DISCUSSIONS

with controversies if possible...

Alain Blanchard

Benasque, August 10, 2012

æ

Alain Blanchard DISCUSSIONS (with controversies if possible...)

Everybody knows that we are living in an accelerated Universe...

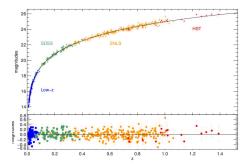
臣

Nobel Prize in Physics 2011

Alain Blanchard DISCUSSIONS (with controversies if possible...)

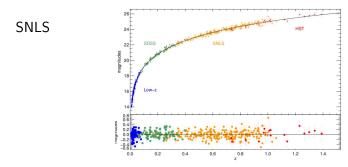
・ロン ・四と ・ヨン ・ヨン

Nobel Prize in Physics 2011

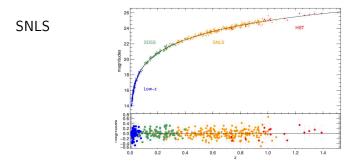

S.Perlmuter, A.Riess, B.Schmidt

Alain Blanchard DISCUSSIONS (with controversies if possible...)

・ロト ・日下・ ・日下


SNIa Hubble diagramm (2012)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・


SNIa Hubble diagramm (2012)

Very good fit from Λ CDM.

э

SNIa Hubble diagramm (2012)

Very good fit from Λ CDM. Main constraint on w(z)...

Image: A math a math

What if SNIa evolved ?

Alain Blanchard DISCUSSIONS (with controversies if possible...)

イロン イヨン イヨン イヨン

What if SNIa evolved ?

$$\Delta m(z) = K\left(\frac{t_0 - t(z)}{t_0 - t_1}\right)$$

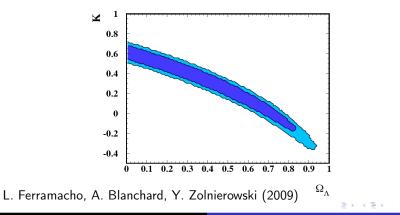
Alain Blanchard DISCUSSIONS (with controversies if possible...)

イロン イヨン イヨン イヨン

What if SNIa evolved ?

$$\Delta m(z) = K\left(\frac{t_0 - t(z)}{t_0 - t_1}\right)$$

Fit the Hubble diagramm with K and Λ

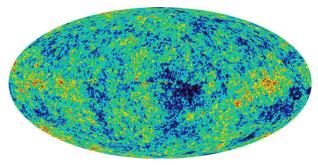

・ロト ・日子・ ・ヨト

문 🛌 문

What if SNIa evolved ?

$$\Delta m(z) = K\left(\frac{t_0 - t(z)}{t_0 - t_1}\right)$$

Fit the Hubble diagramm with K and Λ

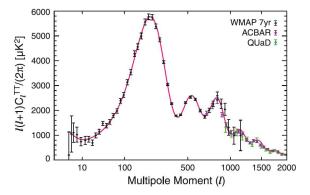

Cosmic microwave radiation fluctuations

Alain Blanchard DISCUSSIONS (with controversies if possible...)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

≣ ▶ = ≣

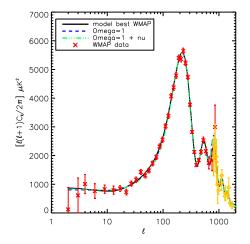
Cosmic microwave radiation fluctuations



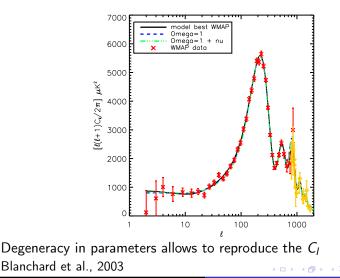
WMAP 1, 3, 5, 7,...

Alain Blanchard DISCUSSIONS (with controversies if possible...)

