Heavy Quark Spectroscopy

Joan Soto

Departament d'Estructura i Constituents de la Matèria

and

Institut de Ciències del Cosmos

Universitat de Barcelona

Elementary Particles in 2011

The SM at low energies

For $p \ll m_{W,Z}$ the Standard Model (SM) reduces to

$$\mathcal{L}_{QCD+QED} = -\frac{1}{2} tr \left(F_{\mu\nu} F^{\mu\nu} \right) - \frac{1}{4} F^{em}_{\mu\nu} F^{em \ \mu\nu} + \\ + \sum_{q=u,d,s} \bar{q} \left(i D^{q} - m_{q} \right) q + \sum_{Q=c,b} \bar{Q} \left(i D^{Q} - m_{Q} \right) Q + \\ + \sum_{l=e,\mu,\tau} \bar{l} \left(i D^{l} - m_{l} \right) l + \bar{\nu}_{l} i \partial \nu_{l} + \mathcal{O}(1/m_{W,Z})$$

•
$$-igF_{\mu\nu} - iee_qF^{em}_{\mu\nu} = [D^q_{\mu}, D^q_{\nu}], D^{q,Q}_{\mu} = \partial_{\mu} - igA_{\mu} - iee_{q,Q}A^{em}_{\mu}$$
,
 $D^l_{\mu} = \partial_{\mu} - iee_lA^{em}_{\mu}$

- \bullet e, charge of the positron
- $e_{q,Q,l}$, the fraction of the charge of the electron that the corresponding particles have.

QCD (early 70's) is the current theory of the strong interactions.

$$\mathcal{L}_{QCD} = \mathcal{L}_g + \sum_{q=u,d,s} \mathcal{L}_q + \sum_{Q=c,b,t} \mathcal{L}_Q$$
$$\mathcal{L}_g = -\frac{1}{2} tr \left(F_{\mu\nu} F^{\mu\nu} \right)$$
$$\mathcal{L}_q = \bar{q} \left(i \not\!\!D - m_q \right) q \quad , \quad \mathcal{L}_Q = \bar{Q} \left(i \not\!\!D - m_Q \right) Q$$

•
$$-igF_{\mu\nu} = [D_{\mu}, D_{\nu}], D_{\mu} = \partial_{\mu} - igA_{\mu}, A_{\mu} = T^a A^a_{\mu},$$

• $A^a_{\mu} \in 8$ of SU(3), the gluon fields

• q and $Q \in 3$ of SU(3), the light and heavy quark fields

- T^a are the generators of 3 of SU(3)
- $\mathbf{Q} = g$ is the QCD coupling constant

- \mathcal{L}_{QCD} is invariant under local color SU(3)
- \mathcal{L}_{QCD} is invariant under global $U(1)^{N_q+N_Q}$. Flavor is conserved.

- \mathcal{L}_{QCD} is invariant under local color SU(3)
- \mathcal{L}_{QCD} is invariant under global $U(1)^{N_q+N_Q}$. Flavor is conserved.

Why do we distinguish heavy from light quarks?

 $m_u = 1.5 - 3.0 MeV., \ m_d = 3.5 - 6.0 MeV, \ m_s = 70 - 130 MeV$ $m_c = 1.25 \pm 0.09 GeV., \ m_b = 4.20 \pm 0.07 GeV., \ m_t = 171.2 \pm 2.1 GeV$

- \mathcal{L}_{QCD} is invariant under local color SU(3)
- \mathcal{L}_{QCD} is invariant under global $U(1)^{N_q+N_Q}$. Flavor is conserved.

Why do we distinguish heavy from light quarks?

 $m_u = 1.5 - 3.0 MeV., \ m_d = 3.5 - 6.0 MeV, \ m_s = 70 - 130 MeV$ $m_c = 1.25 \pm 0.09 GeV., \ m_b = 4.20 \pm 0.07 GeV., \ m_t = 171.2 \pm 2.1 GeV$

• There is also $\Lambda_{QCD} \sim 300 - 700 MeV$, dynamically generated scale. Heavy quarks have $m_Q \gg \Lambda_{QCD}$

- \mathcal{L}_{QCD} is invariant under local color SU(3)
- \mathcal{L}_{QCD} is invariant under global $U(1)^{N_q+N_Q}$. Flavor is conserved.

Why do we distinguish heavy from light quarks?

 $m_u = 1.5 - 3.0 MeV.$, $m_d = 3.5 - 6.0 MeV$, $m_s = 70 - 130 MeV$ $m_c = 1.25 \pm 0.09 GeV.$, $m_b = 4.20 \pm 0.07 GeV.$, $m_t = 171.2 \pm 2.1 GeV$

- There is also $\Lambda_{QCD} \sim 300 700 MeV$, dynamically generated scale. Heavy quarks have $m_Q \gg \Lambda_{QCD}$
- Asymptotic freedom (Gross, Wilczek; Politzer, 1971) implies $lpha_{
 m s}(m_Q)\ll 1$, $lpha_{
 m s}=g^2/4\pi$

The light quarks fulfil $m_q \ll \Lambda_{QCD} \longrightarrow$ there is an approximate $U(3) \times U(3)$ chiral symmetry,

- It is explicitly broken in the quantum theory down to $U(1) \times SU(3) \times SU(3)$
- And spontaneously broken down to flavor SU(3)producing pseudo-Goldstone bosons, $G = \{\pi s, Ks, \eta\}, m_G \ll \Lambda_{QCD}$

Lattice QCD

Put (Euclidean) QCD on a lattice of N^4 points separated a distance a

- *a* is an UV regulator, hence $1/a \gg m_h$, m_h being the typical scale of the process we wish to study (e.g. a hadron mass).
- Na is an IR cut-off, hence $1/Na \ll m_G$ due to the existence of Goldstone bosons, otherwise $1/Na \ll \Lambda_{QCD}$ would be enough.

