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SUMMARY:

* The quantum Hall effect
» Vortex Green’s function theory
» Applications: Local spectroscopy

» Conclusion/Perspectives
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[ WHY STUDY 2D ELECTRON GASES UNDER MAGNETIC FIELDS N OW? ]

P I[IQHE :VonKiIitzing et al. (1980)
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P> Experiments since 2000 (far from being exhaustive):

* New effects: microwave induced zero-resistance states
% New probes: local sensing techniques in the IQHE regime

* New systems: graphene, topological insulators, 2DEG surface states



WHY STUDY 2D ELECTRON GASES UNDER MAGNETIC FIELDS N OW?

[

P> STM Experiment: Local DOS in the IQHE regime (InSb surface states) B=12 T

Quantum Hall Transition in Real Space: From Localized to Extended States
PRL 101, 256802 (2008)

K. Hashimoto,"*?** C. Sohrmann,* J. Wiebe,' T. Inaoka,” E Meier."" Y. Hirayama,” R. A. Romer,*

(LOWEST LANDAU LEVEL)

R. Wiesendanger,' and M. Morgenstern

» Percolation features

» Broad structures close to saddle
points of the potential landscape

-'Ié{) -1;U -1':;U -Q.G -80
Sample voltage [mV]
=) Disorder plays an important role!

* Many fundamental aspects (e.g. for the IQHE) well understood
* But: how do we calculate stuff? (quantitative microscopic theory to develop!)

mm) This talk (L)
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Goal:

Find an (approximate) analytical solution to the problem
arbitrary potential energy

H = H() —I—V(I‘)




Theoretical difficulties:

P> Disorder averaging is questioned (at microscopic scale)

guestion of origin of irreversibility and dissipation (crucial for transport)

P> \We are in a nonperturbative regime at high magnetic fields

(kinetic energy frozen + degeneracy of Landau levels)

P> Smooth disorder (finite correlation length)

Complexity of diagrammatrics at high magnetic fields (unsolved problem)
Raikh & Shabhazyan, PRB (1993)

P> We are at the border between classical and guantum mechanics

The wave function as a basic dynamical object is questioned

‘ Need to develop a new approach/method to tackle the problem



Standard theoretical
approaches (1):

Semiclassical [imit



[ CLASSICAL MOTION IN HIGH PERPENDICULAR MAGNETIC FIE LD ]

Two degrees of freedom with very different timescales

- fast cyclotron motion: § = w,. = |e|B/(m*c) . - .
\ ': .\_.'I L9 _: . 'I
. 1 A B (% ”"vx_ - s-a_"' E
e slow drift: Va = 5E Xz OO OO
e e
o) L)

P> Decoupling in the limit B — oo

Edges: delocalized Disordered bulk: localization on closed equipotential lines
skipping orbits

Remark: motion regular and integrable in the limit B — oo !

4
A Averaging over disordered potential configurations questionable here!



[ SEMICLASSICAL MOTION : THE GUIDING CENTER PICTURE ]

change in variables:
{ r=X+(=X+v,/w.

y=Y+n=Y —v/w.  (2,pz),(y,py) = (X,Y), (¢, n) (z,y)

P H=1m"vV?+V(X+(Y +n)

0, Uy] = —thwe/m*
then quantization s .
(X, Y] =1il%

Semiclassical high field picture (V smooth): 1% = he/(le|B) — 0 (X,Y] =0

(X and Y treated as classical variables)

Effective enerqy: Fnr = hw:(n +1/2) + V(R)

Limitations:

* No quantization of energies (e.g. in quantum dot)

» No transverse spread + no tunneling effects (e.g. in QPC)
» Problems to formulate a consistent transport theory

» Captures only the high temperature regime

-

LDoS in the IQHE regime follows potential landscape @%

Hashimoto et al., (2008) \ but quantum percolation features



[ MOTIVATION FOR A HIGH MAGNETIC FIELD EXPANSION ]

P> At large magnetic field:

Y& Magnetic length g = 8 nm at 10 T

Y& Correlation length of the disordered potential in heterostructures: € > 100 nm

The random potential is smooth on the scale Ip| (&%)

The idea of using [p/£ as a small parameter is not new. The real challenge is to go
beyond the strict limit [5 /£ = 0!

