Disordered systems with generic universal finite-disorder fixed points Eduardo Miranda

Campinas State University

José Abel Hoyos University of São Paulo

8th International Workshop on Disordered Systems Benasque, Spain, August 30 2012

Outline

- Motivation
- The Strong Disorder Renormalization Group
 - Universal infinite effective disorder
 - Non-universal finite effective disorder (Griffiths phases)
- . The Large Spin phase and its sisters
 - Universal finite effective disorder
- A general scheme of universal finite effective disorder

Randomness in classical systems

- Strong effect on phase transitions
- Harris criterion:
 - vd >2: critical behavior is unchanged, disorder is irrelevant (classical Heisenberg model)
 - *vd* <2: disorder is relevant; usually, new critical behavior, new exponents (classical Ising model)
 - **smeared** phase transitions (Ising model with planar defects)

Randomness in classical systems

- Strong effect on phase transitions
- Harris criterion:
 - vd >2: critical behavior is unchanged, disorder is irrelevant (classical Heisenberg model)
 - *vd* <2: disorder is relevant; usually, new critical behavior, new exponents (classical Ising model)
 - **smeared** phase transitions (Ising model with planar defects)

Effects much stronger in quantum systems

Transverse field Ising model: paradigm

$$H_{TFIM} = \sum_{j} \left(-J\sigma_{j}^{z}\sigma_{j+1}^{z} - h\sigma_{j}^{x} \right)$$

Transverse field Ising model: paradigm

$$H_{RTFIM} = \sum_{j} \left(-J_j \sigma_j^z \sigma_{j+1}^z - h_j \sigma_j^x \right) \qquad \xrightarrow{\uparrow} \begin{array}{c} J_1 & J_2 & J_3 \\ \hline h_1 & h_2 & h_3 \end{array} \stackrel{\downarrow}{} \begin{array}{c} h_4 & h_4 \end{array}$$

$$H_{RTFIM} = \sum_{j} \left(-J_j \sigma_j^z \sigma_{j+1}^z - h_j \sigma_j^x \right) \qquad \xrightarrow{\uparrow} \begin{array}{c} J_1 & J_2 & J_3 \\ \hline h_1 & h_2 & h_3 \end{array} \begin{array}{c} \downarrow \\ h_2 & h_3 \end{array} \begin{array}{c} \downarrow \\ h_4 \end{array}$$

Decimation procedure: Find the largest coupling, $max(h_i, J_i)$

$$H_{RTFIM} = \sum_{j} \left(-J_j \sigma_j^z \sigma_{j+1}^z - h_j \sigma_j^x \right) \qquad \xrightarrow{\downarrow J_1 \downarrow J_2 \downarrow J_3 \uparrow}_{h_1 h_2 h_3 h_4}$$

Decimation procedure: Find the largest coupling, $max(h_i, J_i)$

$$H_{RTFIM} = \sum_{j} \left(-J_j \sigma_j^z \sigma_{j+1}^z - h_j \sigma_j^x \right) \qquad \xrightarrow{\uparrow} \begin{array}{c} J_1 & J_2 & J_3 \\ \hline h_1 & h_2 & h_3 \end{array} \begin{array}{c} \downarrow \\ h_2 & h_3 \end{array} \begin{array}{c} \downarrow \\ h_4 \end{array}$$

Decimation procedure: Find the largest coupling, $max(h_i, J_i)$

$$H_{RTFIM} = \sum_{j} \left(-J_{j}\sigma_{j}^{z}\sigma_{j+1}^{z} - h_{j}\sigma_{j}^{x} \right) \xrightarrow{J_{1}} J_{2} \xrightarrow{J_{3}} J_{4}$$
Ferromagetic
Paramagnetic
$$\delta_{c} = 0 \rightarrow \delta = \langle \ln h \rangle - \langle \ln J \rangle$$

$$H_{RTFIM} = \sum_{j} \left(-J_{j}\sigma_{j}^{z}\sigma_{j+1}^{z} - h_{j}\sigma_{j}^{x} \right) \xrightarrow{J_{1}} J_{2} \xrightarrow{J_{3}} J_{4}$$
Ferromagetic Paramagnetic $\delta = \langle \ln h \rangle - \langle \ln J \rangle$

$$\int \delta_{c} = 0$$

$$P^{*}(J) \sim \frac{1}{J^{1-1/z}}; Q^{*}(h) \sim \delta(h)$$

$$\frac{\Delta J}{\langle J \rangle} \sim \sqrt{z} \qquad \chi(T) \sim \frac{1}{T^{1+1/z}}$$

D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995)

Away from the critical point, the effective disorder is governed by a non-universal exponent *z*: quantum Griffiths phase

