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WHY STUDY 2D ELECTRON GASES UNDER MAGNETIC FIELDS N OW?WHY STUDY 2D ELECTRON GASES UNDER MAGNETIC FIELDS N OW?

Experiments since 2000 (far from being exhaustive):

New effects: microwave induced zero-resistance states

New probes: local sensing techniques in the IQHE regime

New systems: graphene, topological insulators, 2DEG surface states

IQHE :Von Klitzing et al. (1980)

T < 1 Kelvin
B > 1 Tesla
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Theory:

Many fundamental aspects (e.g. for the IQHE) well understood

But: how do we calculate stuff? (quantitative microscopic theory to develop!)

This talk

• Percolation features

• Broad structures close to saddle
points of the potential landscape

Disorder plays an important role!

STM Experiment: Local DOS in the IQHE regime (InSb surface states) B=12 T

WHY STUDY 2D ELECTRON GASES UNDER MAGNETIC FIELDS N OW?WHY STUDY 2D ELECTRON GASES UNDER MAGNETIC FIELDS N OW?

(LOWEST LANDAU LEVEL)



Find an (approximate) analytical solution to the problem

Goal:

H0 =
1

2m∗

(
−i�∇r − e

cA(r)
)2

∇×A(r) = Bẑ

H = H0 + V (r)
arbitrary potential energy



Theoretical difficulties:

Disorder averaging is questioned (at microscopic scale)

question of origin of irreversibility and dissipation (crucial for transport)

We are in a nonperturbative regime at high magnetic fields

(kinetic energy frozen + degeneracy of Landau levels) 

Smooth disorder (finite correlation length)

Complexity of diagrammatrics at high magnetic fields (unsolved problem)

We are at the border between classical and quantum mechanics

The wave function as a basic dynamical object is questioned

Need to develop a new approach/method to tackle the problem

Raikh & Shabhazyan, PRB (1993)



Standard theoretical Standard theoretical Standard theoretical Standard theoretical 

approaches (I): approaches (I): approaches (I): approaches (I): 

Semiclassical limitSemiclassical limitSemiclassical limitSemiclassical limit



CLASSICAL MOTION IN HIGH PERPENDICULAR MAGNETIC FIE LDCLASSICAL MOTION IN HIGH PERPENDICULAR MAGNETIC FIE LD

Two degrees of freedom with very different timescales

• slow drift: vd =
1
BE× ẑ

• fast cyclotron motion:

Decoupling in the limit B →∞

Disordered bulk: localization on closed equipotential linesEdges: delocalized
skipping orbits

B →∞

θ̇ = ωc = |e|B/(m∗c)

Averaging over disordered potential configurations questionable here!

Remark: motion regular and integrable in the limit !



change in variables:

[X̂, Ŷ ]→ 0

{
x = X + ζ = X + vy/ωc
y = Y + η = Y − vx/ωc (x, px), (y, py)→ (X, Y ), (ζ, η)

then quantization

SEMICLASSICAL MOTION : THE GUIDING CENTER PICTURE SEMICLASSICAL MOTION : THE GUIDING CENTER PICTURE 

[X̂, Ŷ ] = il2B

[v̂x, v̂y] = −i�ωc/m∗

l2B = �c/(|e|B)→ 0

H = 1
2
m∗v2 + V (X + ζ, Y + η)

Effective energy:

Limitations: 

En,R = �ωc(n+ 1/2) + V (R)

Rc

v

(x, y)

(X, Y )

(X and Y treated as classical variables)

Semiclassical high field picture (V smooth):

LDoS in the IQHE regime follows potential landscape

but quantum percolation featuresHashimoto et al., (2008) 

• No quantization of energies (e.g. in quantum dot)
• No transverse spread + no tunneling effects (e.g. in QPC)
• Problems to formulate a consistent transport theory
• Captures only the high temperature regime



MOTIVATION FOR A HIGH MAGNETIC FIELD EXPANSIONMOTIVATION FOR A HIGH MAGNETIC FIELD EXPANSION

The idea of using as a small parameter is not new. The real challenge is to go

beyond the strict limit !