P> Some attempts:
 Effective Hamiltonian theory {

Haldane & Yang, PRL (1997)
Apenko & Lozovik, J. of Phys. C (1984)

@
c»

- limited to energy

- includes only virtual transitions = no Landau-level mixing taken into account



Standard theoretical
approaches (11),

Wave functions



[ TRANSLATION INVARIANT LANDAU STATES ]

P Hy— L (—iliVe — SA(r))’ with V x A(r) = B2

Landau states: take A(r) = xBy

En,k = hwc(n —+ %)

U i(@,y) = e exp | 25580 | b, (2515 )

212 lB

Landau (1930)
* Translationally invariant along y

* Localized on the scale [ g along x

Remarks:

- Huge degeneracy of Landau levels
- Magnetic field enters in wave functions only via I = \/hc/|e| B

- Landau states problematic for quantum/classical correspondence O



[ CIRCULARLY INVARIANT STATES ]

P> Other possible eigenstates of H

Circular states: take A(r) =B xr/2

Ejm = Fwe(l + W'Tmﬂ)

i (r,6) = 1™l exp | 32| L™ (3 )

* Rotationally invariant around the origin

* Localized on a scale [ alongr

Remark:

- States still problematic for quantum/classical correspondence at [g — 0 @



| DIGRESSION ON THE LANDAU LEVEL INDEX ]

What is the physical meaning of the Landau level index n?

. : 2 : .
P> Translation-invariant states: n comes from |¥|° — 0 (degree of Hermite polynomial)

T
P> Rotation-invariant states: n;l + W% angular momentum (single-valuedness)

degree of Laguerre polynomial

A%
P> A semi-classical answer: (z,y)
1 1
EF = im*v2 = §m* (Rcwc)2
_ 2
- hw R?m*wc - q)c _— ¢C = WRCB
C 2h C(I)O - (I)O _ I’LC/|6| We = \e\B/(m C)

To compare with E = hw, (n + %) —— > Cyclotron Flux

IS quantized

P> Can we build the right basis of eigenstates where n is only related to the accumulated

?
DRI YES : the vortex states basis Champel & Florens, PRB (2007)



| VORTEX (SEMI -COHERENT) EIGENSTATES ]

P> Other possible eigenstates of H|, Vortex states: ¥,, r(r) = (r/m,R)

T (r) =[x — R|™ s
(r—R)?—-2iz-(r x R)
414

\ X exp [—
e‘&g‘f

N
'b‘.’.'i‘.‘ L2 AN

y

Em,R = hwc(m -+ %)

. . (R1|R2)
Overcomplete semicoherent states basis: A
- N
R; —Ry)?—-2iz- (R xR
[ (my1,Ra|ma, R2) = 6my m, €xp (B 2) 5 By 2)
4l
{ to© 2
d‘R
> [ Ry R =1
Q)
Remarks: - States OK for quantum/classical correspondence :f;L 1;-;

- States with no preferred symmetry: can adapt to arbitrary V(r)



Semi-coherent vortex states
Green's function formalism

Champel, Florens & Canet, PRB (2008)
Champel & Florens, PRB (2009)
Champel & Florens, PRB (2010)



THEORY: VORTEX GREEN 'S FUNCTIONS ]

O]igr:-Te]o](e-Tels M electron dynamics projected in the vortex representation

P> Vortex states: ¥m,r(r) = (r/m, R)

Exact result;

2
with the star-product x = exp [Z% <8X5>y — %ygx)]

connection to the deformation (Weyl) quantization theory



[ THEORY: VORTEX GREEN 'S FUNCTIONS ]

P> High magnetic field regime: (w. — oo while keeping [ finite) LL mixing negligible
Effective potential

o o . . 2 _ . ~ . _|_'
m Trivial for 1D potentials: gm(R) = [w — By — 0 (R) 4 907 ruaman, PR (1959
Raikh & Shahbazayan, PRB (1995)

Some non trivial guestions: - How to get quantized energies for a closed system?

- How to get tunneling effects in QPC?

R) = V(R R - Rl R TR _R.) . V2V(R everything is encoded
VIR) = V(Ro) + (R~ Ro] -V (Ro) (R~ Ro) - V(R PYeiing e encoter

terms!

