How to use SNe Ia data (SALT II) to do cosmological model selection within the Bayesian framework

Marisa Cristina March

Bayes equation for SNe la

$$p(\theta|d, \mathcal{M}) = \frac{p(d|\theta, \mathcal{M})p(\theta|\mathcal{M})}{p(d|\mathcal{M})} \tag{1}$$

$$p(\theta|\hat{\underline{c}}, \hat{\underline{x}}_1, \underline{\hat{m}}_B^*) = \frac{p(\hat{\underline{c}}, \hat{\underline{x}}_1, \underline{\hat{m}}_B^*|\hat{\theta}, \mathcal{M})p(\theta|\mathcal{M})}{p(\hat{\underline{c}}, \hat{\underline{x}}_1, \underline{\hat{m}}_B^*|\mathcal{M})}$$
(2)

- data $d = \{\hat{\underline{c}}, \hat{\underline{x}}_1, \hat{\underline{m}}_B^*\}$
- parameters $\theta = \{\Omega_m, \Omega_\Lambda, w, \alpha, \beta, M_0\}$
- Stretch and colour relation $\underline{\mu} = \underline{m}_B^* M_0 + \alpha \underline{x}_1 \beta \underline{c}$
- Question: What is $p(\hat{\underline{c}}, \hat{\underline{x}}_1, \hat{\underline{m}}_B^* | \theta, \mathcal{M})$?

Standard (χ^2) method

As a distance estimator, we use:

$$\mu_B = m_B^* - M + \alpha(s-1) - \beta c$$

where m_B^* , s and c are derived from the fit to the light curves, and α , β and the absolute magnitude M are parameters which are fitted by minimizing the residuals in the Hubble diagram. The cosmological fit is actually performed by minimizing:

$$\chi^{2} = \sum_{\text{objects}} \frac{(\mu_{B} - 5\log_{10}(d_{L}(\theta, z)/10 \text{ pc}))^{2}}{\sigma^{2}(\mu_{B}) + \sigma_{\text{int}}^{2}},$$

where θ stands for the cosmological parameters that define the fitted model (with the exception of H_0), d_L is the luminosity distance, and $\sigma_{\rm int}$ is the intrinsic dispersion of SN absolute magnitudes. We minimize with respect to θ , α , β and M.

Since d_L scales as $1/H_0$, only M depends on H_0 . The definition of $\sigma^2(\mu_B)$, the measurement variance, requires some care. First, one has to account for the full covariance matrix of m_B^* , s and c from the light-curve fit. Second, $\sigma(\mu_B)$ depends on α and β ; minimizing with respect to them introduces a bias towards increasing errors in order to decrease the χ^2 , as originally noted in Tripp (1998). When minimizing, we therefore fix the values of α and β entering the uncertainty calculation and update them iteratively. $\sigma(\mu_B)$ also includes a peculiar velocity contribution of 300 km s⁻¹. $\sigma_{\rm int}$ is introduced to account for the "intrinsic dispersion" of SNe Ia. We perform a first fit with an initial value (typically 0.15 mag), and then calculate the $\sigma_{\rm int}$ required to obtain a reduced $\chi^2 = 1$. We then refit with this

- Above extract from Astier 2006
- $\sigma^2(\mu_B)$ is a funtion of α, β
- $p(\hat{\underline{c}}, \hat{\underline{x}}_1, \hat{\underline{m}}_B^* | \theta) \neq \chi^2$

What is $p(\hat{\underline{c}}, \hat{\underline{x}}_1, \hat{\underline{m}}_B^* | \theta)$?

$$p(\hat{\underline{c}}, \hat{\underline{x}}_{1}, \hat{\underline{m}}_{B}^{*} | \theta) = \int \prod_{i} p(\hat{c}_{i}, \hat{x}_{1i}, \hat{m}_{Bi}^{*} | c_{i}, x_{1i}, m_{Bi}^{*}, \theta)$$

$$\times p(m_{Bi}^{*} | c_{i}, x_{1i}, \theta) p(c_{i}, x_{1i} | \theta) \operatorname{dc}_{i} \operatorname{dx}_{1i} \operatorname{dm}_{Bi}^{*}$$

