Selected topics in B physics for Super-B

Joaquim Matias Universitat Autònoma de Barcelona

January 20, 2011

Joaquim Matias Universitat Autònoma de Barcelona Selected topics in B physics for Super-B

To do list for Super-B

- B_d Physics:
 - $\sin 2\beta$ tensions[†]
 - radiative and semileptonic rare decays:
 - inclusive: $B \to X_s \gamma$ and $B \to X_s I^+ I^-$
 - exclusive: $B \to K^{(*)}\gamma$ and $B \to K^{(*)}I^+I^-$
 - angular distributions in $B \to K^* l^+ l^-$ decays[†]
 - b→s penguin transitions: Large difference A^{dir}(B⁰→ K⁺π⁻) − A^{dir}(B⁺→ K⁺π⁰) • Exp: (14.4 ± 2.9)%
 - QCDF: $(2.2 \pm 2.4)\%$
- B_s Physics
 - $\sin\phi_s$ determinations [†]

•
$$B_s \to \gamma \gamma$$

- $b \rightarrow s$ penguin transitions (non-leptonic [†], ...)
- Wilson coefficient correlations, the new UT plane.[†]

Three different ways of determining $S = \sin 2\beta$:

• SSM predicted by SM from UT fit. How?

From time-dependent CP asymmetry:

- $S_{eff}^{c\bar{c}s}$ measured from golden mode $B \rightarrow J/\Psi K^0$ (tree level dominated $b \rightarrow c\bar{c}s$)
- $S^s_{e\!f\!f}$ penguin dominated decays governed by b o s transitions.

Expected sensitivites at Super-B

• Experimental inputs for the determination of SM sin 2β from UT fit (Soni/Lunghi):

$$\epsilon_K, \Delta M_s / \Delta M_d, \gamma \text{ and } BR(B \to \tau \nu)$$

• Lattice inputs: \hat{B}_{K} , $\xi = f_{B_s} \hat{B}_s^{1/2} / f_B \hat{B}_d^{1/2}$, $f_{B_s} \hat{B}_s^{1/2}$ and \hat{B}_d (but not f_B)

$ V_{cb} _{\rm excl} = (39.0 \pm 1.2)10^{-3}$	$\eta_1=1.51\pm0.24$
$ V_{cb} _{incl} = (41.31 \pm 0.76)10^{-3}$	$\eta_2 = 0.5765 \pm 0.0065$
$ V_{cb} _{\rm tot} = (40.43 \pm 0.86) 10^{-3}$	$\eta_3=$ 0.494 \pm 0.046
$ V_{ub} _{\rm excl} = (29.7 \pm 3.1)10^{-4}$	$\eta_B=0.551\pm0.007$
$ V_{ub} _{\rm incl} = (40.1 \pm 2.7 \pm 4.0)10^{-4}$	$\xi = 1.23 \pm 0.04$
$ V_{ub} _{\rm tot} = (32.7 \pm 4.7)10^{-4}$	$\lambda = 0.2255 \pm 0.0007$
$\Delta m_{B_d} = (0.507 \pm 0.005) \ { m ps}^{-1}$	$lpha = (89.5 \pm 4.3)^{ m o}$
$\Delta m_{B_s} = (17.77 \pm 0.12) \text{ ps}^{-1}$	$\kappa_arepsilon = 0.94 \pm 0.02$
$S_{\psi K_{S}} = 0.668 \pm 0.023$	$\gamma = ($ 74 \pm 11 $)^{ m o}$
$m_c(m_c) = (1.268 \pm 0.009) \text{ GeV}$	$\hat{B}_{\mathcal{K}} = 0.740 \pm 0.025$
$m_{t,pole} = (172.4 \pm 1.2) \text{ GeV}$	$f_{ m K} = (155.8 \pm 1.7) \; { m MeV}$
$f_{B_s}\sqrt{\hat{B}_s}=(276\pm19)~{ m MeV}$	$arepsilon_{K} = (2.229 \pm 0.012) 10^{-3}$
$f_B = (208 \pm 8) \text{ MeV}$	$\hat{B}_d = 1.26 \pm 0.10$
${\cal B}_{B ightarrow au u} = (1.68 \pm 0.31) imes 10^{-4}$	

Experimental measurement $\sin 2\beta = 0.668 \pm 0.023$ ($S_{eff}^{c\bar{c}s}$)

Result of the fit

a) $\sin 2\beta = 0.867 \pm 0.048 \ (S^{SM})$ deviates 3.3 σ , f_B (good agreement) and $|V_{ub}|$ deviates (1.1 σ incl. 3.6 σ excl.) using as extra input $|V_{cb}|$. Conclusion: I. No large NP contributions to tree $B \rightarrow \tau \nu$ decay due to good f_B . II. Dominant effect of NP in $\sin 2\beta$

b) $BR(B \to \tau\nu)$ substituted by $\sin 2\beta$ measured $(S_{eff}^{c\bar{c}s})$. $BR(B \to \tau\nu)$ deviates ~ 3 sigmas and f_B by ~ 2 sigmas. Reinforces that $\sin 2\beta$ measured is inconsistent with SM. **c)** Using only ϵ_K , $\Delta M_s / \Delta M_d$, $|V_{cb}|$ and NOT $BR(B \to \tau\nu)$ the fit for $\sin 2\beta = 0.829 \pm 0.079$ deviates 2.1 sigmas. Thus NP in $BR(B \to \tau\nu)$ does not solve the tension.

Joaquim Matias Universitat Autònoma de Barcelona

Selected topics in B physics for Super-B

- Different sin 2\(\beta\) determinations
- |V_{ub}| inclusive and exclusive conflict limited use recommended
 - V_{ub} from exclusive (lattice determination of semileptonic form factor problematic).
 - exclusive modes are sensitive to NP that are blind to inclusive.
- S^{eff}_{eff} (penguin dominated) central values are systematically lower (but less) than S^{c²c³}_{eff}: NP in the mixing and in penguin transition.
- This also possibly seen in CP asymmetry difference of $b \rightarrow s$ transition: $B^0 \rightarrow K^+\pi^-$ versus $B^+ \rightarrow K^+\pi^0$.

Joaquim Matias Universitat Autònoma de Barcelona Selected topics in B physics for Super-B

Current experimental precision of $S_{eff}^{c\bar{c}s}$ (first), S_{eff}^s (second block $b \to s$) and S_{eff}^d (third block $b \to d$) and **predicted** at Super-B (taken from Super-B report 2010)

Mode	Current Precision			Predicted Precision (75 ab^{-1})			Discovery Pot.	
	Stat.	Syst.	$\Delta S^{f}(Th.)$	Stat.	Syst.	$\Delta S^{f}(Th.)$	3σ	5σ
$J/\psi K_S^0$	0.022	0.010	0 ± 0.01	0.002	0.005	0 ± 0.001	0.02	0.03
$\eta' K_{S}^{0}$	0.08	0.02	0.015 ± 0.015	0.006	0.005	0.015 ± 0.015	0.05	0.08
$\phi K_{S}^{0} \pi^{0}$	0.28	0.01	_	0.020	0.010	_	_	_
$f_0 K_S^0$	0.18	0.04	0 ± 0.02	0.012	0.003	0 ± 0.02	0.07	0.12
$K^0_S \breve{K}^0_S K^0_S$	0.19	0.03	0.02 ± 0.01	0.015	0.020	0.02 ± 0.01	0.08	0.14
ϕK_S^0	0.26	0.03	$\textbf{0.03} \pm \textbf{0.02}$	0.020	0.005	$\textbf{0.03}\pm\textbf{0.02}$	0.09	0.14
$\pi^0 \breve{K}^0_S$	0.20	0.03	0.09 ± 0.07	0.015	0.015	0.09 ± 0.07	0.21	0.34
ωK_{S}^{0}	0.28	0.02	0.1 ± 0.1	0.020	0.005	0.1 ± 0.1	0.31	0.51
$K^+K^-K^0_S$	0.08	0.03	0.05 ± 0.05	0.006	0.005	0.05 ± 0.05	0.15	0.26
$\pi^{0}\pi^{0}K_{S}^{0}$	0.71	0.08	_	0.038	0.045	_	_	_
ρK_S^0	0.28	0.07	-0.13 ± 0.16	0.020	0.017	-0.13 ± 0.16	0.41	0.69
$J/\psi\pi^0$	0.21	0.04	-	0.016	0.005	_	_	_
$D^{*+}D^{*-}$	0.16	0.03	_	0.012	0.017	_	-	_
D^+D^-	0.36	0.05	_	0.027	0.008	_	-	_

II. NP in Angular Distribution of $B \to K^*(\to K\pi) l^+ l^-$

- Few processes contain a richer phenomenology than the $b \rightarrow s$ semileptonic exclusive decay $B \rightarrow K^* l^+ l^-$. **Observables**:
- Forward-Backward asymmetry

$$A_{\rm FB} = \frac{1}{d\Gamma/dq^2} \left(\int_0^1 d(\cos\theta) \, \frac{d^2\Gamma[B \to K^*\ell^+\ell^-]}{dsd\cos\theta} - \int_{-1}^0 d(\cos\theta) \, \frac{d^2\Gamma[B \to K^*\ell^+\ell^-]}{dsd\cos\theta} \right)$$

and its zero.