The second constrain holds for any system we wish to study. The first one changes depending on the system

Lattice QCD

- For hadrons involving light quarks only, we have $1/a \gg \Lambda_{QCD}$
- For hadrons involving heavy quarks, we have $1/a \gg m_Q$

QCD lattice calculations involving heavy quarks are very costly. A wise way to proceed is to calculate (factorize) the effects at the scale m_Q using perturbation theory, and leave for a less costly lattice calculation the effects at lower scales.

Effective Field Theories (EFTs)

Direct QCD calculations may be very complicated

- Direct QCD calculations may be very complicated
- Construct a new theory (the EFT) involving only the relevant degrees of freedom for the energy region of interest

- Direct QCD calculations may be very complicated
- Construct a new theory (the EFT) involving only the relevant degrees of freedom for the energy region of interest
 - Identify relevant degrees of freedom
 - Implement the symmetries of QCD
 - Exploit the hierarchy of energy scales

- Direct QCD calculations may be very complicated
- Construct a new theory (the EFT) involving only the relevant degrees of freedom for the energy region of interest
 - Identify relevant degrees of freedom
 - Implement the symmetries of QCD
 - Exploit the hierarchy of energy scales
- The EFT gives equivalent physical results in the region where it holds

- Direct QCD calculations may be very complicated
- Construct a new theory (the EFT) involving only the relevant degrees of freedom for the energy region of interest
 - Identify relevant degrees of freedom
 - Implement the symmetries of QCD
 - Exploit the hierarchy of energy scales
- The EFT gives equivalent physical results in the region where it holds
 - It may make apparent accidental symmetries in that region, which help constraining the physics.
 - Calculations are usually simpler.

Q ar q bound state , $m_Q >> \Lambda_{QCD}$, $lpha_{
m s}(m_Q) << 1$

- The heavy quark is essentially at rest in the rest frame of the heavy meson
- If the heavy meson moves with velocity v, $v^2 = 1$, the heavy quark will also move with velocity v up to fluctuations $\sim \Lambda_{QCD}$, namely its momentum can be written as $p = m_Q v + k$, $k \sim \Lambda_{QCD} \ll m_Q$
- Naïvely, we can write $Q(x) = e^{-im_Q vx} p_+ h_v^{(Q)}(x)$, $p_{\pm} = (1 \pm \psi)/2$ projects onto the particle subspace, and $h_v^{(Q)}(x)$ contains the momentum fluctuations $k \sim \Lambda_{QCD}$

If this is done for all heavy quarks in the heavy quark part of the QCD lagrangian

$$\sum_{Q=c,b} \mathcal{L}_Q \longrightarrow \sum_{Q=c,b} \mathcal{L}_{HQET}^{(Q)} = \sum_{Q=c,b} \bar{h}_v^{(Q)} iv.Dh_v^{(Q)}$$

- It enjoys an accidental $SU(2N_Q)$ spin-flavor symmetry
 - $m_{b\bar{q}} m_b \sim m_{c\bar{q}} m_c$. E.g. $m_{D_1^0} m_{D^0} \sim m_{B_1^0} m_{B^0}$
 - For each Q, spin doublets (S, S + 1). E.g. $m_B \sim m_{B^*}$, $m_D \sim m_{D^*}$
- One expects the naïve picture to be modified by
 - Power corrections: $\sim 1/m_Q$ suppressed terms
 - Radiative corrections: $\sim \alpha_{\rm s}(m_Q)$ suppressed terms

Rosner, hep-ph/0612332

Power + Radiative Corrections

• For $v = (1, \mathbf{0})$, we have

$$\mathcal{L} = \bar{h}_v \left\{ iD^0 + c_2 \frac{\mathbf{D}^2}{2m} + c_4 \frac{\mathbf{D}^4}{8m^3} + c_F g \frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2m} + c_D g \frac{[\mathbf{D} \cdot \mathbf{E}]}{8m^2} \right. \\ \left. + ic_S g \frac{\boldsymbol{\sigma} \cdot (\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D})}{8m^2} + \mathcal{O}(1/m^3) \right\} h_v,$$

• *v* arbitrary is recovered by $D^0 \to v.D$, $\mathbf{D} \to D^{\mu} - v^{\mu}v.D$ and $\boldsymbol{\sigma} \to ip_+\gamma^{\nu}p_-\gamma^{\rho}p_+\epsilon_{\mu\nu\rho\sigma}v^{\sigma}/2$

Matching

$$c_{2} = c_{4} = 1$$

$$c_{F} = 1 + \frac{\alpha}{\pi} \left[\frac{1}{2}C_{f} + \left(\frac{1}{2} - \frac{1}{2}\log\frac{m}{\mu}\right)C_{A} \right]$$

$$c_{D} = 1 + \frac{\alpha}{\pi} \left[\left(\frac{8}{3}\log\frac{m}{\mu}\right)C_{f} + \left(\frac{1}{2} + \frac{2}{3}\log\frac{m}{\mu}\right)C_{A} \right]$$

$$c_{S} = 1 + \frac{\alpha}{\pi} \left[C_{f} + \left(1 - \log\frac{m}{\mu}\right)C_{A} \right] , \quad C_{A} = N_{c}$$