D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995)

$$H_{RTFIM} = \sum_{j} \left(-J_{j}\sigma_{j}^{z}\sigma_{j+1}^{z} - h_{j}\sigma_{j}^{x} \right) \xrightarrow{J_{1}} J_{2} \xrightarrow{J_{3}} J_{4}$$
Ferromagetic Paramagnetic $\delta_{c} = 0$

$$\int \delta_{c} = 0$$

$$P^{*}(J) \sim \frac{1}{J^{1-1/z}}; Q^{*}(h) \sim \delta(h)$$

$$P^{*}(J) \sim \delta(J); Q^{*}(h) \sim \frac{1}{h^{1-1/z}}$$

$$\frac{\Delta J}{\langle J \rangle} \sim \sqrt{z}$$

$$\chi(T) \sim \frac{1}{T^{1+1/z}}$$

$$\frac{\Delta h}{\langle h \rangle} \sim \sqrt{z}$$

$$\chi(T) \sim \frac{1}{T^{1-1/z}}$$

Away from the critical point, the effective disorder is governed by a non-universal exponent *z*: quantum Griffiths phase.

z diverges at the critical point. $z \sim \frac{1}{|\delta|} \to \infty$, as $|\delta| \to 0$

D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995)

$$\frac{H_{RTFIM} = \sum_{j} \left(-J_{j}\sigma_{j}^{z}\sigma_{j+1}^{z} - h_{j}\sigma_{j}^{x} \right)}{Ferromagetic} \xrightarrow{Paramagnetic} \delta = \langle \ln h \rangle - \langle \ln J \rangle}$$

At the critical (dual) point: Infinite effective disorder

$$P^{*}(J) \sim \frac{1}{J^{1-\alpha}} \qquad \alpha = \frac{1}{\ln(\Omega_{0}/\Omega)} \to 0 \qquad \boxed{\Delta J \\ \langle J \rangle} \sim \frac{1}{\sqrt{\alpha}} \to \infty$$
$$Q^{*}(h) \sim \frac{1}{h^{1-\alpha}} \qquad \gamma = \frac{1}{\ln(1/T)} \qquad \gamma = \frac{1}{2}$$
$$\chi(T) \sim \frac{\left[\ln(1/T)\right]^{2\phi-2}}{T} \qquad \phi = \frac{1+\sqrt{5}}{2}$$

Energy vs. length scales D. Fisher, PRL **69**, 534 (1992); PRB **51**, 6411 (1995)

Excitations of size L (clusters of spins) have energy Ω such that:

Along the line of finite disorder fixed points

$$\Omega \sim L^{-z}$$

|Conventional scaling (similar to clean systems) $\omega \sim k^{z}$

Energy vs. length scales D. Fisher, PRL **69**, 534 (1992); PRB **51**, 6411 (1995)

Excitations of size L (clusters of spins) have energy Ω such that:

Along the line of finite disorder fixed points

$$\Omega \sim L^{-z}$$

|Conventional scaling (similar to clean systems) $\omega \sim k^{z}$

At the infinite disorder critical point: $\Omega \sim e^{-L^{\psi}}$, $\psi = \frac{1}{2}$

Activated dynamical scaling (dynamical exponent is formally = ∞)

Related behavior in other systems

Finite disorder: $z < \infty$

Infinite disorder: $z = \infty$

Related behavior in other systems

Finite disorder: $z < \infty$

Infinite disorder: $z = \infty$

This structure, lines of non-universal finite-disorder fixed points ending at universal infinite-disorder fixed points, is seen in many models:

- 1. Other discrete models: Potts, clock, Ashkin-Teller (Senthil & Majumdar; Carlon, Lajkó, Chatelain, Berche, Juhász, Iglói)
- 2. Heisenberg AFM models with higher spins (Hyman & Yang, Monthus, Golinelli, Jolicoeur; Saguia, Boechat, Continentino; Refael, Kehrein, Fisher, Iglói)
- 3. Heisenberg AFM models with explicit dimerization (Hyman, Yang, Bhatt, Girvin; Iglói, Juhász, Rieger, Lajkó)
- 4. Systems with continuous symmetries (Heisenberg, XY) in the presence of dissipation (Hoyos & T. Vojta)

Related behavior in other systems

Finite disorder: $z < \infty$

Infinite disorder: $z = \infty$

This structure, lines of non-universal finite-disorder fixed points ending at universal infinite-disorder fixed points, is seen in many models:

- 1. Other discrete models: Potts, clock, Ashkin-Teller (Senthil & Majumdar; Carlon, Lajkó, Chatelain, Berche, Juhász, Iglói)
- 2. Heisenberg AFM models with higher spins (Hyman & Yang, Monthus, Golinelli, Jolicoeur; Saguia, Boechat, Continentino; Refael, Kehrein, Fisher, Iglói)
- 3. Heisenberg AFM models with explicit dimerization (Hyman, Yang, Bhatt, Girvin; Iglói, Juhász, Rieger, Lajkó)
- 4. Systems with continuous symmetries (Heisenberg, XY) in the presence of dissipation (Hoyos & T. Vojta)