- limited to energy

- includes only virtual transitions = no Landau-level mixing taken into account

Haldane & Yang, PRL (1997)
Apenko & Lozovik, J. of Phys. C (1984)

At large magnetic field:

Magnetic length lB = 8 nm at 10 T

Correlation length of the disordered potential in heterostructures: ξ ≥ 100 nm

Some attempts:

The random potential is smooth on the scale lB

lB/ξ = 0

lB/ξ

• Effective Hamiltonian theory



Standard theoretical Standard theoretical Standard theoretical Standard theoretical 

approaches (II): approaches (II): approaches (II): approaches (II): 

Wave functionsWave functionsWave functionsWave functions



TRANSLATION INVARIANT LANDAU STATESTRANSLATION INVARIANT LANDAU STATES

- Huge degeneracy of Landau levels

- Magnetic field enters in wave functions only via

- Landau states problematic for quantum/classical correspondence

with    H0 =
1

2m∗

(
−i�∇r − e

cA(r)
)2 ∇×A(r) = Bẑ

Landau states:

Translationally invariant along y

Localized on the scale along x

lB =
√
�c/|e|B

lB

Remarks:  

En,k = �ωc(n+ 1
2)

Ψn,k(x, y) = eiky exp
[
− (x−kl2B)2

2l2
B

]
Hn

(
x−kl2B
lB

)

∣∣∣Ψn,k(x, y)
∣∣∣
2

x

y

Landau (1930)

take A(r) = xBŷ

0



CIRCULARLY INVARIANT STATESCIRCULARLY INVARIANT STATES

- States still problematic for quantum/classical correspondence at

Circular states:

Other possible eigenstates of   H0

Rotationally invariant around the origin

Localized on a scale along r lB

Remark:  

x

y

lB → 0

El,m = �ωc(l+
|m|+m+1

2 )

Ψl,m(r, θ) = r|m| exp
[
−r2
4l2B

]
L
|m|
l

(
r2

2l2B

)
eimθ

∣∣∣Ψl,m(r, θ)
∣∣∣
2 take A(r) = B× r/2

0



What is the physical meaning of the Landau level index n?

A semi-classical answer:

Can we build the right basis of eigenstates where n is only related to the accumulated
phase?

Rc

v

(x, y)

(X, Y )

DIGRESSION ON THE LANDAU LEVEL INDEXDIGRESSION ON THE LANDAU LEVEL INDEX

Champel & Florens, PRB (2007)

E =
1

2
m∗v2 =

1

2
m∗(Rcωc)

2

= �ωc
R2cm

∗ωc
2�

= �ωc
Φc
Φ0

ωc = |e|B/(m∗c)

YES : the vortex states basis

Translation-invariant states: n comes from (degree of Hermite polynomial)

Rotation-invariant states: n = l+ |m|+m
2

degree of Laguerre polynomial

angular momentum (single-valuedness)

Φc = πR2cB

To compare with E = �ωc
(
n+ 1

2

)
Φc = nΦ0

Φ0 = hc/|e|
Cyclotron Flux
is quantized

|Ψ|2 → 0



VORTEX (SEMIVORTEX (SEMI --COHERENT) EIGENSTATESCOHERENT) EIGENSTATES

Other possible eigenstates of   H0 Vortex states: 

- States OK for quantum/classical correspondence

- States with no preferred symmetry: can adapt to arbitrary V(r)

Remarks:  

Em,R = �ωc(m+ 1
2)

Ψm,R(r) = 〈r|m,R〉

x

y

∣∣∣Ψm,R(x, y)
∣∣∣
2

Ψm,R(r) = |r−R|m eim arg(r−R)

× exp

[
−(r−R)2 − 2iẑ · (r×R)

4l2B

]

〈R1|R2〉
Overcomplete semicoherent states basis:

〈m1,R1|m2,R2〉 = δm1,m2 exp

[
−(R1 −R2)2 − 2iẑ · (R1 ×R2)

4l2B

]

+∞∑

m=0

∫
d2R

2πl2B
|m,R〉〈m,R| = 1

0



SemiSemiSemiSemi----coherent vortex statescoherent vortex statescoherent vortex statescoherent vortex states

GreenGreenGreenGreen’’’’s function formalisms function formalisms function formalisms function formalism