• Isospin asymmetry

$$A_{I} = \frac{d\Gamma[B^{0} \to K^{*0}\ell^{+}\ell^{-}]/ds - d\Gamma[B^{\pm} \to K^{*\pm}\ell^{+}\ell^{-}]/ds}{d\Gamma[B^{0} \to K^{*0}\ell^{+}\ell^{-}]/ds + d\Gamma[B^{\pm} \to K^{*\pm}\ell^{+}\ell^{-}]/ds}$$

 K* spin/helicity amplitude observables of the 4-body decay used to construct QCD-protected A⁽ⁱ⁾_T

Main goal: Identify signals of specific NP models in the flavor sector to complement direct research.

Condition: Construct the best (less QCD uncertainties) observables. How?

The effective Hamiltonian describing the $b \rightarrow s l^+ l^-$ transition

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} [C_i(\mu)\mathcal{O}_i(\mu) + C_i'(\mu)\mathcal{O}_i'(\mu)],$$

where $C_i^{(\prime)}(\mu)$ and $\mathcal{O}_i^{(\prime)}(\mu)$ are the Wilson coefficients and local operators respectively.

In our subsequent analysis, we concentrate on

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \quad \mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}l),$$
$$\mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}\gamma_{5}l),$$

where $P_{L,R} = (1 \mp \gamma_5)/2$ and primed operators

$$\begin{aligned} \mathcal{O}_{7}^{\prime} &= \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}, \quad \mathcal{O}_{9}^{\prime} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{l}\gamma^{\mu}l), \\ \mathcal{O}_{10}^{\prime} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{l}\gamma^{\mu}\gamma_{5}l), \end{aligned}$$

Description of the Method for $B \to K^*(\to K\pi) I^+ I^-$

The steps of the present method are

- **Construction** of a quantity using spin or helicity amplitudes as the milestones.
 - Maximize sensitivity to certain type of New Physics
 - **Minimize** dependence on hadronic uncertainties (soft form factors).
- Identification of all symmetries of the distribution.
- Check that the quantity **fulfills** all the symmetries \Rightarrow Observables.
- **Express** the observable in terms of the coefficients of the distribution using symmetries and explicit solution.
- Find hidden correlations (dependencies) between the coefficients of the distribution.
 - Stability of fit and extra experimental checks.

Differential decay distributions

The decay $\bar{\mathbf{B}}_{d} \to \bar{\mathbf{K}}^{*0} (\to \mathbf{K}^{-} \pi^{+}) \mathbf{I}^{+} \mathbf{I}^{-}$ with the \mathcal{K}^{*0} on the mass shell is described by s and three angles $\theta_{\mathbf{l}}, \theta_{\mathbf{K}}$ and ϕ

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_{I}\,d\cos\theta_{K}\,d\phi}=\frac{9}{32\pi}J(q^2,\theta_{I},\theta_{K},\phi)$$

- $q^2 = s$ square of the lepton-pair invariant mass.
- θ_l angle between $\vec{p_{l+}}$ in l^+l^- rest frame and dilepton's direction in rest frame of \vec{B}_d
- θ_K angle between $p_{\vec{K}^-}$ in the \vec{K}^{*0} rest frame and direction of the \vec{K}^{*0} in rest frame of \vec{B}_d
- ϕ angle between the planes defined by the two leptons and the $K-\pi$ planes.

Differential decay distributions

The decay $\bar{\mathbf{B}}_{d} \to \bar{\mathbf{K}}^{*0} (\to \mathbf{K}^{-} \pi^{+}) \mathbf{I}^{+} \mathbf{I}^{-}$ with the \mathcal{K}^{*0} on the mass shell is described by s and three angles $\theta_{\mathbf{l}}, \theta_{\mathbf{K}}$ and ϕ

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_{I}\,d\cos\theta_{K}\,d\phi}=\frac{9}{32\pi}J(q^2,\theta_{I},\theta_{K},\phi)$$

- $q^2 = s$ square of the lepton-pair invariant mass.
- θ_l angle between $\vec{p_{l^+}}$ in l^+l^- rest frame and dilepton's direction in rest frame of \vec{B}_d
- θ_K angle between $p_{\vec{K}^-}$ in the \vec{K}^{*0} rest frame and direction of the \vec{K}^{*0} in rest frame of \vec{B}_d
- ϕ angle between the planes defined by the two leptons and the $K \pi$ planes.

 $J(q^2, \theta_I, \theta_K, \phi) =$

 $\begin{aligned} J_{1s}\sin^2\theta_K + J_{1c}\cos^2\theta_K + (J_{2s}\sin^2\theta_K + J_{2c}\cos^2\theta_K)\cos2\theta_l + J_3\sin^2\theta_K\sin^2\theta_l\cos2\phi \\ + J_4\sin2\theta_K\sin2\theta_l\cos\phi + J_5\sin2\theta_K\sin\theta_l\cos\phi + (J_{6s}\sin^2\theta_K + J_{6c}\cos^2\theta_K)\cos\theta_l \\ + J_7\sin2\theta_K\sin\theta_l\sin\phi + J_8\sin2\theta_K\sin2\theta_l\sin\phi + J_9\sin^2\theta_K\sin^2\theta_l\sin2\phi \,. \end{aligned}$

$$\begin{split} J_{1s} &= \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + (L \to R) \right] + \frac{4m_{\ell}^2}{q^2} \operatorname{Re} \left(A_{\perp}^L A_{\perp}^{R^*} + A_{\parallel}^L A_{\parallel}^{R^*} \right), \\ J_{1c} &= |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\ell}^2}{q^2} \left[|A_t|^2 + 2\operatorname{Re} (A_0^L A_0^{R^*}) \right] + \beta_{\ell}^2 |A_s|^2, \\ J_{2s} &= \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + (L \to R) \right], \quad J_{2c} = -\beta_{\ell}^2 \left[|A_0^L|^2 + (L \to R) \right], \\ J_3 &= \frac{1}{2} \beta_{\ell}^2 \left[|A_{\perp}^L|^2 - |A_{\parallel}^L|^2 + (L \to R) \right], \quad J_4 = \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Re} (A_0^L A_{\parallel}^{L^*}) + (L \to R) \right], \\ J_5 &= \sqrt{2} \beta_{\ell} \left[\operatorname{Re} (A_0^L A_{\perp}^{L^*}) - (L \to R) - \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re} (A_{\parallel}^L A_{S}^* + A_{\parallel}^R A_{S}^*) \right], \\ J_{6s} &= 2\beta_{\ell} \left[\operatorname{Re} (A_{\parallel}^L A_{\perp}^{L^*}) - (L \to R) \right], \quad J_{6c} &= 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re} \left[A_0^L A_{S}^* + (L \to R) \right], \\ J_7 &= \sqrt{2} \beta_{\ell} \left[\operatorname{Im} (A_0^L A_{\parallel}^{L^*}) - (L \to R) + \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Im} (A_{\perp}^L A_{S}^* + A_{\perp}^R A_{S}^*) \right], \\ J_8 &= \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Im} (A_0^L A_{\perp}^{L^*}) + (L \to R) \right], \quad J_9 &= \beta_{\ell}^2 \left[\operatorname{Im} (A_{\parallel}^L A_{\perp}^L + L) + (L \to R) \right] \end{split}$$

SCALARS: We have 8 complex amplitudes $(A_{\perp,||,0,(L,R)S,t})$ and 12 experimental inputs **NO SCALARS:** We have 7 complex amplitudes $(A_{\perp,||,0,(L,R)}, t)$ and 11 experimental inputs

Symmetries of the distribution

Experimental $(J_i) \leftrightarrow$ theoretical (A_i) degrees of freedom

 $n_{C}-n_{d}=2n_{A}-n_{s}$

- **n**_C : # coefficients of differential distribution: *J_i*
- n_d : # relations between J_i
- n_A : # spin amplitudes
- **n**_s : # symmetries of the distribution

Case: Massless leptons with no scalars: ML-NS

What is this third relation and which are those symmetries?

