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Mechanisms for Localization?

Friend or Foe??7?

Sir Neville Mott

W P. W. Anderson
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Local (DMFT) perspective?
Fluctuating cavity field
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Can local spectrum recognize Anderson localization?

Yazdani, STM experiments GaMnAs
(close to localization)
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Typical DOS as order parameter for Anderson localization

Bethe lattice simulation
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Typical Medium Theory for Anderson localization

V. Dobrosavljevi¢, A. Pastor, and B. K. Nikoli¢, Europhys. Lett. 62, 76-82, (2003)

Idea: Localization: cavity function A;(®) fluctuates
DMFT (CPA) replaces it by average value (wrong)

TMT-DMFT: replace it by typical value (order parameter)

Gw,g) = |lw—¢; — A(w)]_l Alw) = Ap(w — X(w))

+o0 /
o V , polw
Do) =w=1/Colw) Gl = [ aut )

Self-consistency: G, (w — X(w)) = Giyp(w)
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TMT vs. exact 3D behavior
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Excellent quantitative agreement with exact diagonalization in 3D
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Challenges: Mott-Anderson Transitions

Atomic (insulating) limit (t=0)

Anderson
Mott-Anderson

T

Two-Fluid behavior:
local moments (Mott) + Anderson-localized electrons
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Mott-Anderson Transitions: order parameters

 Clean case (W=0): Mott metal-insulator transition at U=U., where Z — 0 (Brinkman
and Rice, 1970).

» Fermi liquid approach in which each fermion acquires a quasi-particle
renormalization and each site-energy is renormalized:

Local renormalizations Y (w) = <| _ Zi_l) w—¢: + 5//2/
€ + X (w)
/f ’T \\ Local moment formation: 7. — ()
@ Orbitally (site) selective Mott transition?
o “deconfinement”, “fractionalization”
? [ 1 “Kondo” THEOREM: in any metal
@ o o Z # 0 P; 7£ 0 (continuum spectrum)

(exceptions on Friday)
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Mott transition+weak disorder: results in D = oo
(D. Tanaskovic et al., PRL 2003; M. C. O. Aguiar et al., PRB 2005)

« For U — Uc(W), all Z— 0 vanish (disordered Mott transition)

« If we re-scale all Z by Z, ~ Uc(W)-U, we can look at P(Z /Z,)

* For D =% (DMFT), P(Z/Z:) - universal form at U..
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Spectroscopic signatures: disorder screening

* The effective disorder at the Fermi level is given by the
distribution of: ), — =, + %, (w = 0) = £, /Z,

i
Width of the v, distribution

W/D=0 325 This quantity is strongly
. W/D=1.125 renormalized close to the
— W/D=2.500 Mott MIT

y; Is pinned to Fermi level
(Kondo resonance)

0 02 04 06 08 I
U/
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Energy-resolved inhomogeneity!

* However, the effect is lost even slightly away from the

Fermi energy:
v; (w#0) = &

The strong disorder effects reflect the

10 wide fluctuations of Zi
Similar to high-Tc materials, as seen by STM

Experiment: Seamus Davis (2005)
0.9 Theory: Garg, Trivedi, Randeria (2008))

Generic to the stron

correlated materials?

U=0.96Uc;W=0.375D
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Mottness-induced contrast

(@) | (b)

Generic feature of all Mott systems, not only high Tc cuprates?!
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TMT-DMFT of Mott-Anderson transition

week endin

PRL 102, 156402 (2009) PHYSICAL REVIEW LETTERS 17 APRIL, 2009

Critical Behavior at the Mott-Anderson Transition: A Typical-Medium Theory Perspective

Disorder-driven (increasing W)
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Only fraction of Z; vanish - two fluid behavior!
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Challenges: Spatial Fluctuations, Rare Events...
(missing from DMFT and even TMT-DMFT)

week ending
22 MAY 2009

PRL 102, 206403 (2009) PHYSICAL REVIEW LETTERS

Electronic Griffiths Phase of the d = 2 Mott Transition

E.C. Andrade,'” E. Miranda,” and V. Dobrosavljevi¢'
In D=2, the environment of each site (“bath”) has strong spatial fluctuations

‘New physics: rare evens due to fluctuations and spatial correlations

0.8

0.6

Distribution P(Z/Zo)
acquires a low-Z tail:
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Results: Thermodynamics

 Remembering that the local Kondo temperature and

Xi (1) ~

1 v r1~(y’—l
= (x(T)) ~ | dT}y=L——
T+ Tk (1)) / R TR

1 ?1\'/' X Z i

~ '1~n—1

Singular thermodynamic response

The exponent o is a function of AP e \ -
. . . \ \
disorder and interaction strength. ' N N
o=1 marks the onset of singular 3F L 2l -
thermodynamics. 2 [o woisscime N
S 2w wp-1875<1/2">" HN_HH N .
O W/D-2.500, estimator S \\
— [ ® wD-2.500,<1/2">" b N ]
Quantum Griffiths phase | Mr
E. Miranda and V. D., Rep. Progr. Phys. . . . . . \z.‘ \\'Si
68, 2337 (2005); T. Vojta, J. Phys. A 39, 7075 08 08 09 095 I
R143 (2006) U/U.
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“Size” of the rare events?

—1
Xi ~ 2,

Typical sample

Rare event!

Replace the environment of
given site outside square by
uniform (DMFT-CPA) effective
medium.

Reduce square size down to
DMFT limit.

Rare evrents due to rare
regions with weaker disorder

The rare event is preserved for
a box of size I > 9: rather
smooth profile with a
characteristic size.
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Nonlocal effects and inter-site correlations (DCA!I)

C. E. Ekuma, Z. Y. Meng, H. Terletska, J. Moreno, M. Jarrell, and V. Dobrosavljevic
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Current/Future Work: Challenges and Opportunities

Nonlocal effects and inter-site correlations (DCAIT)
Finite-temperature coherence-incoherence crossovers
Metastability and glassy ordering (bosonic EDMFT)

Charge ordering (Wigner-Mott) and pseudogap phases

Realistic modeling of impurities and disorder
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To learn more:

http://badmetals.magnet.fsu.edu
(just Google “Bad Metals”)

CONDUCTOR INSULATOR
QUANTUM PHASE Book:

TRANSITIONS
Oxford University Press, June 2012

VLADIMIR DOBROSAVLJEVIC, NANDINI TRIVEDI

Already listed on Amazon.com

ISBN 9780199592593
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