , H^0 -dominated at large M_{SUSY} : SUSY non-decoupling

★ The Higgs contribution is important at large $\tan \beta \gtrsim 50$

Within χPT , and for large tan β :

$$g_{HKK} \sim m_K^2 \tan \beta$$
, since $g_{Hss} \sim m_s \tan \beta$ and $B_0 m_s = m_K^2 - \frac{1}{2} m_\pi^2$

★ However, BR below present exp. bound at 6.4×10^{-8} (Prelim,tau08) if $M_{\text{SUSY}} \sim \mathcal{O}(1\text{TeV})$ ★ Provided usefull approximate formulas at large $\tan \beta$ which work pretty well $BR(\tau \rightarrow \mu K^+ K^-)_{H_{\text{approx}}} = 2.8 \times 10^{-8} |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^6 \sim \frac{1}{50} \times BR_{\text{Cheng-Geng}(2006)}$ $BR(\tau \rightarrow \mu K^+ K^-)_{\gamma_{\text{approx}}} = 3.0 \times 10^{-6} |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan \beta}{60}\right)^2$

Constraints from 'viable' BAU

BAU requires complex $R \neq 1 \Rightarrow$ complex $\theta_i \neq 0$. Most relevantly θ_2 $n_B/n_\gamma \in \text{interval} \Rightarrow (\text{Re}(\theta_2), \text{Im}(\theta_2)) \in \text{area ('ring') (WMAP in darkest ring)}$

Implications for LFV

* 'viable' BAU $\leftrightarrow n_b/n_\gamma \in [10^{-10}, 10^{-9}]$ (WMAP $\sim 6.1 \times 10^{-10}$, '06) BAU [disfav]-[fav]-[disfav]-[fav]-[disfav] pattern in $0 < |\theta_2| < 3$ The BAU [fav] windows occur at small ($\neq 0$) $|\theta_2| \lesssim 1.5$ * smaller $|\theta_2| \Rightarrow$ smaller LFV rates * The existence, location and size of the windows depend on m_{N_1} $m_{N_1} \sim O(10^{10})$ GeV BAU [fav] windows at $|\theta_2| \sim O(1)$ and $|\theta_2| \sim O(10^{-2})$ $m_{N_1} \sim O(10^9)$ GeV only one window at $|\theta_2| \sim O(5 \times 10^{-1})$

Contributions to $\Delta a_{\mu}^{\rm SUSY}$

 $\Delta a_{\mu}^{\text{SUSY}} \in \left[10^{-8}, 10^{-9}\right]$: compatible with $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 3.32 \times 10^{-9}$ (3.8 σ)

SPS	$5 M_{1/2} (\text{GeV})$	M_0 (GeV)	A_0 (GeV)	$\tan \beta$	μ
1 a	250	100	-100	10	> 0
1 b	400	200	0	30	> 0
2	300	1450	0	10	> 0
3	400	90	0	10	> 0
4	300	400	0	50	> 0
5	300	150	-1000	5	> 0

SUSY SPS points (I)

 $\begin{array}{l} {\rm SPS1a} \\ M_0 \,=\, 100 \, {\rm GeV} \\ M_{1/2} \,=\, 250 \, {\rm GeV} \\ A_0 \,=\, -100 \, {\rm GeV} \\ \tan \beta \,=\, 10 \\ \mu \,>\, 0 \end{array}$

SPS1b $M_0 = 200 \text{ GeV}$ $M_{1/2} = 400 \text{ GeV}$ $A_0 = 0 \text{ GeV}$ $\tan \beta = 30$ $\mu > 0$

$$SPS2 \\ M_0 = 1450 \, \text{GeV} \\ M_{1/2} = 300 \, \text{GeV} \\ A_0 = 0 \, \text{GeV} \\ \tan \beta = 10 \\ \mu > 0$$

SUSY SPS points (II)

SPS3 $M_0 = 90 \text{ GeV}$ $M_{1/2} = 300 \text{ GeV}$ $A_0 = 0 \text{ GeV}$ $\tan \beta = 10$ $\mu > 0$