Infinitesimal symmetry transformation of the distribution

 $\mathbf{A}' = \mathbf{A} + \delta \mathbf{S} \; .$

$$\vec{A} = \left(\mathsf{Re}(A_{\perp}^{L}), \mathsf{Im}(A_{\perp}^{L}), \mathsf{Re}(A_{\parallel}^{L}), \mathsf{Im}(A_{\parallel}^{L}), \mathsf{Re}(A_{0}^{L}), \mathsf{Im}(A_{0}^{L}), \mathsf{Re}(A_{0}^{R}), \mathsf{Im}(A_{0}^{R}), \mathsf{Re}(A_{0}^{R}), \mathsf{Im}(A_{0}^{R}) \right)$$

S represents a symmetry of the distribution if and only if

$$\forall i \in (J_{1s}...J_9): \vec{\nabla}(J_i) \perp \mathbf{S}$$
.

n independent infinitesimal symmetries \leftrightarrow **n** linearly independent vectors **S**_j with j = 1, ..n.

 \Rightarrow In the masless case n=4

From infinitesimal to continuous symmetry.

The differential distribution is invariant under n = 4 independent symmetry transformations of the amplitudes:

• 1. An independent phase transformation of L-amplitudes

$$A_{\perp L}^{'} = e^{i\phi_{L}}A_{\perp L}, \qquad A_{\parallel L}^{'} = e^{i\phi_{L}}A_{\parallel L}, \qquad A_{0L}^{'} = e^{i\phi_{L}}A_{0L},$$

• 2. An independent phase transformation of the *R*-amplitudes,

$$A_{\perp R}^{'} = e^{i\phi_{R}}A_{\perp R}, \qquad A_{\parallel R}^{'} = e^{i\phi_{R}}A_{\parallel R}, \qquad A_{0R}^{'} = e^{i\phi_{R}}A_{0R},$$

• 3. A first continuous $L \leftrightarrow R$ rotation (I)

$$\begin{aligned} A_{\perp L}^{'} &= +\cos\theta A_{\perp L} + \sin\theta A_{\perp R}^{*} \quad A_{\perp R}^{'} = -\sin\theta A_{\perp L}^{*} + \cos\theta A_{\perp R} \\ A_{\parallel L}^{'} &= +\cos\theta A_{\parallel L} - \sin\theta A_{\parallel R}^{*} \quad A_{\parallel R}^{'} = +\sin\theta A_{\parallel L}^{*} + \cos\theta A_{\parallel R} \\ A_{0L}^{'} &= +\cos\theta A_{0L} - \sin\theta A_{0R}^{*} \quad A_{0R}^{'} = +\sin\theta A_{0L}^{*} + \cos\theta A_{0R} \end{aligned}$$

• 4. A second continuous $L \leftrightarrow R$ transformation (II)

$$\begin{aligned} A_{\perp L}^{'} &= +\cosh\bar{\theta}A_{\perp L} + \sinh\bar{\theta}A_{\perp R}^{*} \quad A_{\perp R}^{'} = -\sinh\bar{\theta}A_{\perp L}^{*} + \cosh\bar{\theta}A_{\perp R} \\ A_{\parallel L}^{'} &= +\cosh\bar{\theta}A_{\parallel L} - \sinh\bar{\theta}A_{\parallel R}^{*} \quad A_{\parallel R}^{'} = +\sinh\bar{\theta}A_{\parallel L}^{*} + \cosh\bar{\theta}A_{\parallel R} \\ A_{0L}^{'} &= +\cosh\bar{\theta}A_{0L} - \sinh\bar{\theta}A_{0R}^{*} \quad A_{0R}^{'} = +\sinh\bar{\theta}A_{0L}^{*} + \cosh\bar{\theta}A_{0R} \\ \bar{\theta} = \mathbf{i}\theta' \end{aligned}$$

Any quantity constructed out of A has to fulfill all symmetries of the distribution

Consequence: The quantity $A_T^{(1)} = -2 \frac{\operatorname{Re}(A_{\parallel}A_{\perp}^*)}{|A_{\perp}|^2 + |A_{\parallel}|^2}$ is not invariant under 3 and 4 \Rightarrow it cannot be extracted from angular distribution.

A bit more on symmetries

Define

$$n_{1} = (A_{\parallel}^{L}, A_{\parallel}^{R^{*}})$$

$$n_{2} = (A_{\perp}^{L}, -A_{\perp}^{R^{*}}) \quad \text{or}$$

$$n_{3} = (A_{0}^{L}, A_{0}^{R^{*}})$$

$$m_{1} = (H_{+1}^{L}, H_{-1}^{R^{*}})$$
$$m_{2} = (H_{-1}^{L}, H_{+1}^{R^{*}})$$
$$m_{3} = (H_{0}^{L}, H_{0}^{R^{*}})$$

Spin amplitudes

Helicity amplitudes

All physical information of the distribution encoded in 3 moduli + 3 relative angles (complex) - 1 constrain (third relation).

$$|n_1|^2 = \frac{2}{3}J_{1s} - J_3, \qquad |n_2|^2 = \frac{2}{3}J_{1s} + J_3, \qquad |n_3|^2 = J_{1c}$$

$$n_1 \cdot n_2 = \frac{J_{6s}}{2} - iJ_9, \qquad n_1 \cdot n_3 = \sqrt{2}J_4 - i\frac{J_7}{\sqrt{2}}, \qquad n_2 \cdot n_3 = \frac{J_5}{\sqrt{2}} - i\sqrt{2}J_8$$

Interpretation of the symmetry: moduli and complex scalar products kept invariant.

What do we learn/gain out of those symmetries?

- Identify the conditions to construct observables out of spin amplitudes.
- **Solve** the system of *A*'s in terms of *J*'s.
- Stability and convergence of the fit by identifying all hidden correlations inside the distribution.
- Identify a **non-linear and non-trivial correlation** (third relation) between the coefficients of the angular distribution.
- Moreover, this is a more general view of angular distributions **reinterpreted** in terms of moduli and angle between certain complex vectors.

Explicit solution and New non-trivial relation

We can solve the system of A's in terms of J's:

- Global phase symmetry L (1) $\Rightarrow \phi_L$ such that $\text{Im}A_{\parallel}^L = 0$
- Global phase symmetry R (2) $\Rightarrow \phi_R$ such that $\text{Im}A_{\parallel}^R = 0$ (simplicity)
- Continuous $L \leftrightarrow R$ rotation (3) $\Rightarrow \theta$ such that $\operatorname{Re} A_{\parallel}^{R} = 0$

This implies $n_1 = \left(0, A_{\parallel}^R\right)$ with $\mathrm{Im}A_{\parallel}^R = 0$. The system is then easily solved