$$= \int \prod_{i} (2(\pi \sigma_{m,i}^{2} + \sigma_{\mu}^{\operatorname{int}, 2}))^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(m_{Bi}^{*} - \hat{m}_{Bi}^{*})^{2}}{(\sigma_{m,i}^{2} + \sigma_{\mu}^{\operatorname{int}, 2})}\right)$$

$$\times (2\pi \sigma_{c,i}^{2})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(c_{i} - \hat{c}_{i})^{2}}{(\sigma_{c,i}^{2})}\right) (2\pi \sigma_{x,i}^{2})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(x_{1i} - \hat{x}_{1i})^{2}}{(\sigma_{c,i}^{2})}\right)$$

$$\times \delta(m_{Bi}^{*} - (\mu_{i} + M_{0} - \alpha x_{1i} + \beta c_{i}))$$

$$\times p(c_{i} | \theta)$$

$$\times p(x_{1i} | \theta) \operatorname{dc}_{i} \operatorname{dx}_{1i} \operatorname{dm}_{Bi}^{*}$$

What do we choose for $p(x_{1i}|\theta)$ and $p(c_i|\theta)$?

Choice 1: 'Uninformative' prior

- Choose broad flat priors on latent c_i, x_{1i}
- $p(x_{1i}|\theta) = k_x$ and $p(c_i|\theta) = k_c$
- After dm*_{Bi} integral, we have:

$$p(\hat{\underline{c}}, \hat{\underline{x}}_{1}, \hat{\underline{m}}_{B}^{*} | \theta) = \int \prod_{i} (2\pi(\sigma_{m,i}^{2} + \sigma_{\mu}^{\mathsf{int},2}))^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{((\mu_{i} + M_{0} - \alpha x_{1i} + \beta c_{i}) - \hat{m}_{Bi}^{*})^{2}}{(\sigma_{m,i}^{2} + \sigma_{\mu}^{\mathsf{int},2})}\right) \times (2\pi\sigma_{c,i}^{2})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(c_{i} - \hat{c}_{i})^{2}}{(\sigma_{c,i}^{2})}\right) (2\pi\sigma_{x,i}^{2})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(x_{1i} - \hat{x}_{1i})^{2}}{(\sigma_{x,i}^{2})}\right) \times k_{c} \times k_{x} \operatorname{dc}_{i} \operatorname{dx}_{1i}$$

ullet Next do integrals over $dc_i \ dx_{1i}$ integral, to obtain.....

Choice 1: 'Uninformative' prior

• After $dc_i dx_{1i}$ integrals, we have:

$$p(\hat{c}, \hat{x}_{1}, \hat{m}_{B}^{*}|\theta) = \prod_{i} (2\pi(\sigma_{m,i}^{2} + \sigma_{\mu}^{\text{int,2}} + \alpha^{2}\sigma_{x,i}^{2} + \beta^{2}\sigma_{c,i}^{2}))^{-\frac{1}{2}}$$

$$\times \exp\left(-\frac{1}{2} \frac{(\mu_{i} + M_{0} - \alpha\hat{x}_{1i} + \beta\hat{c}_{i} - \hat{m}_{Bi}^{*})^{2}}{(\sigma_{m,i}^{2} + \sigma_{\mu}^{\text{int,2}} + \alpha^{2}\sigma_{x,i}^{2} + \beta^{2}\sigma_{c,i}^{2})}\right)$$

$$\times k_{c} \times k_{x}$$

- ullet Exponential term is identical to χ^2 of standard method
- \bullet Using this expression results in a biased estimator for α
- The method is correct, however, the choice of prior is incorrect.

Which priors on the latent c_i, x_{1i} ?

- Size of the error bars on \hat{x}_{1i} and \hat{c}_i is comparable with range of \hat{x}_{1i} and \hat{c}_i .
- If not properly accounted for, this leads to a bias in the recovery of the SN parameters α and β .
- Solution is to put an informative prior the latent x_1i and c_i . [Gull, 1989].