In all cases:

$$\widetilde{\Delta} = \# \frac{\Delta_1 \Delta_2}{\Omega}$$

- 2nd order pert. theory
- multiplicative structure
- activated dynamics

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

$$H = \sum_{i} J_i \boldsymbol{S}_i \cdot \boldsymbol{S}_{i+1}; \ J_i < 0 \text{ or } > 0$$

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

Generates higher spins

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

• Large spin phase: Spins form large clusters with large total spins

 $\langle S \rangle \sim \sqrt{L}$ (random walk in spin space)

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

• Large spin phase: Spins form large clusters with large total spins

 $\langle S \rangle \sim \sqrt{L}$ (random walk in spin space)

- Conventional scaling: $\Omega \sim L^{-z}$

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

• Large spin phase: Spins form large clusters with large total spins

 $\langle S \rangle \sim \sqrt{L}$ (random walk in spin space)

- Conventional scaling: $\Omega \sim L^{-z}$
- Thermodynamics: $\chi(T) \sim 1/T$ $\frac{C(T)}{T} \sim \frac{|\ln T|}{T^{1-1/z}}$

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

• Large spin phase: Spins form large clusters with large total spins

 $\langle S \rangle \sim \sqrt{L}$ (random walk in spin space)

- Conventional scaling: $\Omega \sim L^{-z}$
- Thermodynamics: $\chi\left(T
 ight)\sim1/T$

$$\frac{C(T)}{T} \sim \frac{|\ln T|}{T^{1-1/z}}$$

• For weak disorder, <u>z is universal ≈ 2.27 </u>

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

• Large spin phase: Spins form large clusters with large total spins

 $\langle S \rangle \sim \sqrt{L}$ (random walk in spin space)

- Conventional scaling: $\Omega \sim L^{-z}$
- Thermodynamics: $\chi(T) \sim 1/T$ $\frac{C(T)}{T} \sim \frac{|\ln T|}{T^{1-1/z}}$
- For weak disorder, <u>z is universal ≈ 2.27 </u>
- For stronger disorder, z > 2.27 is non-universal and varies continuously with the disorder strength (like in more conventional Griffiths phases).

Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

• Large spin phase: Spins form large clusters with large total spins

 $\langle S \rangle \sim \sqrt{L}$ (random walk in spin space)

- Conventional scaling: $\Omega \sim L^{-z}$
- Thermodynamics: $\chi(T) \sim 1/T$
- For weak disorder, <u>z is universal ≈ 2.27 </u>
- For stronger disorder, z > 2.27 is non-universal and varies continuously with the disorder strength (like in more conventional Griffiths phases).

As the cluster spins grow, the probability of occurrence of 2nd order processes becomes negligible: <u>only 1st order decimations survive</u>

Other systems with similar behavior

Universal minimum finite disorder: z_{min} Non-universal tunable finite disorder: $z > z_{min}$

Infinite disorder: $z = \infty$

Other systems with similar behavior

Universal minimum finite disorder: z_{min} Non-universal tunable finite disorder: $z > z_{min}$

Infinite disorder: $z = \infty$

Similar behavior is seen in:

- 1. zigzag ladders with AFM interactions: $z_{\min} \approx 4.1$ (Hoyos & Miranda, PRB 69, 214411 (2004))
- 2. SU(N) Heisenberg chain as $N \rightarrow \infty$: $z_{\min} \approx 5.8$ (Hoyos & Miranda, unpublished)
- 3. Random transverse field Ising model with correlations between couplings and fields: $z_{\rm min} \approx 1$ (Hoyos, Laflorencie, Vieira, T. Vojta, EPL 93, 30004 (2011))

Other systems with similar behavior

Universal minimum finite disorder: z_{min} Non-universal tunable finite disorder: $z > z_{min}$

Infinite disorder: $z = \infty$

Similar behavior is seen in:

- 1. zigzag ladders with AFM interactions: $z_{\min} \approx 4.1$ (Hoyos & Miranda, PRB 69, 214411 (2004))
- 2. SU(N) Heisenberg chain as $N \rightarrow \infty$: $z_{\min} \approx 5.8$ (Hoyos & Miranda, unpublished)
- 3. Random transverse field Ising model with correlations between couplings and fields: $z_{\rm min} \approx 1$ (Hoyos, Laflorencie, Vieira, T. Vojta, EPL 93, 30004 (2011))

Why is this often observed? Is there a general scheme?

What do they all have in common?

They are all dominated by 1st order processes!

What do they all have in common?

They are all dominated by 1st order processes!