Champel, Florens & Canet, PRB (2008)
Champel & Florens, PRB (2009)
Champel & Florens, PRB (2010)



with the star-product ⋆ = exp

[
i
l2B
2

(←−
∂ X

−→
∂ Y −

←−
∂ Y
−→
∂ X

)]

connection to the deformation (Weyl) quantization theory

THEORY: VORTEX GREENTHEORY: VORTEX GREEN ’’ S FUNCTIONS S FUNCTIONS 

known

to determine

(ω −Em1 + i0+)g̃m1;m2(R, ω) = δm1,m2 +
∑

m3

ṽm1;m3(R) ⋆ g̃m3;m2(R, ω)

G(r, r′, ω) =

∫
d2R

2πl2B

∑

m1

∑

m2

Km1;m2(R, r, r
′) g̃m1;m2(R, ω)

= e−
l2
B
4 ∆R

[
Ψ∗m2,R(r

′)Ψm1,R(r)
]

Vortex states: Ψm,R(r) = 〈r|m,R〉

electron dynamics projected in the vortex representationOur approach:

+∞∑

m=0

∫
d2R

2πl2B
|m,R〉〈m,R| = 1

Exact result:

« Vortex Dyson’s » equation:

(cyclotron motion)



High magnetic field regime: LL mixing negligible

THEORY: VORTEX GREENTHEORY: VORTEX GREEN ’’ S FUNCTIONS S FUNCTIONS 

(ωc →∞ while keeping lB finite)

(ω −Em + i0+)g̃m(R) = 1 + ṽm(R) ⋆ g̃m(R)

Effective potential

Trivial for 1D potentials: g̃m(R) = [ω −Em − ṽm(R) + i0+]−1
Trugman, PRB (1983)
Raikh & Shahbazayan, PRB (1995)

Some non trivial questions: - How to get quantized energies for a closed system?

- How to get tunneling effects in QPC?

everything is encoded
in quadratic (curvature)
terms!

⋆ = exp

[
i
l2B
2

(←−
∂ X

−→
∂ Y −

←−
∂ Y

−→
∂ X

)]

Dyson’s equation up to second-order derivatives of V:

This ugly equation can be
exactly solved!  

Champel & Florens, PRB (2009)

V (R) = V (R0) + [R−R0] · ∇V (R0) +
1
2 [(R−R0) · ∇]2 V (R0)

1 =

[
ω −Em − V (R)− 2m+ 1

4
l2B∆RV + i0+

]
g̃m(R)

+
l4B
8

[
∂2Y V ∂2X + ∂2XV ∂2Y − 2∂X∂Y V ∂X∂Y

]
g̃m(R)



EXACT SOLUTION FOR ANY QUADRATIC POTENTIALEXACT SOLUTION FOR ANY QUADRATIC POTENTIAL

Solution embraces all 
possible cases of quadratic
potentials

Related to the Gaussian curvature of V

Open and closed quantum mechanics unified!

g̃m(R) = −i
∫ +∞

0

dt
ei

η(R)
γ
[t−tan(√γt)/√γ]

cos(
√
γt)

eit[ω−V (R)−l
2
B∆V (R)/4+i0

+]

Solution (m=0):

where

γ =
l4B
4

[
∂XXV ∂Y Y V − (∂XY V )

2
]

η(R) =
l4B
8

[
∂XXV (∂Y V )2 + ∂Y Y V (∂XV )

2 − 2∂XY V ∂XV ∂Y V
]

γ > 0 γ = 0 γ < 0

Champel & Florens, PRB (2009)

Solution periodical in time 
energy quantization

Solution with lifetime
tunneling and  
dissipation

Stability of vortex 
quantum numbers



Applications of vortex Applications of vortex Applications of vortex Applications of vortex 

formalism (I): formalism (I): formalism (I): formalism (I): 

Local density of statesLocal density of statesLocal density of statesLocal density of states

Champel & Florens, PRB Rapid Com (2009)
Champel & Florens, PRB (2009)
Champel & Florens, PRB (2010)
Hashimoto, Champel, Florens, et al., PRL  (2012)



LOCAL DENSITY OF STATESLOCAL DENSITY OF STATES

Vortex view of LDoS at high field:

with structure factor:

g̃m,m = g̃m δm,m

cyclotron orbit guiding center drifting

− 1
π Im g̃m(R, E) = δ[E −Em − ṽm(R)]