Choice 2: 'Informative' prior

- Choose Gaussian priors on latent $p(c_i|c_{\star},Rc)$ and $p(x_{1i}|x_{\star},Rx)$
- After dm_{Bi}^* integral, we have:

$$p(\hat{\underline{c}}, \hat{\underline{x}}_{1}, \hat{\underline{m}}_{B}^{*} | \theta) = \int \prod_{i} (2\pi(\sigma_{m,i}^{2} + \sigma_{\mu}^{\text{int},2}))^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{((\mu_{i} + M_{0} - \alpha x_{1i} + \beta c_{i}) - \hat{m}_{Bi}^{*})^{2}}{(\sigma_{m,i}^{2} + \sigma_{\mu}^{\text{int},2})}\right) \times (2\pi\sigma_{c,i}^{2})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(c_{i} - \hat{c}_{i})^{2}}{(\sigma_{c,i}^{2})}\right) (2\pi\sigma_{x,i}^{2})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \frac{(x_{1i} - \hat{x}_{1i})^{2}}{(\sigma_{x,i}^{2})}\right) \times (2\pi R_{c}^{2})^{-\frac{1}{2}}) \exp\left(-\frac{1}{2} \frac{(c_{i} - c_{\star})^{2}}{(R_{c}^{2})}\right) \times (2\pi R_{x}^{2})^{-\frac{1}{2}}) \exp\left(-\frac{1}{2} \frac{(x_{1i} - x_{\star})^{2}}{(R_{x}^{2})}\right) \times p(c_{\star})p(x_{\star})p(R_{c})p(R_{x}) \operatorname{dc}_{i} \operatorname{dx}_{1i} \operatorname{dc}_{\star} \operatorname{dx}_{\star} \operatorname{dR}_{c} \operatorname{dR}_{x}$$

Choice 2: 'Informative' prior

- Integrate over latent parameters $\underline{c}, \underline{x}_1$ analytically.
- Integrate over population parameters c_{\star}, x_{\star} analytically.

to obtain effective likelihood:

$$p(\hat{\underline{c}}, \hat{\underline{x}}_1, \hat{\underline{m}}_B^* | \Theta) = \int \mathsf{d} \log R_c \, \mathsf{d} \log R_x \, |2\pi \Sigma_C|^{-\frac{1}{2}} |2\pi \Sigma_C|^{-\frac{1}{2}} |2\pi \Sigma_A|^{\frac{1}{2}} |2\pi \Sigma_A|^{\frac{1}{2}} |2\pi \Sigma_C|^{-\frac{1}{2}} |2\pi K|^{\frac{1}{2}} \times \exp\left(-\frac{1}{2} [X_0^T \Sigma_C^{-1} X_0 - \Delta^T \Sigma_A \Delta - k_0^T K^{-1} k_0 + \underline{b}_m^T \Sigma_0^{-1} \underline{b}_m]\right)$$

- Integrate over population parameters R_c, R_x numerically.
- This choice of prior gives the correct likelihood for $p(\hat{c}, \hat{x}_1, \hat{m}_B^* | \Theta)$ necessary for using SNe Ia to do cosmological model selection within the Bayesian framework.

Numerical trials with simulated data

- LH panel: SNLS3 only data; RH panel, 'cosmology sample'
- Blue: Bayesian method; Green, χ^2 method

 Histograms show estimators from 100 realizations of simulated data.

3.4

Where the two methods meet

Bayesian Data Analysis: Straight-line fitting

Stephen F. Gull Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, U.K.

Abstract

A Bayesian solution is presented to the problem of straight-line fitting when both variables x and y are subject to error. The solution, which is fully symmetric with respect to x and y, contains a very surprising feature: it requires a <u>informative</u> prior for the distribution of sample positions. An uninformative prior leads to a bias in the estimated slope.

Can such a simple problem really : you want is the answer I can recommend

$$\min \frac{(a \ V_{xx} - 2 \ V_{xy} + a^{-1} \ V_{yy})}{(a \ \sigma_x^2 + a^{-1} \ \sigma_y^2)} \ .$$

This is our answer with R --> ∞ will probably work. In can be derived private communication, see also Riple

- ullet Above extract from Gull 1989. The χ^2 method is an approximation to the full Bayesian formalism, in some limit, to be determined.
- To do Bayesian model selection, must use full expression in order to obtain correct evidence calculation.

Numerical Trials: Bayes Factor

• Log of the ratio of Bayesian evidence between ΛCDM and flat w CDM, for 100 sets of simulated data.