・ロト ・ 日 ・ ・ ヨ ・


Cosmic microwave radiation fluctuations

A B > A B >


-

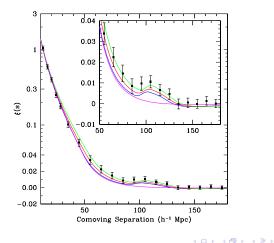
Cosmic microwave radiation fluctuations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Cosmic microwave radiation fluctuations

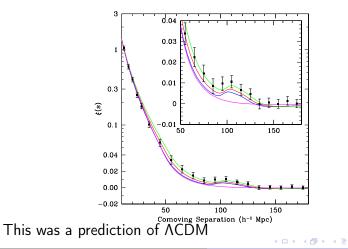
Alain Blanchard DISCUSSIONS (with controversies if possible...)

э


And...

The sound horizon is also imprinted in the matter distribution:

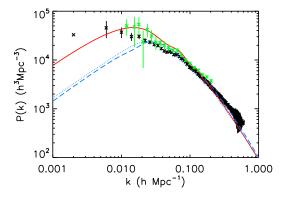
・ロッ ・ 日マ ・ 日マ


• 3 >

The sound horizon is also imprinted in the matter distribution:

Alain Blanchard DISCUSSIONS (with controversies if possible...)

The sound horizon is also imprinted in the matter distribution:



(Very) Positive point for ΛCDM

Alain Blanchard DISCUSSIONS (with controversies if possible...)

イロン イヨン イヨン イヨン

(Very) Positive point for ACDM

A B > A B >

-

Standard Cosmological model: ACDM

Parameters in ΛCDM

Alain Blanchard DISCUSSIONS (with controversies if possible...)

≣ ▶ = ≣

Standard Cosmological model: ACDM

Parameters in ∧CDM

...pretty well estimated

æ

3

Standard Cosmological model: ACDM

Parameters in ACDM

...pretty well estimated SNIa, CMB, P(k)

A (1) > (1) > (1)

臣

Standard Cosmological model: ACDM

Parameters in ACDM

...pretty well estimated SNIa, CMB, P(k)

 $\Omega_m = 0.271 \pm 0.015$ $\Omega_k = -0.002 \pm 0.006$ $w = -1.069 \pm 0.091$

Sullivan et al. (2011)

臣

What does it mean?

Alain Blanchard DISCUSSIONS (with controversies if possible...)

イロン イヨン イヨン イヨン

What does it mean?

COSMOLOGY MARCHES ON

イロト イヨト イヨト イヨト

What does it mean?

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

A = A = A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

≣) ≣

What does it mean?

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

Observations need $P \approx -\rho$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What does it mean?

. . .

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

Observations need $P\approx -\rho$ So that the gravity strength is repulsive and proportional to R

Luca's answers

Alain Blanchard DISCUSSIONS (with controversies if possible...)

イロン イヨン イヨン イヨン

Luca's answers

Everything is in the Horndeski-Deffayet Lagrangian...

▲御▶ ▲ 登≯

Luca's answers

Everything is in the Horndeski-Deffayet Lagrangian... Cosmology reduces to 8 (?) quantities ?

▲御 ▶ ▲ 臣 ▶

Luca's answers

Everything is in the Horndeski-Deffayet Lagrangian... Cosmology reduces to 8 (?) quantities ? Models fitting an observed set could be degenerated...

Luca's answers

Everything is in the Horndeski-Deffayet Lagrangian... Cosmology reduces to 8 (?) quantities ? Models fitting an observed set could be degenerated... Can we really understand the origin of acceleration ?

Quantum vacuum as the source of the acceleration

Alain Blanchard DISCUSSIONS (with controversies if possible...)

Quantum Vacuum contribution A new scenario

Quantum vacuum as the source of the acceleration

Arnaud Dupays (LCAR), Brahim Lamine (LKB) & AB

In progress.

▲ 同 ▶ | ▲ 臣 ▶

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

A (10) > (10)

э

æ

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe $(\rightarrow \text{Kragh arXiv:1111.4623})$

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe $(\rightarrow \text{Kragh arXiv:1111.4623})$

Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

$$p = -\rho$$

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe $(\rightarrow \text{Kragh arXiv:1111.4623})$

Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

$$p = -\rho$$

So is this the origin of the acceleration ?

