

Classical percolation fingerprints in the high-temperature regime of the quantum Hall effect

Serge Florens, [Néel Institute - CNRS/UJF Grenoble]

Outline

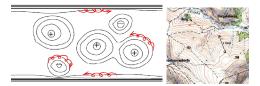
- High temperature regime of QHE : phenomenology
- Large-scale inhomogeneities : microscopic theory for classical transport critical exponents
- Dominant local dissipation mechanisms
- Longitudinal conductance : scaling law vs experiments

Acknowledgments

- Thierry Champel, LPMMC
- Martina Flöser, Néel Institute
- Benjamin Piot, Duncan Maude, LNCMI

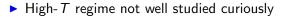
Flöser, Florens & Champel, PRL (2011) Flöser, Florens & Champel, Int. J. Mod. Phys. (2012)

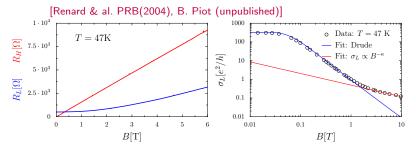
Piot et al., in preparation (2012)


The High Temperature Regime of the Quantum Hall Effect

Classical motion in high perpendicular magnetic field Two "degrees of freedom" with different timescales :

- Fast cyclotron motion : $\frac{d\theta}{dt} = \omega_c = \frac{eB}{m^*}$
- ► Slow drift velocity : $\mathbf{v}_d = \frac{\mathbf{E}}{B} \times \hat{\mathbf{z}}$ \implies drift frequency $\omega_d = \mathbf{v}_d / \xi$ $\mathbf{B} \odot \frac{2}{3}$
- Decoupling $(\omega_c > \omega_d)$ for $B_c^{(GaAs)} \simeq 1$ T

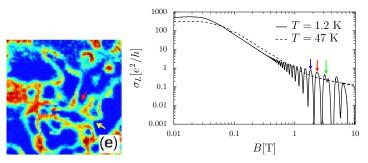

Picture : guiding center motion becomes regular


- Disordered bulk : localization on closed equipotential lines
- Sharp edges or percolating bulk states are delocalized

Е

Experimental evidence for (classical) decoupling?

• Classical law $R_H \propto B$ for all B field values


• Drude's law $R_L = ext{Cst}$ and $\sigma_L = rac{ne^2 au/m^{\star}}{1 + (\omega_c au)^2}$ OK for $B < 1\mathsf{T}$

• New regime for $B>1\mathsf{T}$ with $\sigma_L\propto B^{-\kappa}$

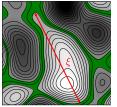
• Anomalous exponent $\kappa \simeq 0.6 \rightarrow 0.9$

Disgression : onset of Quantum Hall Effect

- The decoupling works also in the quantum world : robust Landau levels with drifting wavefunctions
- Evidence from STM [Hashimoto et al., PRL (2008)]

 Breakdown of Drude's law (high T) correlated to onset of QHE (low T) [Fogler, Dobin, Perel, Shklovski, PRB (1997)]

Transport from guiding center alone?


- Trajectories following closed level lines do not contribute to transport
- Percolating trajectories must go through saddle points ⇒drift velocity
 v_d ∝ ∇V × 2̂ vanishes! (if disorder analytic)
- Conductance is exactly zero

- \Rightarrow Extra scattering processes (phonons, "LL-mixing") are required for longitudinal transport
- \Rightarrow Introduce small dissipative local conductivity σ_0

Percolating transport at small σ_0

- Classical motion=drift+diffusion
- σ₀ plays the role of cutoff for percolating state
- \Rightarrow scaling law for conductance $\sigma_L \propto \sigma_0^{1-\kappa} \gg \sigma_0$
 - ► Conjecture [Isichenko RMP (1992), Simon&Halperin PRL (1994)] :

• $\kappa = 1 - \frac{1}{2+\nu D}$ with ν critical exponent of the correlation length and D fractal dimension of the percolating path.