SPS4

 $M_0 = 400 \,{
m GeV}$ $M_{1/2} = 300 \,{
m GeV}$ $A_0 = 0 \,{
m GeV}$ $\tan \beta = 50$ $\mu > 0$ $SPS5 \\ M_0 = 150 \,\text{GeV} \\ M_{1/2} = 300 \,\text{GeV} \\ A_0 = -1000 \,\text{GeV} \\ \tan \beta = 5 \\ \mu > 0$

Non-Decoupling of SUSY in LFV Higgs vertex

 \downarrow

Non-decoupling of SUSY in Higgs mediated LFV processes: $H \to \tau \bar{\mu}$, $\tau \to 3\mu$, $\tau \to \mu \eta$

- \star In contrast to $BR(au o \mu \gamma) \sim (M_W/M_{\sf SUSY})^4$
- ★ Higgs decay rates up to $\sim 10^{-5}$, even for large M_{SUSY} (See also Brignole and Rossi 03)

Framework for Hadronisation

• We use Chiral Perturbation Theory (χPT)

It realizes nicely the large N_C expansion of $SU(N_C)$ QCD and is the appropriate scheme to describe strong ints of PG Bosons $P = \pi, K, \eta$

- ★ BR($\tau \rightarrow \mu P$), $P = \pi, \eta, \eta'$, from leading $\mathcal{O}(p^2) \chi PT$. Results in terms of F_{π} and m_P ($F \simeq F_{\pi} \simeq 92.4$ MeV, $B_0 F^2 = \langle \overline{\psi} \psi \rangle$)
- ★ BR($\tau \rightarrow \mu PP$), $PP = \pi^+\pi^-, K^+K^-, K_0\bar{K}_0$ from χPT plus contributions from resonances (R χ T). Results in terms of F_{π} , m_P and well established form factors $F_V^{PP}(s)$, (G.Ecker et al. PLB223(1989)425)

$$\begin{split} F_V^{\pi\pi}(s) &= F(s) \exp\left[2\,Re\left(\tilde{H}_{\pi\pi}(s)\right) + Re\left(\tilde{H}_{KK}(s)\right)\right] \\ F(s) &= \frac{M_\rho^2}{M_\rho^2 - s - iM_\rho\Gamma_\rho(s)} \left[1 + \left(\delta\frac{M_\omega^2}{M_\rho^2} - \gamma\frac{s}{M_\rho^2}\right)\frac{s}{M_\omega^2 - s - iM_\omega\Gamma_\omega}\right] \\ &- \frac{\gamma s}{M_{\rho'}^2 - s - iM_{\rho'}\Gamma_{\rho'}(s)}, \\ \tilde{H}_{PP}(s) &= \frac{s}{F_\pi^2} \left[\frac{1}{12}\left(1 - 4\frac{m_P^2}{s}\right)J_P(s) - \frac{k_P(M_\rho)}{6} + \frac{1}{288\pi^2}\right], \sigma_P(s) = \sqrt{1 - 4\frac{m_P^2}{s}} \\ J_P(s) &= \frac{1}{16\pi^2} \left[\sigma_P(s)\ln\frac{\sigma_P(s) - 1}{\sigma_P(s) + 1} + 2\right], k_P(\mu) = \frac{1}{32\pi^2} \left(\ln\frac{m_P^2}{\mu^2} + 1\right) \end{split}$$

The $\eta(548)$ and $f_0(980)$ mesons

We define $\eta(548)$ via mixing between the octet, η_8 , and singlet, η_0 , components of the $P(0^-)$ nonet of pseudoscalar Goldstone bosons in χPT

$$\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \eta_8 \\ \eta_0 \end{pmatrix}$$
(2)