Historical aspects

No!

Alain Blanchard DISCUSSIONS (with controversies if possible...)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Historical aspects

No!

The Vacuum catastroph (Weinberg, 1989):

$$ho_{
m v} = \langle 0 | T^{00} | 0
angle = rac{1}{2(2\pi)^3} \int_0^{+\infty} k \, {
m d}^3 {f k}$$

highly divergent.

문 문 문

Historical aspects

No!

The Vacuum catastroph (Weinberg, 1989):

$$ho_{\mathbf{v}} = \langle 0 | T^{00} | 0
angle = rac{1}{2(2\pi)^3} \int_0^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

highly divergent :

$$ho_{
m v}(k_c) \propto rac{k_c^4}{16\pi^2}$$

문 문 문

Quantum Vacuum contribution A new scenario

Equation of state

The pressure:

$$p_{v} = (1/3) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^{3}} \int_{0}^{+\infty} k \, \mathrm{d}^{3} \mathbf{k}$$

・ロト ・日下・ ・日下

ヨト ヨ

Equation of state

The pressure:

$$p_{
m v} = (1/3) \sum_{i} \langle 0 | T^{ii} | 0
angle = rac{1}{3} rac{1}{2(2\pi)^3} \int_{0}^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

Э

Equation of state

The pressure:

$$p_{
m v} = (\mathbf{1}/\mathbf{3}) \sum_{i} \langle 0 | T^{ii} | 0
angle = rac{1}{3} rac{1}{2(2\pi)^3} \int_{0}^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

$$p = \frac{1}{3}\rho$$

Equation of state

The pressure:

$$p_{v} = (1/3) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^{3}} \int_{0}^{+\infty} k \, \mathrm{d}^{3} \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

$$p = \frac{1}{3}\rho$$

i.e. eq. (1) + eq. (2) leads to :

$$p_v = \rho_v = 0$$

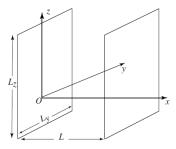
Equation of state

The density and pressure can be computed by dimensional regularization. Still diverging... but finite terms remain with the correct equation of state:

$$\rho_{\nu} = \frac{m^4}{64\pi^2} \log\left(\frac{m^2}{\mu^2}\right)$$

So is zero for a massless field. (cf J.Martin 2012)

Casimir effect


Where is there vacuum contribution in laboratory physics?

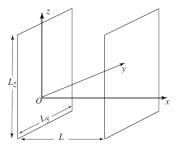
< ≣⇒

æ

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect


A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

臣

3

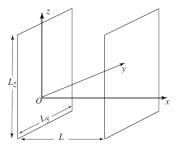
Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:

$$p_x = 3\rho$$


A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

臣

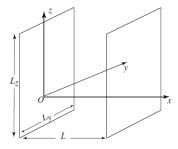
3

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:


 $p_x = 3\rho < 0$

A = A = A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

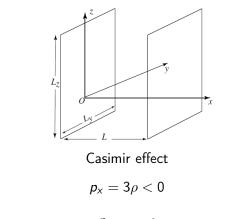
Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:

$$p_{x} = 3\rho < 0$$


and ...

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Casimir effect

Where is there vacuum contribution in laboratory physics?

and ...

with:

 $p_{//} = ho$ Brown & Maclay (1968)

3 × 3

Casimir effect from higher dimension

Assume there is an additional compact dimension.

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983).

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983). This result can be established by evaluating zero mode contributions (Rohrlich 1984).