Amp.
 LEFT
 RIGHT

$$A_{\perp}$$
 $\left[|n_{2}|^{2} - \frac{|(n_{1}.n_{2})|^{2}}{|n_{1}|^{2}}\right]^{\frac{1}{2}} e^{i\phi_{\perp}^{L}} = \left[\frac{\frac{4}{9}J_{1s}^{2} - J_{3}^{2} - \frac{1}{4}J_{6s}^{2} - J_{0}^{2}}{\frac{2}{3}J_{1s} - J_{3}}\right]^{\frac{1}{2}} e^{i\phi_{\perp}^{L}}$
 $-\frac{n_{1}.n_{2}}{\sqrt{|n_{1}|^{2}}} = -\frac{(J_{6s} - 2iJ_{9})}{2\sqrt{\frac{2}{3}J_{1s} - J_{3}}},$
 A_{\parallel}
 0
 $\sqrt{|n_{1}|^{2}} = \sqrt{\frac{2}{3}J_{1s} - J_{3}},$
 A_{0}
 $\left[|n_{3}|^{2} - \frac{|(n_{1}.n_{3})|^{2}}{|n_{1}|^{2}}\right]^{\frac{1}{2}} e^{i\phi_{0}^{L}} = \left[\frac{J_{1c}(\frac{2}{3}J_{1s} - J_{3}) - 2J_{4}^{2} - \frac{1}{2}J_{7}^{2}}{\frac{2}{3}J_{1s} - J_{3}}\right]^{\frac{1}{2}} e^{i\phi_{0}^{L}}$
 $\frac{n_{1}.n_{3}}{\sqrt{|n_{1}|^{2}}} = \frac{2J_{4} - iJ_{7}}{\sqrt{\frac{4}{3}J_{1s} - 2J_{3}}}$

BUT, there is a last equation

$$e^{i(\phi_{\perp}^{L}-\phi_{0}^{L})} = \frac{(n_{2}\cdot n_{3})|n_{1}|^{2} - (n_{2}\cdot n_{1})(n_{1}\cdot n_{3})}{\left(\left[|n_{1}|^{2}|n_{2}|^{2} - |(n_{2}\cdot n_{1})|^{2}\right)(|n_{1}|^{2}|n_{3}|^{2} - |(n_{3}\cdot n_{1})|^{2})\right]^{1/2}} \\ = \frac{J_{5}\left(\frac{2}{3}J_{1s} - J_{3}\right) - J_{4}J_{6s} - J_{7}J_{9} - i\left(\frac{4}{3}J_{1s}J_{8} - 2J_{3}J_{8} + 2J_{4}J_{9} - \frac{1}{2}J_{6s}J_{7}\right)}{\left[2\left(\frac{4}{9}J_{1s}^{2} - J_{3}^{2} - \frac{1}{4}J_{6s}^{2} - J_{9}^{2}\right)\left(J_{1c}\left(\frac{2}{3}J_{1s} - J_{3}\right) - 2J_{4}^{2} - \frac{1}{2}J_{7}^{2}\right)\right]^{1/2}}.$$

Remarks:

a) Condition of the L.H.S. being a phase \Rightarrow the non-trivial new relation:

$$\begin{split} -J_{2c} &= 6\frac{(2J_{1s}+3J_3)\left(4J_4^2+J_7^2\right)+(2J_{1s}-3J_3)\left(J_5^2+4J_8^2\right)}{16J_{1s}^2-9\left(4J_3^2+J_{6s}^2+4J_9^2\right)} \\ &- 36\frac{J_{6s}(J_4J_5+J_7J_8)+J_9(J_5J_7-4J_4J_8)}{16J_{1s}^2-9\left(4J_3^2+J_{6s}^2+4J_9^2\right)} \end{split}$$

True in massless leptons case with and without scalars. Not fulfilled for massive leptons with scalars. Large deviations \Rightarrow most probably experimental problem with data.

b) 4th symmetry manifest in the freedom to chose ϕ_{\perp}^{L} or $\phi_{0}^{L} = 0$

More general cases

The discussion of the differential symmetries can be generalised to:

- a) Massless leptons with scalars: $n_{C}=11, n_{d}=2, n_{A}=7, n_{s}=5$
 - Amplitudes ML-NS + scalar amplitude A_S : Seven amplitudes.
 - Four explicit symmetries and

$$A_{S}^{'}=e^{i\phi_{S}}A_{S}$$

The phase of A_S cannot be determined.

- b) Massive leptons without scalars: $n_C = 11, n_d = 1, n_A = 7, n_s = 4$
 - Amplitudes ML-NS + A_t : Seven amplitudes
 - Symmetries:
 - One global phase transformation $\phi_L = \phi_R$.
 - Two continuous LR symmetries are broken.
 - A new symmetry concerning the phase of A_t given as:

$$A_t^{'} = e^{i\phi_t}A_t$$

Four symmetries of differential distribution required.

c) Massive leptons with scalars: $n_C = 12, n_d = 0, n_A = 8, n_s = 4$

- Amplitudes: ML-NS $+A_s+A_t$: Eight amplitudes.
- Coefficients of the distribution 12: ML-NS $+J_{6c}$.
- Symmetries:
 - The global phase transformation, $\phi_L = \phi_R$.
 - The phase transformation of A_t in b) is valid.

In this case, there is NO dependency between J's, and four symmetries of the differential form required.

Case	Coefficients	Dependencies	Amplitudes	Symmetries			
$m_l = 0, \ A_S = 0$	11	3	6	4 (4)			
$m_l = 0, A_S <> 0$	11	2	7	5 (5)			
$m_l > 0, \ A_S = 0$	11	1	7	4 (2)			
$m_l > 0, A_S <> 0$	12	0	8	4 (2)			
Remind: $n_{C} - n_{d} = 2n_{A} - n_{s}$							

Construction of Observables: $A_T^{(i)}$ i=2,3,4,5

Theory framework: NLO QCDF including Λ/m_b corrections.

Spin amplitudes $A_{\perp L,R}$, $A_{\parallel L,R}$, $A_{0L,R}$ are functions:

- $B \rightarrow K^*$ Form factors: $A_{0,1,2}(s), V(s), T_{1,2,3}(s)$.
- Wilson Coefficients: $\mathcal{C}_7^{(\mathrm{eff})}, \mathcal{C}_7^{'(\mathrm{eff})}, \mathcal{C}_9^{(\mathrm{eff})}, \mathcal{C}_{10}$

$$\begin{split} \mathbf{A}_{\perp \mathbf{L},\mathbf{R}} &= N\sqrt{2}\lambda^{1/2} \bigg[(\mathcal{C}_{9}^{(\text{eff})} \mp \mathcal{C}_{10}) \frac{V(q^{2})}{m_{B} + m_{K}^{*}} + \frac{2m_{b}}{q^{2}} (\mathcal{C}_{7}^{(\text{eff})} + \mathcal{C}_{7}^{'(\text{eff})}) T_{1}(q^{2}) \bigg] \\ \mathbf{A}_{\parallel \mathbf{L},\mathbf{R}} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \bigg[(\mathcal{C}_{9}^{(\text{eff})} \mp \mathcal{C}_{10}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathcal{C}_{7}^{(\text{eff})} - \mathcal{C}_{7}^{'(\text{eff})}) T_{2}(q^{2}) \bigg], \\ \mathbf{A}_{\mathbf{0}\mathbf{L},\mathbf{R}} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \times \bigg[(\mathcal{C}_{9}^{(\text{eff})} \mp \mathcal{C}_{10}) \bigg\{ (m_{B}^{2} - m_{K^{*}}^{2} - q^{2}) (m_{B} + m_{K^{*}}) A_{1}(q^{2}) - \\ &-\lambda \frac{A_{2}(q^{2})}{m_{B} + m_{K^{*}}} \bigg\} + 2m_{b} (\mathcal{C}_{7}^{(\text{eff})} - \mathcal{C}_{7}^{'(\text{eff})}) \bigg\{ (m_{B}^{2} + 3m_{K^{*}}^{2} - q^{2}) T_{2}(q^{2}) - \\ &- \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} T_{3}(q^{2}) \bigg\} \bigg], \end{split}$$

HOW to deal with the form factors? Two alternatives:

- Framework of QCDF at LO+ α_s -NLO+ Λ/m_b corrections. Egede et al '08 and '10
- Mix QCD LCSR FF (LO) + α_s -QCDF NLO (neglect Λ/m_b). Altmannshofer et al. '08

All FF (V, A_i, T_i) in the limit $m_B \to \infty$ and $E_K^* \to \infty \Rightarrow \xi_{\perp}(\mathbf{E}_K^*), \xi_{\parallel}(\mathbf{E}_K^*)$

$$\begin{aligned} A_{1}(s) &= \frac{2E_{K^{*}}}{m_{B} + m_{K^{*}}} \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}), & A_{2}(s) &= \frac{m_{B}}{m_{B} - m_{K^{*}}} \Big[\xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}) - \xi_{\parallel}(\mathsf{E}_{\mathsf{K}^{*}}) \Big], \\ A_{0}(s) &= \frac{E_{K^{*}}}{m_{K^{*}}} \xi_{\parallel}(\mathsf{E}_{\mathsf{K}^{*}}), & V(s) &= \frac{m_{B} + m_{K^{*}}}{m_{B}} \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}), \\ T_{1}(s) &= \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}), & T_{2}(s) &= \frac{2E_{K^{*}}}{m_{B}} \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}), & T_{3}(s) &= \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}) - \xi_{\parallel}(\mathsf{E}_{\mathsf{K}^{*}}). \end{aligned}$$