 θ ranges from $\sim -12^{\circ}$ to $\sim -20^{\circ}$. We take $\theta \sim -18^{\circ}$ (Ecker et al)

$$\eta = \frac{1}{2B_0F} \{ (\frac{\sqrt{3}}{3}\cos\theta - \frac{\sqrt{6}}{3}\sin\theta)(\overline{u}i\gamma_5u + \overline{d}i\gamma_5d) + (-2\frac{\sqrt{3}}{3}\cos\theta - \frac{\sqrt{6}}{3}\sin\theta)\overline{s}i\gamma_5s \}$$

s most relevant, $g_{Ass} \sim m_s \tan \beta$. Expected large $A^0 - \eta$ mixing at large $\tan \beta$

We define $f_0(980)$ via mixing between the octet, R_8 , and singlet, R_0 , components of the $R(0^+)$ nonet of resonances in $R\chi T$

$$\begin{pmatrix} f_0(1500) \\ f_0(980) \end{pmatrix} = \begin{pmatrix} \cos\theta_S & -\sin\theta_S \\ \sin\theta_S & \cos\theta_S \end{pmatrix} \begin{pmatrix} R_8 \\ R_0 \end{pmatrix}$$
(3)

 θ_S quite uncertain. We take $\theta_S \sim 7^\circ$ and $\theta_S \sim 30^\circ$ (Cirigliano et al)

$$f_0 = \frac{1}{2\sqrt{2}B_0F} \{ \left(-\frac{\sqrt{6}}{3}\cos\theta_S - \frac{\sqrt{3}}{3}\sin\theta_S\right) (\overline{u}u + \overline{d}d) + \left(-\frac{\sqrt{6}}{3}\cos\theta_S + 2\frac{\sqrt{3}}{3}\sin\theta_S\right) \overline{s}s \}$$

s most relevant: $g_{H^0ss} \sim m_s \frac{\cos \alpha}{\cos \beta}$. Expected large H^0 - f_0 mix. at large $\tan \beta$

Z-dominated at tan $\beta \lesssim 15$, A^0 -dominated at tan $\beta \gtrsim 30$. Not much dependent on $M_{\sf SUSY}$

***** Provided usefull approximate formulas, valid at large tan $\beta \gtrsim 30$

$$\begin{aligned} \mathsf{BR}(\tau \to \mu \eta)_{H_{\text{approx}}} &= \frac{1}{8\pi m_{\tau}^3} \left(m_{\tau}^2 - m_{\eta}^2 \right)^2 \left| \frac{g}{2m_W} \frac{F}{m_{A^0}^2} B_L^{(A^0)}(\eta) H_{L,c}^{(A^0)} \right|^2 \frac{1}{\Gamma_{\tau}} \\ &= 1.2 \times 10^{-7} |\delta_{32}|^2 \left(\frac{100}{m_{A^0}(\text{GeV})} \right)^4 \left(\frac{\tan \beta}{60} \right)^6 \sim \frac{1}{7} \times \mathsf{BR}_{\text{Sher}(2002)} \\ H_{L,c}^{(A^0)} &= i \frac{g^3}{16\pi^2} \frac{m_{\tau}}{12m_W} \delta_{32} \tan^2 \beta, \quad \text{LFV form factor} \\ B_L^{(A^0)}(\eta) &= -i \frac{1}{4\sqrt{3}} \tan \beta \left[(3m_{\pi}^2 - 4m_K^2) \cos \theta - 2\sqrt{2}m_K^2 \sin \theta \right], \quad \text{hadronic form factor} \end{aligned}$$

* The χ PT mass relation $B_0 m_s = m_K^2 - \frac{1}{2}m_\pi^2$ (and $F \simeq F_\pi$) is used everywhere

Sensitivity to Higgs in $au ightarrow \mu\eta$ within NUHM

* Great sensitivity to A^0 found in $\tau \to \mu \eta$ within NUHM BR $(\tau \to \mu \eta)$ at exp. bound for $m_{N_3} = 10^{15}$ GeV, tan $\beta = 60$, $\theta_2 = 3e^{i\pi/4}$

★ The approximate formula works quite well (within a factor 1.5-2)