Lowest order result for vortex Green’s function (local 1D drift):
for smooth potential

and lowest LL

=
∫
d2rFm(R− r)V (r) ≈ V (R)

ρ(r, E) = − 1

π

∫
d2R

2πl2B

+∞∑

m=0

Fm(R− r) Im g̃m(R, E)

Fm(R) =
(−1)m
πl2B

Lm

(
2R2

l2B

)
e−R

2/l2B

m = 0 m = 1 m = 2 m = 3

can be negative
(Wigner’s distribution)



Existence of a hierarchy of local energy scales

Example: 

γ = η = 0

LDoS for the lowest Landau level at the center (r = 0) 
within different approximation schemes

exact expression

Tip

controlled theory for a 
smooth arbitrary potential !

ρ(r, µ, T ) = − 1

2πl2B
n′F [V (r)]

V (r) =
U0
2
r2

1

10

100

1000

ρ
S
T

S
(r

,µ
,T

)

0.001 0.01 0.1 1
T/h̄ωc

Semiclassical
Gradient
Curvature

HIERARCHY OF LOCAL ENERGY SCALES IN VORTEX REPRESEN TATIONHIERARCHY OF LOCAL ENERGY SCALES IN VORTEX REPRESEN TATION

Champel & Florens, PRB (2009)
Champel & Florens, PRB (2010)

(lowest order,
curvature neglected)



Experiment (at fixed Temp) Theory: LDoS for different temperatures
(with lowest order vortex Green’s function)

0

2.5

5

7.5

ρ
S

T
S
(r

,ε
,T

)
−2 −1 0 1 2

ε/h̄Ωc

Experimental features captured by theory:

the width of the LDoS peaks at fixed tip position grows roughly as 

the heights of the LDoS peaks decrease with m

at fixed tip position

APPLICATION: LDOS IN GRAPHENEAPPLICATION: LDOS IN GRAPHENE

m

Origin: wave function broadening

Champel & Florens, PRB (2010)

Miller et al., Science (2009)

graphene



What about spatial dependence of LDOS?What about spatial dependence of LDOS?What about spatial dependence of LDOS?What about spatial dependence of LDOS?



REAL SPACE LDOS DATA REAL SPACE LDOS DATA 

Hashimoto, Champel, Florens et al., PRL (2012)B=6  T

4 successive LLs are observed (spin resolved)

The drift trajectories are blurred in the high LLs
… but no obvious signature of the nodal structure associated to cyclotron motion

InSb surface states



MOMENTUMMOMENTUM --SPACE LDOS DATA SPACE LDOS DATA 

Hashimoto, Champel, Florens et al., PRL (2012)B=6  T

Structures appear at scale 1/lB ≈ 0.1nm−1

LLn shows n kinks in the momentum-dependence

Good comparison experiment/simulations

InSb surface states



REVEALING THE NODAL STRUCTURE OF CYCLOTRON MOTIONREVEALING THE NODAL STRUCTURE OF CYCLOTRON MOTION

Structure factor for cyclotron motion
(length scale lB ~ 10 nm)

Hashimoto, Champel, Florens et al., PRL (2012)

Guiding-center spectral density (disorder-dependent, length scale ~ 50 nm)LDOS (theory):

Deconvolution in Fourier space:

where

m=1

m=2

m=3

m=0

Kinks of               follow the nodes of  ρ̃(q, E)

The nodal structure of LLs is robust to disorder

Key property of quantum Hall states!

InSb surface states

ρ(r, E) =

∫
d2R

2πl2B

+∞∑

m=0

Fm(R− r) Am(R;E)

ρ̃(q, E) =
+∞∑

n=0

F̃m(q) Ãm(q;E)

F̃n(q) = Lm

(
l2Bq

2

2

)
e−l

2
Bq

2/4

F̃m(q)

for B=6  T



Other Applications of Other Applications of Other Applications of Other Applications of 

vortex formalism (II): vortex formalism (II): vortex formalism (II): vortex formalism (II): 

Averaged density of states and LDOS correlationsAveraged density of states and LDOS correlationsAveraged density of states and LDOS correlationsAveraged density of states and LDOS correlations

Champel & Florens, PRB (2010)
Champel, Florens & Raikh, PRB (2011)
Ulrich, Florens & Champel, in preparation (2012)



SAMPLE AVERAGED LDOSSAMPLE AVERAGED LDOS

〈V (R1)V (R2)〉 = v2 e
− |R1−R2|

2

ξ2

Disorder correlator (Gaussian)

DOS with lowest order vortex result:

with

〈ρ(r, ω)〉 = 1

2πl2B

+∞∑

m=0

e−(
ω−Em
Γm

)2

√
πΓm

The lowest order Green’s function
is exact at

Opposite limit
analytically solved by Wegner

Γ2m =
π

2
v2ξ2l4B

∫
d2q

[
F̃m

(
l2Bq

2

)]2
e−

ξ2q2

4

most stringent test!