 $\mathcal{L} = \bar{h}_v \left\{ iD^0 + c_2 \frac{\mathbf{D}^2}{2m} + c_4 \frac{\mathbf{D}^4}{8m^3} + c_F g \frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2m} + c_D g \frac{[\mathbf{D} \cdot \mathbf{E}]}{8m^2} \right.$ $\left. + ic_S g \frac{\boldsymbol{\sigma} \cdot (\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D})}{8m^2} + \mathcal{O}(1/m^3) \right\} h_v$

Renormalization Group

The solution of the RG equations at one loop reads

$$c_{F}(\mu) = z^{-C_{A}}$$

$$c_{D}(\mu) = z^{-2C_{A}} + \left(\frac{20}{13} + \frac{32}{13}\frac{C_{F}}{C_{A}}\right) \left[1 - z^{-13C_{A}/6}\right]$$

$$z = \left[\frac{\alpha_{s}(\mu)}{\alpha_{s}(m)}\right]^{1/b_{0}}, \quad b_{0} = 11C_{A}/3 - 4T_{F}n_{f}/3$$

• Application:

$$\frac{m_{B^*}^2 - m_B^2}{m_{D^*}^2 - m_D^2} = \left[\frac{\alpha_s \left(m_D\right)}{\alpha_s \left(m_B\right)}\right]^{-C_A/b_0} + \mathcal{O}\left(\frac{\Lambda_{QCD}}{m_c}, \frac{\Lambda_{QCD}}{m_b}, \alpha_s\right)$$

Rosner, hep-ph/0612332

Heavy quark-antiquark system:

Heavy quark-antiquark system:

- Charmonium ($c\bar{c}$, J/ψ family)
- Bottomonium ($b\bar{b}$, Υ family)

Heavy quark-antiquark system:

- Charmonium ($c\bar{c}$, J/ψ family)
- Bottomonium ($b\bar{b}$, Υ family)
- Also:
 - *B_c* (*bc*)
 - *t*-*t*
 - $\tilde{q}\overline{\tilde{q}}, \, \tilde{g}\overline{\tilde{g}}, \, \cdots$
 - Double-heavy baryons (ccq, q = u, d, s)

• If $\alpha_{\rm s}(m_Q) \ll 1$ then ~ e.m. bound states ($\alpha = 1/137 \ll 1$)

- If $\alpha_{\rm s}(m_Q) \ll 1$ then ~ e.m. bound states ($\alpha = 1/137 \ll 1$)
 - Indeed, the new states could be classified using spectroscopy notation ${}^{2S+1}L_J$

- If $\alpha_{\rm s}(m_Q) \ll 1$ then ~ e.m. bound states ($\alpha = 1/137 \ll 1$)
 - Indeed, the new states could be classified using spectroscopy notation ${}^{2S+1}L_J$
 - But did not quite follow the pattern of the positronium spectrum.

• If $\alpha_{\rm s}(m_Q) \ll 1$ then ~ e.m. bound states ($\alpha = 1/137 \ll 1$)

- Indeed, the new states could be classified using spectroscopy notation ${}^{2S+1}L_J$
- But did not quite follow the pattern of the positronium spectrum. They need not to if Λ_{QCD} is taken into account (Voloshin, 1979; Leutwyler, 1981)

• If $\alpha_{\rm s}(m_Q) \ll 1$ then ~ e.m. bound states ($\alpha = 1/137 \ll 1$)

- Indeed, the new states could be classified using spectroscopy notation ${}^{2S+1}L_J$
- But did not quite follow the pattern of the positronium spectrum. They need not to if Λ_{QCD} is taken into account (Voloshin, 1979; Leutwyler, 1981)
- Potential models: modify the Coulomb-type potential, e.g. Cornell potential (1980): $V(r) = \sigma r - \frac{b}{r}$
Charmonium

Eichten, Godfrey, Mahlke, Rosner (2007)

Bottomonium

Eichten, Godfrey, Mahlke, Rosner (2007)

 $Q ar{Q}$ bound state , $m_Q >> \Lambda_{QCD}$, $lpha_{
m s}(m_Q) << 1$

 $Q\bar{Q}$ bound state , $m_Q >> \Lambda_{QCD}$, $\alpha_{\rm s}(m_Q) << 1$

• Heavy quarks move slowly v << 1

- $Q \bar{Q}$ bound state , $m_Q >> \Lambda_{QCD}$, $\alpha_{
 m s}(m_Q) << 1$
 - Heavy quarks move slowly v << 1
 - ▲ Non-relativistic system → multiscale problem

 $Q \bar{Q} \mbox{ bound state }$, $m_Q >> \Lambda_{QCD}$, $lpha_{
m s}(m_Q) << 1$

- $\hfill \blacksquare$ Heavy quarks move slowly v << 1
- Non-relativistic system \rightarrow multiscale problem
 - $m_Q >> m_Q v >> m_Q v^2$
 - $m_Q >> \Lambda_{QCD}$