Totally dominated by H^0 at all tan β and M_{SUSY} , h^0 negligible. Not much dependent on M_{SUSY} \star Provided approximate formulas, valid at all studied tan β . They work pretty well

$$\begin{aligned} \mathsf{BR}(\tau \to \mu f_0(980))_{\text{approx}} &= \frac{1}{16\pi m_\tau^3} \left(m_\tau^2 - m_{f_0}^2 \right)^2 \left| \frac{g}{2m_W} \frac{1}{m_{H^0}^2} J_L^{(H^0)} H_{L,c}^{(H^0)} \right|^2 \frac{1}{\Gamma_\tau} \\ &= \left(\begin{array}{cc} 7.3 \times 10^{-8} \ (\theta_S = 7^\circ) \\ 4.2 \times 10^{-9} \ (\theta_S = 30^\circ) \end{array} \right) |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})} \right)^4 \left(\frac{\tan\beta}{60} \right)^6 \sim \frac{1}{20} \mathsf{BR}_{\mathsf{Chen-Geng}(2006)} \\ H_{L,c}^{(H^0)} &= \frac{g^3}{16\pi^2} \frac{m_\tau}{12m_W} \delta_{32} \tan^2\beta, \ \mathsf{LFV} \text{ form factor} \\ J_L^{(H^0)} &= \frac{F}{2\sqrt{3}} \tan\beta \left[\frac{3}{\sqrt{2}} \sin\theta_S m_\pi^2 + (\cos\theta_S - \sqrt{2}\sin\theta_S) 2m_K^2 \right], \ \text{hadronic form factor} \end{aligned}$$

 \star Large BR are found for light $m_{H^0} \sim 115-250$ GeV within NUHM

Sensitivity to Higgs in $\tau \rightarrow \mu f_0$ within NUHM

 \star We find great sensitivity to H^0 in this channel within NUHM

For large $m_{N_3} \sim 5 \times 10^{14} - 10^{15}$ GeV and large $\tan \beta \sim 50 - 60$ the rates are at the present experimental reach (Note: In the comparison with present exp bound we are assuming $BR(f_0 \to \pi^+\pi) \simeq 1$)

Framework for $\mu - e$ conversion in nuclei

- We follow the general parameterisation and approxs of Kuno & Okada Rev.Mod.Phys.73(01)151
 - ★ Equal proton and neutron densities in the nucleus; non-relativistic μ wave function for the 1s state; neglect momentum dependence of nucleon form factors
 - ★ μe conv. rate compared to muon capture rate, as a function of: Z, N number of p and n in nucleus; Z_{eff} effective atomic charge, F_p nuclear matrix element. We compute isoscalar and isovector couplings $g^{(0)}$, $g^{(1)}$ from the full set of 1-loop diagrams. Z_{eff} , F_p , Γ_{capt} for various nuclei from Kitano, Koike, Okada, PRD66(02)096002.

$$\begin{aligned} \mathsf{CR}(\mu - e, \mathsf{Nucleus}) &= \frac{m_{\mu}^{5} G_{F}^{2} \alpha^{3} Z_{\mathsf{eff}}^{4} F_{p}^{2}}{8 \pi^{2} Z} \\ &\times \left\{ \left| (Z + N) \left(g_{LV}^{(0)} + g_{LS}^{(0)} \right) + (Z - N) \left(g_{LV}^{(1)} + g_{LS}^{(1)} \right) \right|^{2} + \right. \\ &\left. \left| (Z + N) \left(g_{RV}^{(0)} + g_{RS}^{(0)} \right) + (Z - N) \left(g_{RV}^{(1)} + g_{RS}^{(1)} \right) \right|^{2} \right\} \frac{1}{\Gamma_{\mathsf{capt}}} \end{aligned}$$

Sensitivity to Higgs sector in $\mu - e$ conv. in nuclei

★ NUHM: Noticeable sensitivity to the Higgs sector if H_0 is light, due to large couplings of Higgs to strange quarks in nucleon/nuclei ($\propto m_s$)

- ★ Ratio of μe to $\mu \rightarrow e\gamma$ can be a factor 10 larger in NUHM than in CMSSM
- **\star** Found useful approximate formula, if H-dominated, valid at large tan β and MI approx.