‘ Dyson’s equation up to second-order derivatives of V:

1= |w—E,-VR)— m+ l%ARV +4i07 | G (R) This ugly equation canr_be
1 ] exactly solved! ? @

l4

+§B 02V 9% + 0% V2 — 20x 0y VIxdy] Gim(R)

Champel & Florens, PRB (2009)



[ EXACT SOLUTION FOR ANY QUADRATIC POTENTIAL ]

Solution (m=0):

too i [t—tan(y/7t)/ /7]

dt eit[w—V(R)—l%AV(R) /4+i0t]
cos(/7t)
where o
vo= ZB OxxVoyyV — (3XY‘/)2} Related to the Gaussian curvature of V
e,
n(R) = §B OxxV (v V) +0yyV(0xV)? — 20xyVOxVoy V]

Solution embraces all ' ' '
: : . W #“““ﬂl
possible cases of quadratic I g
. R 1.‘*' o AN ﬁ-‘-‘l‘!‘%ﬁ?‘;—:ﬁlﬂlﬂﬂ
potentials 1 1 O R T n‘:‘ﬁ‘f#}}fwmﬂ
Stability of vortex k

guantum numbers

Solution periodical in time Solution with lifetime
==) energy quantization ==) tunneling and
@@ | dissipation

Open and closed quantum mechanics unified!

|
| (
\ =)
N
-

Champel & Florens, PRB (2009)



Applications of vortex
formalism (1):

Local density of states

Champel & Florens, PRB Rapid Com (2009)
Champel & Florens, PRB (2009)

Champel & Florens, PRB (2010)

Hashimoto, Champel, Florens, et al., PRL (2012)



| LOCAL DENSITY OF STATES ]

P> \ortex view of LDoS at high field:  §m.m = Jm Om.m

,O(I‘, E) - T

Z Fn(R —r)Im G, (R, E)
m=0  { N

cyclotron orbit guiding center drifting

_1\ym 2 .
with structure factor: F,(R) = (=1) L, (_2R ) o—R?/I5  can be negative

w4 1% (Wigner’s distribution)

P> Lowest order result for vortex Green’s function (local 1D drift): :
for smooth potential

—%Imém(R, E) =6|E - E,, — i, (R)] and lowest LL
N [d’rF,,(R—1)V(r) ~ V(R)



[ HIERARCHY OF LOCAL ENERGY SCALES IN VORTEX REPRESEN TATION ]

P> LDoS for the lowest Landau level at the center (r = 0)

within different approximation schemes

U,
Example: V(r) = 707°2
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Existence of a hierarchy of local energy scales ‘

Champel & Florens, PRB (2009)
Champel & Florens, PRB (2010)

Y=1n= O (IoweSt Ol‘del’,
curvature neglected)

exact expression

controlled theory for a

smooth arbitrary potential !




| APPLICATION: LDOS IN GRAPHENE ]

Theory: LDoS for different temperatures

Experiment (at fixed Temp) - _
(with lowest order vortex Green'’s function)
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Miller et al., Science (2009)

Experimental features captured by theory: Champel & Florens, PRB (2010) I

B> the width of the LDoS peaks at fixed tip position grows roughly as v/ M i T o sstior

B> the heights of the LDoS peaks decrease with m

Origin: wave function broadening



What about spatial dependence of LDOS?



REAL SPACE LDOS DATA ]

Hashimoto, Champel, Florens et al., PRL (2012)

didV[au) =

P> 4 successive LLs are observed (spin resolved)

P> The drift trajectories are blurred in the high LLs
... but no obvious signature of the nodal structure associated to cyclotron motion



| MOMENTUM -SPACE LDOS DATA ]

@ Surface® B=6 T Hashimoto, Champel, Florens et al., PRL (2012)

&

Log|FT(dl/dV)| [a.u.]

0 04 080 04 080 04 080 04 08
g [nm'] g [nm™] g [nm~] q [nm]
B> Structures appear atscale 1/l ~0.1nm™!

P> LLn shows n kinks in the momentum-dependence

P> Good comparison experiment/simulations



[ REVEALING THE NODAL STRUCTURE OF CYCLOTRON MOTION ]

LDOS (theory): Guiding-center spectral density (disorder-dependent, length scale ~ 50 nm)
p(I‘,E): Fm(R_r) Am(RaE)
2mly o= for B=6 T

\ Structure factor for cyclotron motion

(length scale |; ~ 10 nm)
Deconvolution in Fourier space: INSb surface states

g 5 (f)
pla, B) =D Fn(q) A, (q;E)
n=0

2 ~2
where F,(q) = L, (qu ) o lBa%/4

2 ; !
- = ! m=2
.