 $Q \bar{Q} \mbox{ bound state }$, $m_Q >> \Lambda_{QCD}$, $lpha_{
m s}(m_Q) << 1$

- $\hfill \blacksquare$ Heavy quarks move slowly v << 1
- Non-relativistic system \rightarrow multiscale problem
 - $m_Q >> m_Q v >> m_Q v^2$
 - $m_Q >> \Lambda_{QCD}$
- EFTs are useful (N. Brambilla, A. Pineda, JS and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005))

NRQCD

W.E. Caswell and G.P. Lepage, Phys. Lett. **167B**, 437 (1986) G. T. Bodwin, E. Braaten and G. P. Lepage, Phys. Rev. D **51** (1995) 1125

$$m_Q \gg m_Q v , \quad m_Q v^2 , \quad \Lambda_{QCD}$$

$$\mathcal{L}_{\psi} = \psi^{\dagger} \left\{ i D_0 + \frac{1}{2m_Q} \mathbf{D}^2 + \frac{1}{8m_Q^3} \mathbf{D}^4 + \frac{c_F}{2m_Q} \boldsymbol{\sigma}.g \mathbf{B} + \frac{c_D}{8m_Q^2} \left(\mathbf{D}.g \mathbf{E} - g \mathbf{E}.\mathbf{D} \right) + i \frac{c_S}{8m_Q^2} \boldsymbol{\sigma}.\left(\mathbf{D} \times g \mathbf{E} - g \mathbf{E} \times \mathbf{D} \right) \right\} \psi$$

 c_F , c_D and c_S are short distance matching coefficients which depend on m_Q and μ (factorization scale)

NRQCD(Cont.)

Spectroscopy — Lattice NRQCD

Gregory et al. [HPQCD] PRL.104:022001(2010)

• The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled

• The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous

The scales m_Qv, m_Qv² and Λ_{QCD} are not disentangled → The counting is not homogeneous
 Solutions:

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v$

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v \longrightarrow$ pNRQCD, A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998)

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v \longrightarrow$ pNRQCD, A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998)
 - Mode decomposition

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v \longrightarrow$ pNRQCD, A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998)
 - Mode decomposition vNRQCD, M. E. Luke,
 A. V. Manohar and I. Z. Rothstein, Phys. Rev. D 61,
 074025 (2000)

- The scales $m_Q v$, $m_Q v^2$ and Λ_{QCD} are not disentangled \longrightarrow The counting is not homogeneous
 - Solutions:
 - Integrate out energy scales $\sim m_Q v \longrightarrow$ pNRQCD, A. Pineda and J. Soto, Nucl. Phys. Proc. Suppl. 64, 428 (1998)
 - Mode decomposition vNRQCD, M. E. Luke,
 A. V. Manohar and I. Z. Rothstein, Phys. Rev. D 61,
 074025 (2000)

pNRQCD

 $\Lambda_{QCD} \lesssim m_Q v^2$: weak coupling regime

$$\begin{split} \mathcal{L}_{\mathbf{pNRQCD}} &= \int d^{3}\mathbf{r} \operatorname{Tr} \left\{ \mathbf{S}^{\dagger} \left(i\partial_{0} - h_{s}(\mathbf{r}, \mathbf{p}, \mathbf{P}_{\mathbf{R}}, \mathbf{S}_{1}, \mathbf{S}_{2}, \mu) \right) \mathbf{S} + \\ &+ \mathbf{O}^{\dagger} \left(iD_{0} - h_{o}(\mathbf{r}, \mathbf{p}, \mathbf{P}_{\mathbf{R}}, \mathbf{S}_{1}, \mathbf{S}_{2}, \mu) \right) \mathbf{O} \right\} \\ &+ V_{A}(r, \mu) \operatorname{Tr} \left\{ \mathbf{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{S} + \mathbf{S}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{O} \right\} + \\ &+ \frac{V_{B}(r, \mu)}{2} \operatorname{Tr} \left\{ \mathbf{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{O} + \mathbf{O}^{\dagger} \mathbf{Or} \cdot g \mathbf{E} \right\} \end{split}$$

 h_s , h_o = quantum mechanical Hamiltonians with scale dependent potentials calculable in perturbation theory in $\alpha_s(m_Q v)$

pNRQCD (Cont.)

 $\Lambda_{QCD} \lesssim mv$: strong coupling regime

$$L_{\mathbf{pNRQCD}} = \int d^3 \mathbf{x}_1 \int d^3 \mathbf{x}_2 \ S^{\dagger} (i\partial_0 - h_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2)) S,$$

$$h_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2) = \frac{\mathbf{p}_1^2}{2m_Q} + \frac{\mathbf{p}_2^2}{2m_Q} + V_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2),$$

$$V_s = V_s^{(0)} + \frac{V_s^{(1)}}{m_Q} + \frac{V_s^{(2)}}{m_Q^2} + \cdots,$$

All V_s s can be, and most of them have been, calculated on the lattice

G.S. Bali at al. (TXL Collaboration), Phys. Rev. D62,(2000):054503

Consider a N^4 lattice sites with lattice spacing *a*:

Consider a N^4 lattice sites with lattice spacing *a*:

Lattice QCD:

$$\frac{1}{a} \gg m_Q \gg m_Q v \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1/v^2$$

Consider a N^4 lattice sites with lattice spacing *a*:

- Lattice QCD:
 - $\frac{1}{a} \gg m_Q \gg m_Q v \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1/v^2$
- Lattice NRQCD: $\frac{1}{a} \gg m_Q v \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1/v$

Consider a N^4 lattice sites with lattice spacing *a*:

- Lattice QCD:
 - $\frac{1}{a} \gg m_Q \gg m_Q v \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1/v^2$
- Lattice NRQCD: $\frac{1}{a} \gg m_Q v \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1/v$
- Lattice pNRQCD: $\frac{1}{a} \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1$

Consider a N^4 lattice sites with lattice spacing *a*:

- Lattice QCD:
 - $\frac{1}{a} \gg m_Q \gg m_Q v \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1/v^2$
- Lattice NRQCD: $\frac{1}{a} \gg m_Q v \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1/v$
- Lattice pNRQCD: $\frac{1}{a} \gg m_Q v^2 \gg \frac{1}{Na} \longrightarrow N \gg 1$
- Charmonium: $v^2 \sim 0.3$

$$N_{QCD}^4 \sim 10 N_{NRQCD}^4 \sim 100 N_{pNRQCD}^4$$

• Bottomonium: $v^2 \sim 0.1$

$$N_{QCD}^4 \sim 100 N_{NRQCD}^4 \sim 10000 N_{pNRQCD}^4$$

Lattice NRQCD

A. Gray, I. Allison, C.T.H. Davies, Emel Dalgic, G.P. Lepage, J. Shigemitsu, M. Wingate, Phys.Rev.D72:094507,2005.

Spectrum at weak coupling

- LO: $m_Q \alpha_{
 m s}^2$, trivial
- NLO: $m_Q \alpha_{\rm s}^3$, (Billoire,1980)
- NNLO: $m_Q \alpha_s^4$, (Pineda, Yndurain, 1997)
- NNNLO: $m_Q \alpha_s^5 \ln \alpha_s$ only, (Brambilla, Pineda, JS, Vairo, 1999)
- NNLL: $m_Q \alpha_s^{4+n} \ln^n \alpha_s$, (Pineda, 2001)
- NNNLO: $m_Q \alpha_s^5$, almost complete, (Kniehl, Penin, Smirnov, Steinhauser, 2002; Beneke, Kiyo, Schuller, 2005)

The static potential

$$V_{s}(r,\mu) = -\frac{C_{F}\alpha_{s}(1/r)}{r} \left\{ 1 + \frac{\alpha_{s}(1/r)}{4\pi} [\tilde{a}_{1}] + \left(\frac{\alpha_{s}(1/r)}{4\pi}\right)^{2} [\tilde{a}_{2}] + \left(\frac{\alpha_{s}(1/r)}{4\pi}\right)^{3} [a_{3}^{L}\log\mu r + \tilde{a}_{3}] + \left(\frac{\alpha_{s}(1/r)}{4\pi}\right)^{4} [a_{4}^{L2}\log^{2}\mu r + a_{4}^{L}\log\mu r + \tilde{a}_{4}] + \cdots \right\},$$

 \tilde{a}_1 , W. Fischler, Nucl. Phys. B 129 (1977) 157; A. Billoire, Phys. Lett. B 92 (1980) 343 \tilde{a}_2 , M. Peter, Phys. Rev. Lett. 78 (1997) 602; Nucl. Phys. B 501 (1997) 471; Y. Schröder, Phys. Lett. B 447 (1999) 321 a_3^L , . Brambilla, A. Pineda, JS, A. Vairo, Phys. Rev. D60, 091502 (1999)

*ã*₃, ???

 a_4^{2L} , A. Pineda and JS, Phys. Lett. B 495 (2000) 323

 $a_4^{m L}$, N. Brambilla, X. Garcia i Tormo, JS, A. Vairo, Phys. Lett. B647, 185 (2007)

$$\tilde{a}_3 = \tilde{a}_3^{(0)} + \tilde{a}_3^{(1)}n_f + \tilde{a}_3^{(2)}n_f^2 + \tilde{a}_3^{(3)}n_f^3$$

• $\tilde{a}_3^{(i)}$, i = 1, 2, 3: Smirnov, Smirnov, Steinhauser, 2008

- $\tilde{a}_3^{(0)}$: Padé estimate ~ 313×4^3 , Chishtie, Elias, 2001
- $\tilde{a}_3^{(0)}$: Renormalon estimate ~ 292×4^3 , Pineda, 2001
- $\tilde{a}_{3}^{(0)}$: NNNLL calculation + lattice data = $(202 337) \times 4^{3}$, Brambilla, Garcia i Tormo, JS, Vairo, 2009

Brambilla, Garcia i Tormo, JS, Vairo, 2009)

$$\tilde{a}_3 = \tilde{a}_3^{(0)} + \tilde{a}_3^{(1)}n_f + \tilde{a}_3^{(2)}n_f^2 + \tilde{a}_3^{(3)}n_f^3$$

- $\tilde{a}_{3}^{(i)}$, i = 1, 2, 3: Smirnov, Smirnov, Steinhauser, 2008 • $\tilde{a}_{3}^{(0)}$: Padé estimate ~ 313×4^{3} , Chishtie, Elias, 2001 • $\tilde{a}_{3}^{(0)}$: Renormalon estimate ~ 292×4^{3} , Pineda, 2001
- $\tilde{a}_3^{(0)}$: NNNLL calculation + lattice data ~ $(202 337) \times 4^3$, Brambilla, Garcia i Tormo, JS, Vairo, arXiv:0906.1390

$$\tilde{a}_3 = \tilde{a}_3^{(0)} + \tilde{a}_3^{(1)}n_f + \tilde{a}_3^{(2)}n_f^2 + \tilde{a}_3^{(3)}n_f^3$$