Simplification

 $\widetilde{\Delta}_i = \alpha_i \Delta_i$

Generic flow equation:

$$\frac{\partial P\left(\Delta\right)}{\partial\Omega} = P\left(\Omega\right)P\left(\Delta\right) - 2P\left(\Omega\right)\int d\Delta' d\alpha P\left(\Delta'\right)\overset{\checkmark}{A}(\alpha)\,\delta\left(\Delta - \alpha\Delta'\right)$$

where $A(\alpha)$ is the distribution function of the multiplicative prefactors.

Switch to appropriate log-variables: $\zeta = \ln (\Omega/\Delta) \ \rho(\zeta) d\zeta = P(\Delta) d\Delta$

Switch to appropriate log-variables: $\zeta = \ln (\Omega/\Delta) \quad \rho(\zeta) \, d\zeta = P(\Delta) \, d\Delta$ Solve by Laplace transform at the fixed point: $\tilde{\rho}(x) = \int_0^\infty e^{-x\zeta} \rho(\zeta) \, d\zeta$

Switch to appropriate log-variables: $\zeta = \ln (\Omega/\Delta) \quad \rho(\zeta) \, d\zeta = P(\Delta) \, d\Delta$ Solve by Laplace transform at the fixed point: $\tilde{\rho}(x) = \int_0^\infty e^{-x\zeta} \rho(\zeta) \, d\zeta$

$$\tilde{\rho}\left(x\right) = \frac{1}{2B\left(x\right) - 1 + zx}$$

where,
$$B(x) = \int_{0}^{1} \alpha^{x} A(\alpha) d\alpha$$

Switch to appropriate log-variables: $\zeta = \ln (\Omega/\Delta) \quad \rho(\zeta) \, d\zeta = P(\Delta) \, d\Delta$ Solve by Laplace transform at the fixed point: $\tilde{\rho}(x) = \int_0^\infty e^{-x\zeta} \rho(\zeta) \, d\zeta$

$$\tilde{\rho}\left(x\right) = \frac{1}{2B\left(x\right) - 1 + zx}$$

where,
$$B(x) = \int_{0}^{1} \alpha^{x} A(\alpha) d\alpha$$

Here, *z* is the dynamical exponent, which can be shown to be given by:

$$z = \frac{1}{\Omega P(\Omega)} = \frac{1}{\rho(0)}$$

Low energy behavior is set by the largest negative real pole of $\tilde{
ho}\left(x
ight)$

$$\tilde{\rho}(x) \approx \frac{1}{x + x_m} \Rightarrow \rho(\zeta) \sim e^{-x_m \zeta} \Rightarrow P(\Delta) \sim \frac{1}{\Delta^{1 - x_m}}$$

Low energy behavior is set by the largest negative real pole of $\tilde{\rho}(x)$

$$\tilde{\rho}(x) \approx \frac{1}{x + x_m} \Rightarrow \rho(\zeta) \sim e^{-x_m \zeta} \Rightarrow P(\Delta) \sim \frac{1}{\Delta^{1 - x_m}}$$

Solving for the poles of $\tilde{\rho}(x) = \frac{1}{2B(x) - 1 + zx}$ $B(x) = \int_{0}^{1} \alpha^{x} A(\alpha) d\alpha$

Low energy behavior is set by the largest negative real pole of $\tilde{\rho}(x)$ $\tilde{\rho}(x) \approx \frac{1}{x + x_m} \Rightarrow \rho(\zeta) \sim e^{-x_m \zeta} \Rightarrow P(\Delta) \sim \frac{1}{\Delta^{1 - x_m}}$ Solving for the poles of $\tilde{\rho}(x) = \frac{1}{2B(x) - 1 + zx}$ $B(x) = \int_0^1 \alpha^x A(\alpha) d\alpha$ 2B(x) is monotonically decreasing 2B(x = 0) = 2

In the clean limit, there are extended excitations with $\Omega \sim L^{-z_{clean}}$

In the clean limit, there are extended excitations with $\Omega \sim L^{-z_{clean}}$

Posssible RG flows

Check with other methods

Compare with exact diagonalization of $H_{RTFIM} = -\sum_{j} J_j \left(\sigma_j^z \sigma_{j+1}^z \sigma_j^x \right)$ Hoyos, Laflorencie, Vieira & Vojta, EPL **93**, 30004 (2011) jHoyos & Miranda, in preparation

Conclusions

Generic analytical treatment for a class of disordered systems
 <u>Existence of a minimum z</u>
 Relevance of disorder
 Line of finite-disorder fixed points

2. 2nd order *vs* 1st order decimation processes Multiplicative *vs* Simple structure Exponential activated *vs* Conventional power-law dynamics

$$\widetilde{\Delta} = \# \frac{\Delta_1 \Delta_2}{\Omega}$$
 vs $\widetilde{\Delta}_i = \alpha_i \Delta_i$

Non-degenerate vs Degenerate "local" ground states