In this limit spin amplitudes reduce to a very simple form:

$$\begin{aligned} \mathbf{A}_{\perp \mathbf{L},\mathbf{R}} &= \sqrt{2} N m_{B} (1-\hat{s}) \bigg[(\mathcal{C}_{9}^{(\text{eff})} \mp \mathcal{C}_{10}) + \frac{2 \hat{m}_{b}}{\hat{s}} (\mathcal{C}_{7}^{(\text{eff})} + \mathcal{C}_{7}^{'(\text{eff})}) \bigg] \xi_{\perp} (E_{K^{*}}), \\ \mathbf{A}_{\parallel \mathbf{L},\mathbf{R}} &= -\sqrt{2} N m_{B} (1-\hat{s}) \bigg[(\mathcal{C}_{9}^{(\text{eff})} \mp \mathcal{C}_{10}) + \frac{2 \hat{m}_{b}}{\hat{s}} (\mathcal{C}_{7}^{(\text{eff})} - \mathcal{C}_{7}^{'(\text{eff})}) \bigg] \xi_{\perp} (E_{K^{*}}), \end{aligned}$$

$$\mathbf{A}_{0\mathsf{L},\mathsf{R}} = -\frac{Nm_B}{2\hat{m}_{K^*}\sqrt{\hat{s}}}(1-\hat{s})^2 \bigg[(\mathcal{C}_9^{(\mathrm{eff})} \mp \mathcal{C}_{10}) + 2\hat{m}_b (\mathcal{C}_7^{(\mathrm{eff})} - \mathcal{C}_7^{'(\mathrm{eff})}) \bigg] \xi_{\parallel}(\mathcal{E}_{K^*}),$$

- Corrections to FF relations:
 - order α_s in QCDF at NLO (factor. and non-factor.)
 - Λ/m_b breaking contributions: order 5 and 10%.

EXAMPLE Transverse Asymmetries: A_T^2

Definition

Kruger, J.M. '05

$$A_{T}^{2} = \frac{|A_{\perp}|^{2} - |A_{\parallel}|^{2}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} = -2\frac{\mathrm{Re}H_{+}^{*}H_{-}}{|H_{+}|^{2} + |H_{-}|^{2}}$$

- Physics Sensitivity: Deviation from SM left-handed structure: $A_T^2\Big|_{SM} \sim 0$.
- Cleanliness: Soft form factor (ξ_⊥(0)) dependence cancel exactly at LO and very mild dependence at NLO.
- Domain: Low-Region $1 \le q^2 \le 6 \ {
 m GeV}^2$ (High region, see G. Hiller et al.)

Joaquim Matias Universitat Autònoma de Barcelona Selected topics in B physics for Super-B

Understanding A_T^2

In the large E_K^* and m_B limit (only C_7')

$$A_{T}^{2} \sim 4C_{7}^{\prime}(\text{eff}) \frac{m_{b}M_{B}}{s} \frac{\Delta_{-} + \Delta_{+}^{*}}{2C_{10}^{2} + |\Delta_{-}|^{2} + |\Delta_{+}|^{2}} \qquad \qquad \Delta_{\pm} = C_{9}^{\text{eff}} + 2\frac{-2}{s}(C_{7}^{(\text{cff})} \pm C_{7}^{(\text{cff})})$$

$$BUT$$

$$\Delta_{+} + \Delta_{-}^{*} = 2C_{9}^{\text{eff}} + 4\frac{m_{b}M_{B}}{s}(C_{7}^{(\text{eff})})$$

 \bullet Enhance sensitivity to $\mathcal{C}_7^{'(\mathrm{eff})}$ (modulus+sign) at low s (1 $< s < 2\,\mathrm{GeV}^2)$ and

1/s-slope:

0.15

0.05 F 0.00

-0.05

-0.10

2 3

$$\underline{A_{FB}} = \frac{3}{2} \frac{\text{Re}(A_{\parallel L} A_{\perp L}^*) - \text{Re}(A_{\parallel R} A_{\perp R}^*)}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} \text{ versus } \underline{A_T^2} = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

Only FF protection at q_0^2 q_0^2 at LO (and NLO)

s(GeV²)

FF protection from $1 < q^2 < 6 \, {\rm GeV}^2$ SAME q_0^2 at LO (and NLO) ($C_7' \neq 0$)

 $m_{\rm h}M_{\rm B}$. (off)

(off).

5

Understanding A_T^2

In the large E_K^* and m_B limit (only C_7')

$$A_{T}^{2} \sim 4C_{7}^{\prime(\text{eff})} \frac{m_{b}M_{B}}{s} \frac{\Delta_{-} + \Delta_{+}^{*}}{2C_{10}^{2} + |\Delta_{-}|^{2} + |\Delta_{+}|^{2}} \qquad \qquad \Delta_{\pm} = C_{9}^{\text{eff}} + 2\frac{m_{b}M_{B}}{s} (C_{7}^{(\text{eff})}) \pm C_{7}^{(\text{eff})})$$

$$BUT$$

$$\Delta_{+} + \Delta_{-}^{*} = 2C_{9}^{\text{eff}} + 4\frac{m_{b}M_{B}}{s} (C_{7}^{(\text{eff})})$$

 \bullet Enhance sensitivity to $\mathcal{C}_7^{'(\mathrm{eff})}$ (modulus+sign) at low s (1 $< s < 2\,\mathrm{GeV}^2)$ and

1/s-slope:

$$\underline{A_{FB}} = \frac{3}{2} \frac{\text{Re}(A_{\parallel L} A_{\perp L}^*) - \text{Re}(A_{\parallel R} A_{\perp R}^*)}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} \text{ versus } \underline{A_T^2} = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

Only FF protection at q_0^2 q_0^2 at LO + **Absence of zero**

FF protection from $1 < q^2 < 6 \,\mathrm{GeV}^2$ SAME q_0^2 at LO+ **Absence of zero**

(off).

Joaquim Matias Universitat Autònoma de Barcelona Selected topics in B physics for Super-B

Understanding A_T^2

• A_T^2 : CP violating phase (O'_7) sensitivity BETTER than CP violating observables

$$\underline{A_{FB}} = \frac{3}{2} \frac{\text{Re}(A_{\parallel L} A_{\perp L}^*) - \text{Re}(A_{\parallel R} A_{\perp R}^*)}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} \text{ versus } \underline{A_T^2} = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

 A_{FB} : Mild sensitivity to C'_7 mod+phase A^2_T : Strong sensitivity to C'_7 mod+phase

Other sensitivities of A_T^2 : O'_{10}

 A_T^2 may serve also as an excellent test of O_{10}' if ONLY switched on. In the limit $m_b\to\infty, E_K^*\to\infty$

$$A_T^2 = \frac{2C_{10}C_{10}'\cos\phi_{10}'}{C_{10}^2 + |C_{10}'|^2 + (2m_bM_BC_7/q^2 + C_9)^2}$$

• A_T^2 shows a linear dependence on C'_{10} like for $C_7^{eff'}$

- But the q²-dependence is different:
 - It does not show up a ZERO
 - Maximal around the standard minima of the A_{FB}.

A combined analysis with $A_T^{(3,4)}$ and A_T^5 allow to disentangle different WC.