$$\begin{aligned} \mathsf{CR}(\mu - e, \mathsf{Nucleus})|_{Happrox} &\simeq & \frac{m_{\mu}^5 G_F^2 \,\alpha^3 \, Z_{\mathsf{eff}}^4 \, F_p^2}{8\pi^2 \, Z} \, (Z + N)^2 \left| g_{LS}^{(0)} \right|^2 \frac{1}{\Gamma_{\mathsf{capt}}}, \\ g_{LS}^{(0)} &= & \frac{g^2}{48\pi^2} G_S^{(s,p)} \frac{m_{\mu} m_s}{m_{H^0}^2} \delta_{21} (\tan \beta)^3 \end{aligned}$$

Numerical estimates of $CR(\mu - e, Ti)|_{Happrox}$ OK with Kitano et.al. PLB575(2003)300

Approx. formulae for LFV semilep. τ decays

Valid at large tan β and MI: agreement with full results within a factor of 2

$$\begin{split} \mathsf{BR}(\tau \to \mu\eta)_{H_{\text{approx}}} &= 1.2 \times 10^{-7} \, |\delta_{32}|^2 \left(\frac{100}{m_{A^0}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6 \sim \frac{1}{7} \times \mathsf{BR}_{\text{Sher}} \, \mathsf{PRD66}(2002) \mathsf{57301} \\ \mathsf{BR}(\tau \to \mu\eta')_{H_{\text{approx}}} &= 1.5 \times 10^{-7} \, |\delta_{32}|^2 \left(\frac{100}{m_{A^0}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6 \sim \mathsf{BR}_{\text{Brignole-Rossi}} \mathsf{NPB701}(04) \mathsf{3} \\ \mathsf{BR}(\tau \to \mu\pi)_{H_{\text{approx}}} &= 3.6 \times 10^{-10} \, |\delta_{32}|^2 \left(\frac{100}{m_{A^0}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6 \\ \mathsf{BR}(\tau \to \mu\pi^0\pi^0)_{H_{\text{approx}}} &= 1.3 \times 10^{-10} \, |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6 \\ \mathsf{BR}(\tau \to \mu\pi^+\pi^-)_{H_{\text{approx}}} &= 2.6 \times 10^{-10} \, |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6 \\ \mathsf{BR}(\tau \to \mu\kappa^+\kappa^-)_{H_{\text{approx}}} &= 2.8 \times 10^{-8} \, |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6 \\ \mathsf{BR}(\tau \to \mu\kappa^+\kappa^-)_{H_{\text{approx}}} &= 3.0 \times 10^{-8} \, |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6 \\ \mathsf{BR}(\tau \to \mu\kappa^6\bar{\kappa}^0)_{H_{\text{approx}}} &= 3.7 \times 10^{-5} \, |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^2 \\ \mathsf{dominant for all } M_{\text{SUSY}} \leq \mathsf{BR}(\tau \to \mu\kappa^6\bar{\kappa}^0)_{\text{paprox}} = 3.0 \times 10^{-6} \, |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^2 \\ \mathsf{dominant if } M_{\text{SUSY}} \leq \mathsf{300 GeV} \\ \mathsf{BR}(\tau \to \mu\kappa^6\bar{\kappa}^0)_{\text{paprox}} = 1.8 \times 10^{-6} \, |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^2 \\ \mathsf{dominant if } M_{\text{SUSY}} \leq \mathsf{250 GeV} \\ \mathsf{Compare to } \mathsf{BR}(\tau \to \mu\gamma)_{\text{approx}} = 1.5 \times 10^{-2} \, |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^2 \\ \mathsf{Semil} \, \text{if } M_{\text{SUSY}} < \mathsf{1500GeV} \\ \mathsf{Sum}(\tau \to \mu\kappa^6\bar{\kappa}^0)_{\tau} = \mathsf{I}_{1.5} \times 10^{-2} \, |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^2 \\ \mathsf{Semil} \, \text{if } M_{\text{SUSY}} \leq \mathsf{250 GeV} \\ \mathsf{Compare to } \mathsf{BR}(\tau \to \mu\gamma)_{\mathsf{approx}} = \mathsf{I}_{1.5} \times 10^{-2} \, |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^2 \\ \mathsf{Sum}(\tau \to \mu\kappa^6\bar{\kappa}^6)_{\tau} \leq \mathsf{I}_{1.5} \times 10^{-2} \, |\delta_{32}|^2 \left(\frac{100}{M_{\text{SUSY}}(\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^2 \\ \mathsf{Sum}(\tau \to \mu\kappa^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{\kappa}^6\bar{$$