- $\tilde{a}_{3}^{(i)}$, i = 1, 2, 3: Smirnov, Smirnov, Steinhauser, 2008
- $\tilde{a}_3^{(0)}$: Padé estimate ~ 313×4^3 , Chishtie, Elias, 2001
- $\tilde{a}_3^{(0)}$: Renormalon estimate ~ 292×4^3 , Pineda, 2001
- $\tilde{a}_{3}^{(0)}$: NNNLL calculation + lattice data ~ $(202 337) \times 4^{3}$, Brambilla, Garcia i Tormo, JS, Vairo, arXiv:0906.1390
- $\tilde{a}_{3}^{(0)}$: NNNLO ~ 209.885(1) × 4³, Anzai, Kiyo, Sumino, arXiv:0911.4335; Smirnov, Smirnov, Steinhauser, arXiv:0911.4742

Spectrum at weak coupling

- LO: $m_Q \alpha_{
 m s}^2$, trivial
- NLO: $m_Q \alpha_{\rm s}^3$, (Billoire,1980)
- NNLO: $m_Q \alpha_s^4$, (Pineda, Yndurain, 1997)
- NNNLO: $m_Q \alpha_s^5 \ln \alpha_s$ only, (Brambilla, Pineda, JS, Vairo, 1999)
- NNLL: $m_Q \alpha_{\rm s}^{4+n} \ln^n \alpha_{\rm s}$, (Pineda, 2001)
- NNNLO: $m_Q \alpha_s^5$, almost complete, (Kniehl, Penin, Smirnov, Steinhauser, 2002; Beneke, Kiyo, Schuller, 2005)

Spectrum at weak coupling

- LO: $m_Q \alpha_{
 m s}^2$, trivial
- NLO: $m_Q \alpha_{
 m s}^3$, (Billoire,1980)
- NNLO: $m_Q \alpha_s^4$, (Pineda, Yndurain, 1997)
- NNNLO: $m_Q \alpha_s^5 \ln \alpha_s$ only, (Brambilla, Pineda, JS, Vairo, 1999)
- NNLL: $m_Q \alpha_{\rm s}^{4+n} \ln^n \alpha_{\rm s}$, (Pineda, 2001)
- NNNLO: $m_Q \alpha_s^5$, almost complete, (Kniehl, Penin, Smirnov, Steinhauser, 2002; Beneke, Kiyo, Schuller, 2005)
- NNNLO: $m_Q \alpha_s^5$, complete, (Smirnov, Smirnov, Steinhauser, 2009)

pNRQCD: weak coupling regime (Cont.)

- Hyperfine splitting at NNLL accuracy (Kniehl, Penin, Pineda, Smirnov, and Steinhauser (03))
 - $m_{J/\psi} m_{\eta_c(1S)} \sim 112 \pm 40 \, (\delta \alpha_s) \, \text{MeV}$ [Exp: 116.6 ± 1.0, MeV] [MILC/Fermilab: 116 ± 7.4, MeV]
 - $m_{\Upsilon(1S)} m_{\eta_b(1S)} = 39 \pm 11 \,(\text{th})_{-8}^{+9} \,(\delta \alpha_s) \,\text{MeV}$ [Exp: 69.6 ± 2.9 MeV] [HPQCD: 61 ± 14, MeV] [MILC/Fermilab: 54 ± 12.4, MeV] [RBC/UKQCD: 60.3 ± 7.7, MeV]
 - $m_{B_c^*} m_{B_c} \sim 40 \pm 17^{+15}_{-12}$ [HPQCD: $53 \pm 7 \pm 2 \pm 6$, MeV]
$t\bar{t}$ at ILC

(Pineda, Signer, 2006)

$t\bar{t}$ at LHC ?

$t\bar{t}$ at LHC ?

(Hagiwara, Sumino, Yokoya, 2008)

pNRQCD: strong coupling regime

 $\Lambda_{QCD} \lesssim mv$: strong coupling regime

$$L_{\text{pNRQCD}} = \int d^3 \mathbf{x}_1 \int d^3 \mathbf{x}_2 \ S^{\dagger} (i\partial_0 - h_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2)) S,$$

$$h_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2) = \frac{\mathbf{p}_1^2}{2m_Q} + \frac{\mathbf{p}_2^2}{2m_Q} + V_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2),$$

$$V_s = V_s^{(0)} + \frac{V_s^{(1)}}{m_Q} + \frac{V_s^{(2)}}{m_Q^2} + \cdots,$$

All V_s s can be, and most of them have been, calculated on the lattice

Example: the $1/m_Q$ potential (N. Brambilla, A. Pineda, JS, A. Vairo, Phys. Rev. D63:014023,2001)

$$V^{(1)}(r) = -\frac{1}{2} \int_0^\infty dt \, t \, \langle \langle g \mathbf{E}_1(t) \cdot g \mathbf{E}_1(0) \rangle \rangle_c,$$