Joaquim Matias Universitat Autònoma de Barcelona Selected topics in B physics for Super-B

A new example: A_T^5

Definition:

$$A_{T}^{(5)} = \frac{|A_{\parallel}^{R*}A_{\perp}^{L} + A_{\parallel}^{L}A_{\perp}^{R*}|}{|A_{\parallel}|^{2} + |A_{\perp}|^{2}}$$

- a) It probes spin amplitudes A_{\perp} and A_{\parallel} differently from A_T^2 .
- b) No angular coefficient mixes L/R with \perp /|| simultaneously.
- c) In the large recoil limit $A_{T}^{(5)}\Big|_{SM} = \frac{\left|-C_{10}^{2} + (2m_{b}M_{B}C_{7}^{eff}/q^{2} + C_{9}^{eff})^{2}\right|}{2\left[C_{10}^{2} + (2m_{b}M_{B}C_{7}^{eff}/q^{2} + C_{9}^{eff})^{2}\right]},$ (b)

Minimum at LO of
$$A_T^5 \Rightarrow$$
 NEW relation
 $C_{10}^2 = (2m_b M_B C_7^{eff}/q_1^2 + C_9^{eff})^2$

Maximum at LO of $A_T^5 \Rightarrow$ by OLD (A_{FB} -zero) relation: $-C_9^{eff} = 2m_b M_B C_7^{eff}/q_0^2$

d) Expresion in terms of J's (using explicit solution):

$$A_{T}^{(5)}\Big|_{m_{\ell}=0} = \frac{\sqrt{16J_{1}^{s\,2} - 9J_{6}^{s\,2} - 36(J_{3}^{2} + J_{9}^{2})}}{8J_{1}^{s}}$$

A_T^5 sensitivities

 C_7' sensitivity weaker, BUT dependence on $C_9,\ C_{10}$ and C_{10}' is transparent. At large recoil in presence of $O_{10}',\ O_7,\ O_9,\ O_{10}$

$$A_{T}^{(5)}\Big|_{10'} = \frac{\left|-C_{10}^{2} + |C_{10}'|^{2} + \left(2m_{b}M_{B}C_{7}^{\text{eff}}/q^{2} + C_{9}^{\text{eff}}\right)^{2}\right|}{2\left[C_{10}^{2} + |C_{10}'|^{2} + \left(2m_{b}M_{B}C_{7}^{\text{eff}}/q^{2} + C_{9}^{\text{eff}}\right)^{2}\right]}$$

- a) **Maximum (LO)** in SM when $2m_b M_B C_7^{eff}/q_0^2 + C_9^{eff} = 0$ and $C'_{10} = 0$ then $A_T^5 \Big|_{max} = \frac{1}{2}$ (True for NLO also).
- b) Maximum moves also by NP contributions from C_7^{eff} or C_9^{eff} like A_{FB} .
- c) Minimum (LO) moves by NP contribution from C'_{10} . 0.6 [

$$|C_{10}'|^2 = C_{10}^2 - (2m_b M_B C_7^{eff}/q^2 + C_9^{eff})^2$$

d) If only O_{10}^\prime turn on and $C_{10}^\prime < \, C_{10}$

Distance between

SM maximum and NP (O'_{10}) maximum:

$$|C_{10}^{\prime NP}|^2/(C_{10}^2+|C_{10}^{\prime NP}|^2)$$

Transverse/Longitudinal Asymmetries: A_T^3 and A_T^4 .

Open longitudinal spin amplitude A₀ sensitivity in a protected way.

$$A_{T}^{3} = \frac{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \qquad \text{and} \qquad A_{T}^{4} = \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}$$

- Invariant under massless symmetries and high experimental resolution.
- Constructed to cancel both $\xi_{\perp}(0)$ and $\xi_{\parallel}(0)$ dependence at LO.
- Offer different sensitivity to $C_7^{'(eff)}$, C_9^{eff} and C_{10} :

• A³_T at LO its minimum determines a relation:

$$C_{10}^{2} = -(C_{9}^{eff} + 2\frac{m_{b}}{M_{B}}(C_{7}^{eff} - C_{7}^{eff'}))(C_{9}^{eff} + 2\frac{m_{b}M_{B}}{q^{2}}(C_{7}^{eff} - C_{7}^{eff'}))$$

• Restrict analysis to the low-dilepton mass region $1 \le s \le 6$ GeV².

Transverse/Longitudinal Asymmetries: A_T^3 and A_T^4 .

Open longitudinal spin amplitude A₀ sensitivity in a protected way.

$$A_{T}^{3} = \frac{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \qquad \text{and} \qquad A_{T}^{4} = \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}$$

- Invariant under massless symmetries and high experimental resolution.
- Constructed to cancel both $\xi_{\perp}(0)$ and $\xi_{\parallel}(0)$ dependence at LO.
- Offer different sensitivity to $C_7^{'(\text{eff})}$, C_9^{eff} and C_{10} :

• A_T^3 at LO its minimum determines a relation: $C_{10}^2 = -(C_9^{eff} + 2\frac{m_b}{M_B}(C_7^{eff} - C_7^{eff'}))(C_9^{eff} + 2\frac{m_bM_B}{q^2}(C_7^{eff} - C_7^{eff'})))$ • A_T^4 at LO its minimum determines a relation: $C_9^{eff} = -\frac{m_b}{M_B}(C_7^{eff} - C_7^{eff'}) - \frac{m_bM_B}{q^2}(C_7^{eff} + C_7^{eff'})$ • A_T^4 its maximum is related to the minimum of A_T^3

• Restrict analysis to the low-dilepton mass region $1 \le s \le 6$ GeV².

• Large-gluino scenario (a,b) with $\delta > 0$ clear at low-s region for A_T^3 and large-s for A_T^4

• Low-gluino scenario (c,d) with $\delta < 0$ clear at low-s region for A_T^4

Egede, Reece, Hurth, J.M, Ramon '08 update+Exper. sensitivity with $10/100 \text{ fb}^{-1}$

- A_T^3 large sensitivity to \mathcal{O}_{10}' like in A_T^5
- A_T^4 stronger sensitivity to \mathcal{O}_{10}
- Egede, Reece, Hurth, J.M, Ramon '10 update

III. Precision Flavour dynamics: $\sin \phi_{ m s}~({\it B_s^0}-{\it ar B_s^0})$ weak mixing phase)

Tevatron have been measuring CP asymmetry of $B_s \rightarrow \psi \phi$ (sin ϕ_s) and dimuon charge asymmetry:

$$A_{sl}^{b} = \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

 N_b^{++} number of events with two b-hadrons decaying into $\mu^+\mu^+X$. Both semileptonic B_d and B_s can contribute. Relation with asymmetries

$$a_{sl}^{q} = \frac{\Gamma(\bar{B}_{q} \to \mu^{+}X) - \Gamma(B_{q} \to \mu^{-}X)}{\Gamma(\bar{B}_{q} \to \mu^{+}X) - \Gamma(B_{q} \to \mu^{-}X)} = \frac{\Delta\Gamma}{\Delta M_{q}} \tan \phi_{q} \qquad \phi_{q} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

is $A_{sl}^b = (0.506 \pm 0.043)a_{sl}^d + (0.49 \pm 0.043)a_{sl}^s$

D0 announced a large dimuon charge asymmetry in B-decays up to 3.2σ with respect to the tiny SM prediction.

Direct measurement of a_{sl}^d is in good agreement with SM \Rightarrow the value obtained for a_{sl}^s from A_{sl}^b (D0) is much larger than SM prediction by $\sim 2\sigma$. • CDF has also measured A_{sl}^b with larger errors. • Direct measurement of a_{sl}^s from D0 ($-(1.7 \pm 9.1^{1.4}_{-1.5})10^{-3}$). Still an average value of a_{sl}^s from CDF-D0 is 2.5 σ away from SM.

Concerning sin ϕ_s : Latest result (6.1 *fb*⁻¹ luminosity)

- D0: Deviation from SM of 2σ (increase with respect to previous 1.8σ)
- CDF: Deviation from SM of 0.8σ (downward shift from previous 1.8σ).

Situation unclear, other measurements required....

Non leptonic B decays in QCDF suffers from IR divergences:.

• Hard spectator-scattering:

$$H_{i}(M_{1}M_{2}) = C \int_{0}^{1} dx \int_{0}^{1} dy \left[\frac{\Phi_{M_{2}}(x)\Phi_{M_{1}}(y)}{\bar{x}\bar{y}} + r_{\chi}^{M_{1}} \frac{\Phi_{M_{2}}(x)\Phi_{m_{1}}(y)}{x\bar{y}} \right],$$

second term (formally of order Λ/m_b) diverges when $y \rightarrow 1$.