Kinks of p(q, ) follow the nodes of F;,(q) 2 \{\
- m=1
P> The nodal structure of LLs is robust to disorder W E Exp.
Simul.
a |
P> Key property of quantum Hall states! 01 g[m'] 08

Hashimoto, Champel, Florens et al., PRL (2012)



Other Applications of
vortex formalism (I1)

Averaged density of states and LDOS correlations

Champel & Florens, PRB (2010)
Champel, Florens & Raikh, PRB (2011)
Ulrich, Florens & Champel, in preparation (2012)
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SAMPLE AVERAGED LDOS

Disorder correlator (Gaussian)
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P> The lowest order Green’s function Ff 05
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analytically solved by Wegner 0
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| LDOS CORRELATIONS (1) ]

Tipl r Tip?2 Two-point LDoS correlator:

ry,wp I2,w2 : : :
Perform the following sample averaging of LDOS-LDOS signal

x(r, w1, wa) = (p(r1,w1)p(ra, wa)) — (p(r1,w1)){(p(ra, ws))

P> Geometrical interpretation: overlap of quantum rings

a) b) (.»
‘00 ‘00

Robust way to reveal some nodes in real space?

Area for c) > Area for b)

‘ X peaks again for r ~ 2R,



| LDOS CORRELATIONS (ll) ]

Procedure for computation

PR, [ d’R, X X
<p(r17w1)p(r27w2)>:/2ﬂ.l2 /27Tl2 Z Z Fm1 —I‘l)sz(Rz—I‘z)

Om2 1

/dtl /dt2 i(w1— By )t +i(wz— By )to <e—i[f)m1(Rl)t1+6m2(R2)t2]>

this can be done analytically!

P> Spatial dependence confirms previous expectations

| ' | ' | | ' | ' 1 T T T T T T
0.6 f / [ =5 —— semiclassics
..... ~ 0.75 l 0 _
—~ B —
204 -
£ R
X 0.2 ............. <
0 T Ts
0 1 2 3 4 5) 6 0 1 2 3

?“/ZB T/Rﬁ
Champel, Florens, Raikh, PRB (2011)



| LDOS CORRELATIONS (lll) ]

Energy dependence: DOS versus LDOS correlations at equal position

' I T T T 1 T ! T T T T T
0.6 — €llg=5 - 0.6 il
i ~ l'.ﬂ.l' ] F-{I- [ |
304 b A N [\ [l 4 o4 T i
£ f lIII'. f |II II| II Ill = | [
f: I .'II Il', I.'I I'ul I|II IIII I|I I', ] I D2 & ||ﬁ|I | |III| f -
ez b A% F % bl /| | | f
| ' ' - i ! | |
- ,*'f "&1 / / \ / . 'uHH - g f |II | I". I| I'. ] .'I I',
ﬂ 4 1 b 1 ¢ 1 b l-"'r.l 1 \\\ / III,_,--""'.'-H-I Eﬂ‘“ "If "‘J"‘J | ~ I"--""Jrl HH"—’II l'-/"'f
(0 1 2 3 4 .
ol 0 1 2 3 1
foE [ ll,-" W,

has broad peaks with width ~ /(V?2
i = has narrow resonances with width ~ (Ig/£)v/ (V?)

Positive correlations if Aw = nhw,. , negative otherwise
Champel, Florens, Raikh, PRB (2011)

P> Prospects: compare analytic theory with experiments and numerics




[ PERSPECTIVES: PROBABILITY DISTRIBUTION FOR THE LDOS ]

Probablity distribution for the LDOS:  py,) :/ Y Z o(wr = 0)]")

On-going work with J. Ulrich and S. Florens ,/

Higher moments of the LDOS correlations
can be computed analytically at¢ > Ip

Preliminary results:  Assumptions: LLO + additional external broadening (temperature T)
f,r; = 1

P Wide-stretched distribution at 7' < T

e p = p/{p) " = (Ip/¢)
| plt e T_..-'T“ — 1/8

= =114
1LOp —— 1y =19

——-T/T* =1

p Sharply peaked distribution at high T
(LDOS gets more and more uniform
accross the sample)

103 102 m-'- 10 10° 102
logp



| CONCLUSION |

P> The rigorous formulation of a quantum guiding center theory was
established in terms of semi-coherent state Green’s functions

The overcompleteness of the vortex representation
makes possible the unification of closed and open
systems (bulk and edge states on the same footing)!

B> Local equilibrium observables such as the LDOS can be calculated accurately
from systematic gradient expansion using semi-coherent state Green’s functions

P> STM experiments show percolating states in 2DEG at high magnetic
fields, and revealed the robust nodal structure of Landau levels

P> Theory works well for capturing disordered averaged quantities : | ,
(averaged DOS, LDOS correlations, probability distribution, ...) SIS