Example: the $1/m_Q$ potential (N. Brambilla, A. Pineda, JS, A. Vairo, Phys. Rev. D63:014023,2001)

$$V^{(1)}(r) = -\frac{1}{2} \int_0^\infty dt \, t \, \langle \langle g \mathbf{E}_1(t) \cdot g \mathbf{E}_1(0) \rangle \rangle_c,$$

Dashed : $V^{(1)}(r) = \frac{a}{r^2} + c$, Solid : $V^{(1)}(r) = \frac{a}{r} + c$ Y. Koma, M. Koma, H. Wittig, Phys. Rev. Lett. 97:122003,2006

Constraints on $V^{(1)}(r)$:

Constraints on $V^{(1)}(r)$:

• $r \ll 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim \alpha_{\rm s}^2(1/r)/r^2$, from perturbation theory

Constraints on $V^{(1)}(r)$:

- $r \ll 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim \alpha_{\rm s}^2(1/r)/r^2$, from perturbation theory
- $r \gg 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim a \ln r + c$, from the QCD effective string theory (Guillem Perez-Nadal, JS, Phys.Rev.D79:114002,2009)

Constraints on $V^{(1)}(r)$:

- $r \ll 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim \alpha_{\rm s}^2(1/r)/r^2$, from perturbation theory
- $r \gg 1/\Lambda_{QCD}$: $V^{(1)}(r) \sim a \ln r + c$, from the QCD effective string theory (Guillem Perez-Nadal, JS, Phys.Rev.D79:114002,2009)

States above open flavor threshold

- States above open flavor threshold
 - In 2003 Belle reported the X(3872)

- States above open flavor threshold
 - In 2003 Belle reported the X(3872)
 - Since then quite a few new states have been reported: Z(3930), Y(3940), X(3940), X(4160), Y(4260), Y(4350), Y(4660)

- States above open flavor threshold
 - In 2003 Belle reported the X(3872)
 - Since then quite a few new states have been reported: Z(3930), Y(3940), X(3940), X(4160), Y(4260), Y(4350), Y(4660)
 - Do not fit potential model expectations. Theoretical possibilities: molecules, tetraquarks, hybrids,...

"New" Charmonium Spectrum

Godfrey, 2009

G.S. Bali at al. (TXL Collaboration), Phys. Rev. D62,(2000):054503

Unconventional charmonium states, (N. Brambilla et al., 1010.5827)

State	$m \; ({\rm MeV})$	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.52 ± 0.20	$1.3 {\pm} 0.6$	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$	Belle [85, 86] (12.8), BABAR [87] (8.6)	2003	OK
		(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \dots$	CDF [88–90] (np), DØ [91] (5.2)		
				$B \to K(\omega J/\psi)$ $P \to K(D^{*0}\bar{D^0})$	Belle $[92]$ (4.3), BABAR $[93]$ (4.0) Polle $[04, 05]$ (6.4), PAPAR $[06]$ (4.0)		
				$B \to K(\gamma J/\psi)$ $B \to K(\gamma J/\psi)$	Belle [92] (4.0), BABAR [97, 98] (3.6)		
				$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \to K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	OK
				$e^+e^- \to e^+e^-(\omega J/\psi)$	Belle $[102]$ (7.7)		
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle [103] (6.0)	2007	NC!
				$e^+e^- \rightarrow J/\psi \; ()$	Belle $[54]$ (5.0)		
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	4008^{+121}_{-49}	$226{\pm}97$	1	$e^+e^- \to \gamma(\pi^+\pi^-J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle $[103]$ (5.5)	2007	NC!
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0)	2005	OK
					CLEO [110] (5.4)		
				$a^{+}a^{-} \rightarrow (a^{+}a^{-}I/ab)$	Belle $[104]$ (15)		
				$e^+e^- \rightarrow (\pi^0\pi^0 I/\psi)$	$\begin{array}{c} \text{CLEO} [111] (11) \\ \text{CLEO} [111] (5 1) \end{array}$		
Y(4274)	$4274.4^{+8.4}$	32^{+22}	??+	$B \to K(\phi J/\psi)$	$\frac{\text{CDF}}{\text{CDF}} [107] (3.1)$	2010	NC!
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{10.0}$	0.2^{++}	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle $[112]$ (3.2)	2009	NC!
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^{+}$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \rightarrow \gamma(\pi^+\pi^-\psi(2S))$	Belle $[114]$ (5.8)	2007	NC!
$Y_b(10888)$	$10888.4 {\pm} 3.0$	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

Unconventional charmonium states, (N. Brambilla et al., 1010.5827)

