How to use SNe la data (SALT Il) to

do_ co_smolo ical r_nodel selection
within the Bayesian framework
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Bayes equation for SNe |a

p(d|0, M)p(0| M) (1)
p(d|M)
p(e, 2y, mpl0, M)p(0| M)

p<9‘d7M) —

P
p(0|¢, &y, mp) = D(C. iy i M) (2)
e data d = {¢,z,,mp}
e parameters 6 = {€),,, O, w, a, 5, My}
e Stretch and colour relation = mp — My + axy — Se
e Question: What is p(¢, 2, mp|6, M)?
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Standard (y?

As a distance estimator, we use:
pp =my— M+ a(s—1) - Bc

where m7, s and ¢ are derived from the fit to the light curves,
and «, 8 and the absolute magnitude M are parameters which
are fitted by minimizing the residuals in the Hubble diagram.
The cosmological fit is actually performed by minimizing:

¥ = Z (up — Slog(dr(8,2)/10 pc))’
o (up) + o ’

objects it

where # stands for the cosmological parameters that define the
fitted model (with the exception of Hy), dr is the luminos-
ity distance, and oy 1s the intrinsic dispersion of SN abso-
lute magnitudes. We minimize with respect to #, «, 8 and M.

e Above extract from Astier 2006

e o*(up) is a funtion of «, 3

e p(C, 1y, mpl0) # X

method

Since d; scales as 1/ Hp, only M depends on Hy. The definition
of u‘zfy ), the measurement variance, requires some care. First,
one has to account for the full covariance matrix of m, s and ¢
from the light-curve fit. Second, o(up) depends on « and f3;
minimizing with respect to them introduces a bias towards in-
creasing errors in order to decrease the y2, as originally noted
in Tripp (1998). When minimizing, we therefore fix the val-
ues of @ and 8 entering the uncertainty calculation and update
them iteratively. o(up) also includes a peculiar velocity con-
tribution of 300 kms~!. oy is introduced to account for the
“intrinsic dispersion” of SNe la. We perform a first fit with an
initial value (typically 0.15 mag), and then calculate the oy,
required to obtain a reduced y> = 1. We then refit with this
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What is p(é, &, rns|0)?

p(é7i17m*3|9):/Hp<éu§jlzam*BZ|CZ7x1Z7m*Bz79>

X P mBZ\cZ,xh, 0)p(c;, x1;]0) de; dxq; dmg;

t,2 1 m*Bz B m*Bz ’
:/H 2 4 o))~ exp (—2<( ,nt2)>>

;T ou

< (2m02) hexp (—;Ci((; 5 ) (2702 ) exp (‘i(xlz(;zi“') )

X 6(my, — (u; + My — axy; + Be;))
x p(cil0)
X p<$12‘8> dCi Xmi deI

What do we choose for p(x1;|0) and p(c¢;|0)?
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Choice 1: “Uninformative’ prior

e Choose broad flat priors on latent ¢;, xy;
e p(x1;|0) = k. and p(¢;|0) = k.
e After dmy; integral, we have:
L((pi + Mo — oy + Be;) — m*Bi)Q\

A A A X int, 1
p(Qa &1;@3“9) — /H(Qﬂ-(()-?n,z + Out2)) 2 eXp (2 int,2

(0-7271,2'_'_0M ) )

L(ei — &) 1(zy; — &1;)°
X (27”7(2:,@')_% EeXp <2(C QC) ) (27T03257i)_% exp <2(:€1 2331) )
X ke X Ky de; dxgs

e Next do integrals over dc; dx;y; integral, to obtain......
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Choice 1: “Uninformative’ prior

o After dc; dxy; integrals, we have:

DO —

p(c, 21, mp|0) = H(QW(U?m + U/Tt'z + 0420:%,z' + 5202,1'))_
i
X exp _1(,&@‘ + My — axy; + ﬁéz — m*BZ)2
2 (0%,¢ + Ulp?t’z + 042032;,2' + 5202,@)

X k. X k,

e Exponential term is identical to y? of standard method
e Using this expression results in a biased estimator for o

e The method is correct, however, the choice of prior is incorrect.

llS m.march@sussex.ac.uk
Universit_yofSussex 11023237V4 & 12073705V1



1

Which priors on the latent ¢;, x1;?

10r

observed x Ji

04 02 0 02 04 06

observed C,

e Size of the error bars on 2; and ¢; is comparable with range of x1; and ¢;.

e |f not properly accounted for, this leads to a bias in the recovery of the SN
parameters « and (.

e Solution is to put an informative prior the latent 17 and ¢;. [Gull, 1989].
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Choice 2: ‘Informative’ prior

e Choose Gaussian priors on latent p(c;|cy, Re) and p(x1;|x,, Rx)

o After dmyp, integral, we have:

. 1 ; My — ; ) — e N 2\
R / [T(2r(o2, +0™2)Fexp <_<<M + My — awy, + Bei) — i)

i ' 2 (07,5 + o) )
X (2702,2')_% exp —;CZ(;;)Z)Q) (27'('0'325,2')_% exp <_;<x1@'(0_gjli>2>
X (27TR2>_%> exp (—;CZ(]_%;)*)Q)
x (2mR2)72) exp _;(xli(Rg)x*)z)
X p(c)p(ye)p(Re)p(Ry) de; dxy; dey dx, dRe dRy
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Choice 2: ‘Informative’ prior

e Integrate over latent parameters ¢, x; analytically.

e Integrate over population parameters c,, r, analytically.

to obtain effective likelihood:

plé, i, i5/0) = [ dlog Re dlog R, [2mSc| H2nspl H2mS ool Hon k|
1
X exp <—§[XOTZClXO — ATSUA — KT K +b§2019m]>

e Integrate over population parameters R, R, numerically.

e This choice of prior gives the correct likelihood for p(¢, z,, mp|O)
necessary for using SNe la to do cosmological model selection within
the Bayesian framework.
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Numerical trials with simulated data
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e LH panel: SNLS3 only data; RH
panel, ‘cosmology sample’

e Blue: Bayesian method; Green, y*
method
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realizations of simulated data.
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Where the two methods meet

Can such a simple problem really :

Bayesian Data Analysis: Straight-line fitting
you want is the answer I can recommend

Stephen F. Gull min
Cavendish Laboratory, o2 + a-1 g2)
Madingley Road, (8 0% + &7
Cambridge CB3 OHME, U.K.
. This is our answer with B --> =

will probably work. In can be derived

Abstract .
private communication, see also Ripl

A Bayesian solution is presented to the problem of straight-line
fitting when both wvariables x and y are subject to error. The
solution, which is fully symmetric with respect to x and y, contains
a wvery surprising feature: it requires a informative prior for the
distribution of sample positions. An uninformative prior leads to =
biag in the estimated slope.

e Above extract from Gull 1989. The y? method is an approximation to
the full Bayesian formalism, in some limit, to be determined.

e To do Bayesian model selection, must use full expression in order to
obtain correct evidence calculation.
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Numerical Trials: Bayes Factor
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e Log of the ratio of Bayesian evidence between ACDM and flat wCDM,
for 100 sets of simulated data.
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