•
$$\kappa = 10/13 \simeq 0.7692$$

Goal :

- Compute κ microscopically in a direct calculation of σ_L
- ▶ Obtain scaling form of *σ*_L(*T*, *B*) in order to extract critical exponent from experimental data

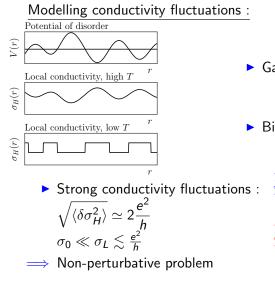
The classical percolation transport problem

Local Conductivity Model

Classical Ohm's law is obeyed locally in space

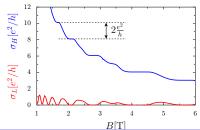
$$\mathbf{j}(\mathbf{r}) = \hat{\sigma}(\mathbf{r})\mathbf{E}(\mathbf{r}) = egin{pmatrix} \sigma_0 & -\sigma_H(\mathbf{r}) \ \sigma_H(\mathbf{r}) & \sigma_0 \end{pmatrix} \mathbf{E}(\mathbf{r})$$

valid for conductors with short coherence length (high-T ok)

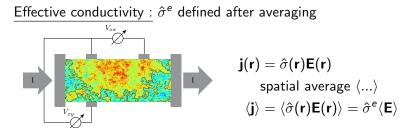

- Disorder leads to density fluctuations \implies random $\sigma_H(\mathbf{r})$
- Solve continuity equation ∇ .**j**(**r**) = 0

Drift conductivity from semiclassics :

$$\sigma_{xy}(\mathbf{r}) = \frac{e^2}{h} \sum_m n_F(E_m + V(\mathbf{r}))$$


as current density : $\mathbf{j}(\mathbf{R}) = -en(\mathbf{R})\mathbf{v}_{drift} = \frac{e^2}{\hbar}2\pi l_B^2 n(\mathbf{R})\mathbf{E} \times \hat{\mathbf{z}}$ with $n(\mathbf{R})$ =density of filled states

Problem : strong fluctuation regime



• Gaussian $\sigma_{xy}(\mathbf{r})$ at high T

• Binary $\sigma_{xy}(\mathbf{r})$ at lower T

How to compute transport at small σ_0 ?

Problem : a small σ_0 expansion for $\hat{\sigma}^e$ is not possible Strategy :

- Expand the conductivity perturbatively in powers of $1/\sigma_0$.
- Extrapolate series to small σ_0 .

Systematic Calculation of the Effective Conductivity

Solve continuity equation $\nabla \cdot \mathbf{j} = 0$ with $\mathbf{j}(\mathbf{r}) = \hat{\sigma}(\mathbf{r}) \cdot \nabla \Phi$.

- ► This leads to boundary value problem [Dreizin & Dykhne JETP (1972), Stroud PRB (1975)] if $\hat{\sigma}(\mathbf{r}) \equiv \hat{\sigma}_0 + \delta \hat{\sigma}(\mathbf{r})$ $\nabla \cdot [\hat{\sigma}_0 \nabla \Phi(\mathbf{r})] = -\nabla \cdot [\delta \hat{\sigma}(\mathbf{r}) \nabla \Phi(\mathbf{r})]$ in V $\Phi(\mathbf{r}) \equiv \Phi_0(\mathbf{r}) = -\mathbf{E}_0 \cdot \mathbf{r}$ on S for a sample of volume V bounded by a surface S.
- ► Introducing the Green's function $\nabla \cdot [\hat{\sigma}_0 \nabla G(\mathbf{r}, \mathbf{r}')] = -\delta(\mathbf{r} - \mathbf{r}')$ in V $G(\mathbf{r}, \mathbf{r}') = 0$ for \mathbf{r} on S.
- After some algebra we find $\hat{\sigma}^e = \hat{\sigma}_0 + \langle \hat{\chi} \rangle$

with
$$\hat{\chi}(\mathbf{r}) = \delta \hat{\sigma}(\mathbf{r}) + \delta \hat{\sigma}(\mathbf{r}) \int_{V} d^{2}r' \ \hat{\mathcal{G}}_{0}(\mathbf{r},\mathbf{r}')\hat{\chi}(\mathbf{r}')$$

where
$$\left[\hat{\mathcal{G}}_{0}\right]_{ij} = \frac{\partial}{\partial r_{i}} \frac{\partial}{\partial r_{j}} G(\mathbf{r}, \mathbf{r}')$$
. Note : $\hat{\mathcal{G}}_{0} \propto 1/\sigma_{0}$