Seesaw mechanism with $3\nu_R$

For 3 generations \Rightarrow 6 physical neutrinos: 3 ν light, 3 N heavy

 $U^{\nu T} M^{\nu} U^{\nu} = \hat{M}^{\nu} = diag(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}, m_{N_1}, m_{N_2}, m_{N_3}).$

 $m_D \ll m_M$, $m_D = Y_\nu < H_2 > \Rightarrow$

$$\begin{split} m_{\nu}^{diag} &= U_{\mathsf{PMNS}}^{T} m_{\nu} U_{\mathsf{PMNS}} \\ m_{N}^{diag} &= m_{N} \end{split} \qquad \begin{cases} m_{\nu} \approx -m_{D} m_{M}^{-1} m_{D}^{T} \, (\mathsf{light}) \\ \\ m_{N} \approx m_{M} \, (\mathsf{heavy}) \end{split}$$

All, Y_{ν} , m_D , m_M , U_{PMNS} , are 3 × 3 matrices; $c_{ij} \equiv \cos(\theta_{ij})$, $s_{ij} \equiv \sin(\theta_{ij})$

 $U_{\mathsf{PMNS}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \times diag(1, e^{i\alpha}, e^{i\beta})$

Pontecorvo-Maki-Nakagawa-Sakata matrix: θ_{12} , θ_{13} , θ_{23} , δ , α , β

Our choice of input parameters

Spectra = MSSM content $+3\nu_R + 3\tilde{\nu}_R$

CMSSM:

 $\left\{ \begin{array}{l} M_0, M_{1/2}, A_0 \ (\text{at } M_X \sim 2 \times 10^{16} \, \text{GeV}) \\ \tan \beta = < H_2 > / < H_1 > (\text{at EW scale}) \\ \text{sign}(\mu) \ (\mu \text{ derived from EW breaking}) \end{array} \right\} \text{ Examples : SPS points}$

• NUHM: $(M_0, M_{1/2}, M_{H_1}, M_{H_2}, A_0, \tan\beta, \operatorname{sign}(\mu))$ **Choose** $M_0 = M_{1/2}, M_{H_1}^2 = M_0^2(1 + \delta_1), M_{H_2}^2 = M_0^2(1 + \delta_2)$

• Seesaw parameters $\begin{cases} m_{\nu_{1,2,3}} \text{ (set by data)} \\ m_{N_{1,2,3}} \text{ (input)} \\ U_{MNS} \text{ (set by data)} \\ R(\theta_1, \theta_2, \theta_3) \text{ (input)} \end{cases}$

- For numerical estimates:

$$\begin{split} (\Delta m^2)_{12} &= \Delta m_{\rm sol}^2 = 8 \times 10^{-5} \text{ eV}^2 \\ (\Delta m^2)_{23} &= \Delta m_{\rm atm}^2 = 2.5 \times 10^{-3} \text{eV}^2 \\ \theta_{12} &= 30^o; \ \theta_{23} = 45^o; \ \delta = \alpha = \beta = 0; \ 0 \leq \theta_{13} \leq 10^o \\ 250 \text{ GeV} < M_0, M_{1/2} < 1000 \text{ GeV}, -500 \text{ GeV} < A_0 < 500 \text{ GeV} \\ 5 < \tan \beta < 50, \ -2 < \delta_{1,2} < 2 \end{split}$$