ξ ≫ lB

ξ ≪ lB



LDOS CORRELATIONS (I)LDOS CORRELATIONS (I)

a)

d)

b)

c)
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��

r1 r2

r1 r2

r1 r2

r1 r2

R
L

lB

Tip 2Tip 1 Two-point LDoS correlator:

χ(r, ω1, ω2) = 〈ρ(r1, ω1)ρ(r2, ω2)〉 − 〈ρ(r1, ω1)〉〈ρ(r2, ω2)〉

r

r1, ω1 r2, ω2
Perform the following sample averaging of LDOS-LDOS signal

Geometrical interpretation: overlap of quantum rings

Area for c) > Area for b)

peaks again for 

Robust way to reveal some nodes in real space?

χ r ≈ 2Rc



LDOS CORRELATIONS (II)LDOS CORRELATIONS (II)

Champel, Florens, Raikh, PRB (2011)

Spatial dependence confirms previous expectations

Procedure for computation

this can be done analytically!

0

0.25

0.5

0.75

1

χ
(r

,E
n
,E

n
)

0 1 2 3
r/RL

n

semiclassics

0

0.2

0.4

0.6

χ
(r

,ω
,ω

)

0 1 2 3 4 5 6
r/lB

ω = E0

ω = E1

ω = E2
lB = 0

ξ/lB = 5

〈ρ(r1, ω1)ρ(r2, ω2)〉 =
∫

d2R1
2πl2B

∫
d2R2

2πl2B

+∞∑

m1=0

+∞∑

m2=0

Fm1(R

1

− r1)Fm2(R2 − r2)

×
∫

dt1
2π

∫
dt2
2π

ei(ω1−Em1
)t1+i(ω2−Em2

)t2
〈
e−i[ṽm1(R1)t1+ṽm2 (R2)t2]

〉



LDOS CORRELATIONS (III)LDOS CORRELATIONS (III)

Champel, Florens, Raikh, PRB (2011)

Energy dependence: DOS versus LDOS correlations at equal position

Prospects: compare analytic theory with experiments and numerics

has narrow resonances with width
has broad peaks with width

Positive correlations if                     , negative otherwise

∼
√
〈V 2〉

∼ (lB/ξ)
√
〈V 2〉

∆ω = n�ωc



PERSPECTIVES: PROBABILITY DISTRIBUTION FOR THE LDOSPERSPECTIVES: PROBABILITY DISTRIBUTION FOR THE LDOS

On-going work with J. Ulrich and S. Florens

Probablity distribution for the LDOS:

Higher moments of the LDOS correlations
can be computed analytically at ξ ≫ lB

P (ρ) =

∫
dλ

2π
eiλρ

∞∑

n=0

(−iλ)n
n!

〈[ρ(ω, r = 0)]n〉

Assumptions: LL0 + additional external broadening (temperature T)

p = ρ/〈ρ〉 T ∗ = (lB/ξ)v

Preliminary results:

Wide-stretched distribution at

Sharply peaked distribution at high T
(LDOS gets more and more uniform
accross the sample)

T ≪ T ∗



CONCLUSIONCONCLUSION

The rigorous formulation of a quantum guiding center theory was
established in terms of semi-coherent state Green’s functions

Local equilibrium observables such as the LDOS can be calculated accurately
from systematic gradient expansion using semi-coherent state Green’s functions

STM experiments show percolating states in 2DEG at high magnetic
fields, and revealed the robust nodal structure of Landau levels

Theory works well for capturing disordered averaged quantities
(averaged DOS, LDOS correlations, probability distribution, …)

The overcompleteness of the vortex representation
makes possible the unification of closed and open 
systems (bulk and edge states on the same footing)!