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983). This result can be established by evaluating zero mode contributions (Rohrlich 1984). Dispersion relation:

$$\omega^2 = k^2 + \frac{n^2}{R^2}$$

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983). This result can be established by evaluating zero mode contributions (Rohrlich 1984). Dispersion relation:

$$\omega^2 = k^2 + \frac{n^2}{R^2}$$

Cosmology: at high energy, only modes with λ smaller than ct have to be taken into account i.e.:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_{\omega > \omega_H}^{\infty} k^2 \mathrm{d}k \left[\sum_{n = -\infty}^{\infty} \left(k^2 + \frac{n^2}{R^2} \right)^{1/2} \right]$$
Alain Blanchard
DISCUSSIONS

Casimir effect: the horizon

At high energy, only modes with λ smaller than ct have to be taken into account i.e.:

$$\rho_{\mathbf{v}} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [\dots] - \frac{5\hbar c}{8\pi^3 R} \int_0^{\omega_H} k^2 \mathrm{d}k \, [\dots]$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🕨 🛛 프

Casimir effect: the horizon

At high energy, only modes with λ smaller than ct have to be taken into account i.e.:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [\ldots] - \frac{5\hbar c}{8\pi^3 R} \int_0^{\omega_H} k^2 \mathrm{d}k \, [\ldots]$$

However, as long as $ct \ll 2\pi R$ vacuum should be that of a massless field in a 4+1D space time i.e.:

$$\rho_v = 0$$

Isotropy ends...

when $\omega_H \sim \frac{1}{R}$, this is the last time at which symetries ensure $\rho_v = 0$. Then

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [...] - \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^2 \mathrm{d}k \, [...] = 0$$

ヘロン ヘロン ヘビン・

문 문 문

lsotropy ends...

when $\omega_H \sim \frac{1}{R}$, this is the last time at which symetries ensure $\rho_{\rm v}=$ 0. Then

$$\rho_{\rm v} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [...] - \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^2 \mathrm{d}k \, [...] = 0$$

Later, when $ct\gg 2\pi R$ i.e. $\omega_{H}\sim 0$

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [...] = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^2 \mathrm{d}k \, [...]$$

with :

$$[\dots] = \left[\sum_{n=-\infty}^{\infty} \left(k^2 + \frac{n^2}{R^2}\right)^{1/2}\right]$$

lsotropy ends...

The condition :

$$\omega = \sqrt{k^2 + \frac{n^2}{R^2}} < \frac{1}{R}$$

ensured only if n = 0, so:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^3 \mathrm{d}k = \frac{5\hbar c}{32\pi^3 R^5}$$

・ロト ・日子・ ・ヨト

문 문 문

Isotropy ends...

The condition :

$$\omega = \sqrt{k^2 + \frac{n^2}{R^2}} < \frac{1}{R}$$

ensured only if n = 0, so:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^3 \mathrm{d}k = \frac{5\hbar c}{32\pi^3 R^5}$$

In the brane:

$$\rho_{\rm v} = \frac{5\hbar c}{16\pi^2 R^4}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

3

Isotropy ends...

The condition :

$$\omega = \sqrt{k^2 + \frac{n^2}{R^2}} < \frac{1}{R}$$

ensured only if n = 0, so:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^3 \mathrm{d}k = \frac{5\hbar c}{32\pi^3 R^5}$$

In the brane:

$$\rho_{\rm v} = \frac{5hc}{16\pi^2 R^4}$$

- 1

 $R\sim 25\mu{
m m}$ fits data. Corresponding to $E\sim 1\,{\it TeV}$

Conclusion

Casimir effect from quantized massless field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant.

Conclusion

Casimir effect from quantized massless field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant.

With $R \sim 25 \mu m$ it produces a cosmological constant as observed. \rightarrow gravitation is modified on scales $\leq 25 \mu m$

Conclusion

Casimir effect from quantized massless field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant.

With $R \sim 25 \mu m$ it produces a cosmological constant as observed. \rightarrow gravitation is modified on scales $\leq 25 \mu m$

Acceleration could be the direct manifestation of the quantum gravitational vacuum: w = -1

Conclusion

Casimir effect from quantized massless field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant.

With $R \sim 25 \mu m$ it produces a cosmological constant as observed. \rightarrow gravitation is modified on scales $\leq 25 \mu m$

Acceleration could be the direct manifestation of the quantum gravitational vacuum: w = -1

This would be the simplest explanation...