• Weak annihilation also exhibit endpoint IR divergences.

$$\begin{aligned} A_{1}^{i} &= \pi \alpha_{s} \qquad \int_{0}^{1} dx dy \, \left\{ \Phi_{M_{2}}(x) \, \Phi_{M_{1}}(y) \left[\frac{1}{y(1-x\bar{y})} \right. \right. \\ &+ \qquad \left. \frac{1}{\bar{x}^{2}y} \right] + r_{\chi}^{M_{1}} r_{\chi}^{M_{2}} \, \Phi_{m_{2}}(x) \, \Phi_{m_{1}}(y) \, \frac{2}{\bar{x}y} \right\}. \end{aligned}$$

Hard Scattering and Weak Annihilation

Both divergences modeled in the same way in QCDF:

$$\int_0^1 \frac{dy}{\bar{y}} \Phi_{m_1}(y) \equiv \Phi_{m_1}(1) X_{H,A}^{M_1} + r,$$

with r a finite piece and $X_{H,A} = (1 + \rho_{H,A}) \ln(m_b/\Lambda)$.

Amplitude for a B-decay into two mesons:

$$A(\bar{B}_q \to M\bar{M}) = \lambda_u^{(q)} T_M^q + \lambda_c^{(q)} P_M^q, \qquad \lambda_p^{(q)} = V_{pb} V_{pq}^*$$

Keypoint: For certain processes the structure of the IR divergences at NLO in QCDF is the same for both pieces.

Consequence: This allows to identify an IR safe quantity **at this order**, defined by $\Delta = T - P$.

Remark: This quantity Δ can be directly related to observables leading to a set of sum rules that can be translated into predictions for the UT angles.

EXAMPLES

- $B \to PP: \Delta$ was first calculated for $B_{s,d} \to K^0 \bar{K}^0$ (DMV)
- $B \rightarrow VV$: One Δ for each helicity amplitudes. Longitudinal is leading in a naive power counting in Λ/m_b .

Longitudinal Δ of $B_d \to K^{*0}\bar{K}^{*0}$ $(B_s \to K^{*0}\bar{K}^{*0})$ and $B_s \to \phi\phi$:

$$\begin{split} |\Delta_{K^*K^*}^d| &= A_{K^*K^*}^{d,0} \frac{C_F \alpha_s}{4\pi N_c} C_1 \, | \, \bar{G}_{K^*}(s_c) - \bar{G}_{K^*}(0) | = (1.85 \pm 0.79) \times 10^{-7} \text{GeV} \\ |\Delta_{K^*K^*}^s| &= A_{K^*K^*}^{s,0} \frac{C_F \alpha_s}{4\pi N_c} C_1 \, | \, \bar{G}_{K^*}(s_c) - \bar{G}_{K^*}(0) | = (1.62 \pm 0.69) \times 10^{-7} \text{GeV} \\ |\Delta_{\phi\phi}^s| &= A_{\phi\phi}^{s,0} \frac{C_F \alpha_s}{4\pi N_c} C_1 \, | \, \bar{G}_{\phi}(s_c) - \bar{G}_{\phi}(0) | = (2.06 \pm 2.24) \times 10^{-7} \text{GeV} \end{split}$$

where $\bar{G}_V \equiv G_V - r_{\chi}^V \hat{G}_V$ are the usual penguin functions and $A_{V_1V_2}^{q,0}$ are the naive factorization factors.

Strategies to measure sin ϕ_s based on Δ

First Strategy:

General, it applies to any $B \to PP, VV$ decay. It allows to perform a test on the SM value of $\phi_{s}.$

- We will focus here on two cases:
 - B_s decay through a b → s process, e.g. B_s → K^{*0}K̄^{*0}, φφ
 B_s decay through a b → d process, e.g. B_s → φK̄^{*0} (with a subsequent decay into a CP eigenstate)

I. **Experimental inputs**: longitudinal branching ratio and $A_{\Delta\Gamma}$ asymmetry of a B_s meson decaying through a $b \rightarrow d$ or $b \rightarrow s$ process (from the untagged rate):

$$BR^{long} = (N \times f_0 + \bar{N} \times \bar{f}_0) \quad \text{where} \quad \bar{f}_0 = \frac{|\bar{A}_0|^2}{|\bar{A}_0|^2 + |\bar{A}_+|^2 + |\bar{A}_-|^2} = \frac{|\bar{A}_0|^2}{\bar{T}}$$

$$\begin{split} &\Gamma^{L}(B^{0}(t) \rightarrow f) + \bar{\Gamma}^{L}(\bar{B}^{0}(t) \rightarrow f) = R_{L}e^{-\Gamma_{L}t} + R_{H}e^{-\Gamma_{H}t} \\ &A_{\Delta\Gamma}^{long} = \frac{R_{H}/R_{L} - 1}{R_{H}/R_{L} + 1} \quad \text{and} \quad |A_{dir}|^{2} + |A_{mix}|^{2} + |A_{\Delta\Gamma}|^{2} = 1 \end{split}$$

Notice that $\overline{T}/T = \overline{N}/N$, where $N(\overline{N})$ are the corresponding number of events with a $B(\overline{B})$ respectively

Joaquim Matias Universitat Autònoma de Barcelona Selected topics in B physics for Super-B

II. Theory inputs:

- longitudinal Δ (already computed for different decays) and
- combination of CKM elements.
- III. Main results:

$$\begin{split} \sin^2 \beta_s &= \frac{\widetilde{BR}}{2|\lambda_c^{(D)}|^2|\Delta|^2} \left(1 - A_{\Delta\Gamma}\right)\\ \sin^2 \left(\beta_s + \gamma\right) &= \frac{\widetilde{BR}}{2|\lambda_u^{(D)}|^2|\Delta|^2} \left(1 - A_{\Delta\Gamma}\right) \end{split}$$

Conclusion:

- Direct test of the weak mixing angle φ_s with only one single theoretical input: the corresponding Δ of the process with an untagged rate (not tagging required).
- 2 Enough to test β_s but also γ .

Second Strategy:

This strategy is the most theoretically driven. It focus on the golden mode $B_s \to K^{0*} \bar{K}^{0*}$ Assumption: no sizeable NP in the $B_d \to K^{0*} \bar{K}^{0*}$ U-spin related decay. The steps to follow here are:

• Relate the hadronic parameters of both processes (B_s and B_d):

$$P^{s}_{K^{*}K^{*}} = f P^{d}_{K^{*}K^{*}} (1 + \delta^{P}_{K^{*}K^{*}})$$

$$T^{s}_{K^{*}K^{*}} = f T^{d}_{K^{*}K^{*}} (1 + \delta^{T}_{K^{*}K^{*}})$$

computing factorizable

$$f = m_{B_s}^2 A_0^{B_s \to K^*} / m_B^2 A_0^{B \to K^*} = 0.88 \pm 0.19$$

and non-factorizable SU(3) breaking parameters:

$$|\delta^P_{K^*K^*}| \le 0.12 \;, \qquad |\delta^T_{K^*K^*}| \le 0.15$$

- Main inputs: $BR^{long}(B_d \to K^{0*}\bar{K}^{0*}), \Delta_{K*K*}$ together with $A_{dir}^{long}(B_d \to K^{0*}\bar{K}^{0*})$
- Prediction in the SM for the corresponding B_s observables:

$$\begin{array}{lll} \frac{BR^{long}(B_{\rm s} \to K^{*0}\bar{K}^{*0})}{BR^{long}(B_{d} \to K^{*0}\bar{K}^{*0})} &=& 17 \pm 6\\ A^{long}_{dir}(B_{\rm s} \to K^{*0}\bar{K}^{*0}) &=& 0.000 \pm 0.014\\ A^{long}_{mix}(B_{\rm s} \to K^{*0}\bar{K}^{*0}) &=& 0.004 \pm 0.018 \end{array}$$

• A measurement of $A_{mix}^{long}(B_s \to K^{0*} \bar{K}^{0*})$ allow to extract the weak mixing angle ϕ_s even in presence of New Physics in the mixing including all penguin pollution.

Correlation between A_{mix}^{long} and ϕ_s . The extraction of ϕ_s from this plot is possible even in the presence of New Physics under the condition that there are only New Physics contributions in $\Delta B = 2$ but not large New Physics effects in $\Delta B = 1$ FCNC amplitudes.