State	$m \; (MeV)$	$\Gamma (MeV)$	J^{PC}	Modes	Interpretation	Reference(s)
X(3872)	3871.52 ± 0.20	$1.3 {\pm} 0.6$	$1^{++}/2^{-+}$	$\pi^+\pi^- J/\psi$	$D^{*0}\bar{D^0}$ molecule (bound)	[121, 122] [383-385]
				$D^{*0}\bar{D^0}$	$D^{*0}\overline{D^0}$ unbound	[]
				$\gamma J/\psi, \gamma \psi(2S)$	if $1^{++}, \chi_{c2}(2P)$	[71]
				$\omega J/\psi$	if 2^{-+} , $\eta_{c2}(1D)$	[81, 93, 126]
					$CDSP_{1} [ac]_{2} [ac]_{2} (S + A)$	[381]
					$\begin{array}{c} \text{QCDSR:} [cq]_3 [cq]_3 (S+R) \\ \text{QCDSR:} [c\bar{q}]_1 [\bar{c}q]_1 (P+V) \end{array}$	[381]
					$\begin{array}{c} \text{QCDSR:} [c\bar{c}]_1(A) + [c\bar{q}]_1 [c\bar{q}]_1 (P+V) \\ \text{QCDSR:} [c\bar{c}]_1(A) + [c\bar{q}]_1 [c\bar{q}]_1 (P+V) \end{array}$	[381]
X(3915)	3915.6 ± 3.1	28 ± 10	$0, 2^{?+}$	$\omega J/\psi$	$D^{*+}D^{*-} + D^{*0}\bar{D}^{*0}$	[386]
Z(3930)	3927.2 ± 2.6	$24.1 {\pm} 6.1$	2^{++}	$D\bar{D}$	$\chi_{c2}(2P) \ (i.e., 2^{3}P_{2} \ c\bar{c})$	
					$1 {}^3F_2 c\bar{c}$	[71]
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$D\bar{D}^*$		
G(3900)	3943 ± 21	52 ± 11	$1^{}$	$D\bar{D}$	Coupled-channel effect	[34]
Y(4008)	4008^{+121}_{-49}	$226{\pm}97$	$1^{}$	$\pi^+\pi^- J/\psi$		
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$\pi^+ \chi_{c1}(1P)$	hadrocharmonium	[282, 355]
Y(4140)	4143.0 ± 3.1	$11.7^{+9.1}_{-6.2}$??+	$\phi J/\psi$	QCDSR: $[c\bar{q}]_1 [\bar{c}q]_1 (V+V)$	[381]
					QCDSR: $[c\bar{s}]_1 [\bar{c}s]_1$ (V+V)	[381]
	1.00	1110	- 2 -		$D_s^{\tau +} D_s^{\tau -}$	[386]
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	?'+	DD^*		
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$\pi^+\chi_{c1}(1P)$	hadrocharmonium	[282, 355]
Y(4260)	4263 ± 5	108 ± 14	1	$\pi^+\pi^- J/\psi$	charmonium hybrid	[276-278]
				$\pi^{\circ}\pi^{\circ}J/\psi$	$J/\psi f_0(980)$ bound state	[313]
					$[cs][\bar{cs}]$ tetraquark state	[345, 381]
					hadrocharmonium	[282, 355]
					QCDSR: $[c\bar{q}]_1 [\bar{c}q]_1 (S+V)$	[381]
		1 99	o2		QCDSR: $[c\bar{q}]_1 [\bar{c}q]_1 (P+A)$	[381]
Y(4274)	$4274.4^{+8.4}_{-6.7}$	32^{+22}_{-15}	?'+	$B \to K(\phi J/\psi)$	(see Y(4140))	
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0,2^{++}$	$\phi J/\psi$		
Y(4360)	4353 ± 11	96 ± 42	$1^{}$	$\pi^+\pi^-\psi(2S)$	hadrocharmonium	[282, 355]
					$V_{\rm P}(4360) = [cd][\bar{cd}](1P)$ baryonium	[71]
					$QCDSR: [ca]_{\bar{a}}[\bar{c}\bar{a}]_{\bar{a}} (S+V)$	[381]
					$QCDSR: [c\bar{s}]_1 [\bar{c}s]_1 (S+V)$	[381]
$Z(4430)^{+}$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$\pi^+\psi(2S)$	$D^{*+}\bar{D}_1^0$ molecular state	[378, 387]
					[cu][cd] tetraquark state	[379]
					hadrocharmonium	[282, 355]
					$\begin{array}{c} \text{QCDSR. } [cu]_1 \ [cu]_1 \ (\forall + A) \\ \text{QCDSB: } [cu]_2 \ [cd]_2 \ (S+P) \end{array}$	[381]
X(4630)	$4634^{+.9}$	92^{+41}	1	$\Lambda^+\Lambda^-$	$V_{\mathcal{P}}(4660) = [cd][\bar{c}d](2P) \text{ baryonium}$	[321]
(1000)	1001-11	-32	Ŧ	··c ··c	$\psi(2S)f_0(980)$ molecule	[324]
Y(4660)	4664 ± 12	48 ± 15	1	$\pi^+\pi^-\psi(2S)$	$\psi(2S)f_0(980)$ molecule	[306]
					$[cs][c\bar{s}]$ tetraquark state	[375]
					hadrocharmonium $V_{i}(4000) = \left[\frac{1}{2} \frac{1}{2} \left(2R \right) \right]$	[282, 355]
					$\begin{array}{c} r_B(4000) = [cd][cd](2P), \text{ baryonium} \\ \text{OCDSB: } [cs]_{\overline{z}} [\overline{cs}]_2, (S+V) \end{array}$	[321] [381]
$V_{1}(10888)$	10888 4+3 0	$30.7^{+8.9}$	1	$\pi^+\pi^-\Upsilon(nS)$	$\Upsilon(5S)$	[388]
10(10000)	10000.410.0	00.1-7.7	Ŧ	n n ±(no)	b-flavored $Y(4260)$	[37, 117]

"Known" physics is not that known

- "Known" physics is not that known
- QCD still provides surprises

- "Known" physics is not that known
- QCD still provides surprises
- Will super-B uncover more?