Conclusions

- Possible sin 2β tensions can be very clearly clarified at Super-B.
- We have **completed the method** to construct QCD-protected observables A_T^i based on the exclusive 4-body B-meson decay $\bar{B}_d \rightarrow \bar{K}^{*0} (\rightarrow K\pi) l^+ l^-$ in the low dilepton mass region.
- While the coefficients of the distribution J_i cannot be predicted with high accuracy if realistic form factor errors are taken. On the contrary Aⁱ_T are very robust, precise and very sensitive to NP.
- We have explored the NP sensitivities of A²_T, A³_T, A⁴_T and the new A⁵_T. Their combined analysis together with A_{FB} will help in disentangling NP contributions to each Wilson coefficient.
- A_T^2 emerges as an improved version of A_{FB} . Contains all A_{FB} physics, it is much more sensitive to NP and it is QCD protected in **all region** and not only in one point.
- New proposal to test B_s mixing angle with no tagging, using $B_s \rightarrow VV, PP$ decays and one very solid theoretical input Δ .

Hint number 1: CP asymmetries in $B \rightarrow \pi K$

"Large" difference of CP asymmetries in $B \rightarrow \pi K$ in charged and neutral mode:

$$\begin{aligned} A_{\rm CP}(B^0 \to K^+\pi^-) &= -0.097(12), \ A_{\rm CP}(B^+ \to K^+\pi^0) = 0.050(25) \\ &\Rightarrow \ \Delta A_{\rm CP} \neq 0 \ @ 5.3\sigma \,, \end{aligned}$$

Nature 452 (08) 293 Nature 452 (08) 332

- Loop dominated decay sensitive to NP ($b \rightarrow s$ transition).
- Previously "B $\rightarrow \pi K$ puzzle" between ratios of charged and neutral BR.

 $\mathcal{A}(B^0 \to K^+ \pi^-) = -T e^{i\gamma} - P$ P is dom $\sqrt{2} \mathcal{A}(B^+ \to K^+ \pi^0) = -(T + C + A) e^{i\gamma} - P - P_{EW}$ but also P

P is dominant QCD penguin but also Penguin annihilation.

• C Color and Cabibbo suppressed tree • P_{EW} electroweak penguins (sensitive to New Physics). • A annihilation-tree (exp. small, difficult to estimate) $\begin{pmatrix} a \\ & & & \\ &$

- I. Crude Estimate of hierarchies: $|\mathsf{P}| : |\mathsf{T}|, |\mathsf{P}_{\mathsf{EW}}| : |\mathsf{C}| \approx 1 : \lambda : \lambda^2 \text{ with } \lambda \approx 0.2 \text{ (and } \mathsf{A} \propto \phi_{\mathsf{B}}) \longrightarrow \mathsf{A}_{\mathsf{CP}} \propto \lambda \times \delta$
- II. Flavour symmetries only (errors too large to arrive to any conclusion).
- III. SM prediction in QCD Factorization: CKM HADRONIC PAR. $A_{CP}(B^- \to K^- \pi^0) = \begin{pmatrix} 7.1^{+1.7+2.0+0.8+9.0}_{-1.8-2.0-0.6-9.7} \end{pmatrix} \%$ $A_{CP}(\bar{B}^0 \to K^- \pi^-) = \begin{pmatrix} 4.5^{+1.1+2.2+0.5+8.7}_{-1.1-2.5-0.6-9.5} \end{pmatrix} \%$

Large correlation of uncertainties imply important cancellations:

$$\Delta A_{CP} = A_{CP} (B^- \to K^- \pi^0) - A_{CP} (\bar{B}^0 \to K^- \pi^+) = (2.5 \pm 1.5)\% \quad \text{(limit QCDF)}$$
$$\Delta A_{CP}^{\exp} = (14.4 \pm 2.9)\% \implies 3.5\sigma$$

• Moreover this problem is correlated to $S_{\pi 0KS}$ in QCDF (predicts $\epsilon_T \approx \epsilon_{3/2}$):

$$\begin{aligned} R_c - R_n &\simeq 2 \epsilon_{3/2} \left(\epsilon_T - \epsilon_{3/2} \left(1 - q^2 \right) \right) + \mathcal{O}(\lambda^3) \,, \\ \Delta A &\simeq C_{\pi^0 K_S^0} &\simeq 2 \left(\epsilon_T \sin \phi_T - \epsilon_{3/2} \sin \phi_{3/2} \right) + \mathcal{O}(\lambda^3) \,, \\ S_{\pi^0 K_S^0} &\simeq -\sin 2\beta + 2 \cos 2\beta \left(\epsilon_T - \epsilon_{3/2} \right) + \mathcal{O}(\lambda^2) \end{aligned}$$

Hint number 2: $B \rightarrow K^* (\rightarrow K\pi)I^+I^-$

Lunghi&Matias 07, **arXiv:0804.4412** [hep-ex] Kruger&Matias 05 , **arXiv:0807.4119** [hep-ex] Feldmann&Matias 03

Hint number 3: $b \rightarrow s\bar{s}s$ versus $b \rightarrow c\bar{c}s$ and $sin 2\beta$ Prediction for sin2 β using $\epsilon_{\rm K}$, $\Delta M_{\rm Bs}$ / $\Delta M_{\rm Bd}$ without $V_{ub}(B_K, \xi_s)$: Lunghi&Soni 08 0.8 no V_{ub} prediction = 0.87 0:09 noV_{ub} sin (2⁻) 0.6 V_{ub} a(ø.n.KK)K $\sin(2^{-})^{a} K_{S} = 0.681 \S 0.025 (2.13)$ $\overline{\eta}$ $(A; {}^{0}, K_{S}K_{S})K_{S} = 0:58 \ 0:06 \ (2:73)$ $sin(2^{-})$ $b \rightarrow s$ penguin dominated decays 0.2 are systematically lower than $B \rightarrow \psi K_s$ ΔM. $sin(2\beta^{eff}) \equiv sin(2\varphi_1^{eff}) \frac{\text{HFAG}}{Morload 2007}$ -1.0 -0.50.5 0.0 $\overline{\rho}$ PRELIMINAR) World Average b→ccs 0.68 ± 0.03 no V_{ub} with V_{ub} mode experiment φK^D Average H+ 0.39 ± 0.18 0.681 ± 0.025 2.1σ η′ K⁰ 1.7σ Average $a_{\psi KS}$ 0.61 ± 0.0 K_s K_s K_s Average $0.58 \pm$ 0.39 ± 0.17 2.5σ 2.1σ $a_{\phi K_S}$ π⁰ K_e Average 0.61 ± 0.07 2.3σ 1.8σ $a_{\eta'K_S}$ ρ⁰ K_o Average 0.20 ± 0.57 0.58 ± 0.20 1.4σ 0.9σ Average ωKs 0.48 ± 0.24 $a_{K_SK_SK_S}$ f_o K⁰ Average H*-1 0.42 ± 0.1 2.7σ 0.58 ± 0.06 2.5σ $a_{(\phi+\eta'+K_SK_S)K_S}$ π⁰ π⁰ K_s Average -0.72 ± 0.7 0.66 ± 0.024 2.3σ 2.1σ κ* κ[™] Average $a_{(\psi+\phi+\eta'+K_SK_S)K_S}$ 0.58 ± 0.13 -3 -2 -1 0 2 3 1

Hint number 4: UT claims first evidence of NP in $b \rightarrow$ s transitions.

Observables:

Theory:

Data:

 $\begin{array}{ll} \Delta m_{s} \; [{\rm ps}^{-1}] & 17.77 \pm 0.12 \\ A_{\rm SL}^{s} \times 10^{2} & 2.45 \pm 1.96 \\ A_{\rm SL}^{\mu\mu} \times 10^{3} & -4.3 \pm 3.0 \\ \tau_{B_{s}}^{\rm FS} \; [{\rm ps}] & 1.461 \pm 0.032 \\ \end{array}$ Angular analysis of B_s \rightarrow J/ $\psi\phi$ from CDF and D0 $\rightarrow \Delta\Gamma_{\rm s}$ and $\phi_{\rm s}$.

Diapositiva 6

MSOffice13 ; 26/11/2005

FIT RESULT:

Diapositiva 7

MSOffice15 ; 26/11/2005