Diagrammatic Expansion

$$\hat{\chi}(\mathbf{r}) = \delta\hat{\sigma}(\mathbf{r}) + \delta\hat{\sigma}(\mathbf{r}) \int_{V} d^{2}r' \ \hat{\mathcal{G}}_{0}(\mathbf{r}, \mathbf{r}')\hat{\chi}(\mathbf{r}')$$

Convention :

$$\hat{\mathcal{G}}_0(\mathbf{r} - \mathbf{r}_1) = \mathbf{r}_1 \qquad \qquad \delta \hat{\sigma}(\mathbf{r}) = \left\{ \mathbf{r} \\ \mathbf{r} \\$$

Systematic expansion of
$$\hat{\chi}$$
 :

$$\hat{\chi}(\mathbf{r}) = \left. \begin{array}{c} \dot{\boldsymbol{\chi}} \\ \mathbf{r} \\ \mathbf{r} \end{array} \right| \left. \begin{array}{c} \dot{\boldsymbol{\chi}} \\ \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{array} \right| \left. \begin{array}{c} \dot{\boldsymbol{\chi}} \\ \mathbf{r} \\ \mathbf{r}$$

At high-*T*, Gaussian fluctuations of $\delta \hat{\sigma}(\mathbf{r})$ are averaged with the correlation function $\langle \delta \hat{\sigma}(\mathbf{r}) \delta \hat{\sigma}(\mathbf{r}') \rangle$ (curly lines)

$$\langle \hat{\chi}(\mathbf{r}) \rangle = 0 + \mathbf{r} + 0 + \mathbf{r} + \mathbf{r$$

1

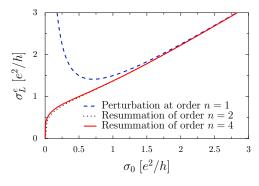
, ,

Result at Six-Loop Order

• $\langle \hat{\chi}(\mathbf{r})
angle$ is purely diagonal :

=

- classical Hall law for σ_H
- non-trivial behavior of σ_L


$$\sigma_L^e = \sigma_0 + \left\langle \chi \right\rangle = \sigma_0 + \sum_{n=1}^{\infty} a_n \frac{\left\langle \delta \sigma_H^2 \right\rangle^n}{\sigma_0^{2n-1}}$$

We have calculated the diagrams up to six-loop order :

Loop order	Method	Coefficient a_n	
1	Analytical	$\frac{1}{2}$	
2	Analytical	$\frac{1}{8} - \frac{1}{2} \log(2)$	
3	Analytical	0.2034560502	
4	Numerical	-0.265 ± 0.001	
5	Numerical	$\begin{array}{c} 0.405 \pm 0.001 \\ -0.694 \pm 0.001 \end{array}$	
6	Numerical		

• Knowing that $\sigma_L^e \propto \sigma_L \propto \sigma_0^{1-\kappa}$ extrapolate to $\sigma_0 \to 0$.

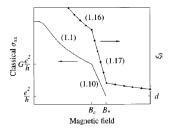
From Strongly Dissipative to Percolating Regime

- The longitudinal conductance converges well from large to small σ₀.
- Microscopically calculated value for κ is in good agreement with the conjecture.

Loop order	Method	Exponent κ	
2	Padé	0.72 ± 0.09	
4	Padé	$\begin{array}{ll} {\sf Padé} & 0.779 \pm 0.006 \\ {\sf n-Fit} & 0.767 \pm 0.002 \end{array}$	
4	n-Fit		
∞	∞ Conjecture $10/13 \simeq 0.769$		

Relevant dissipation mechanisms

Remanent impurity scattering at high magnetic field?

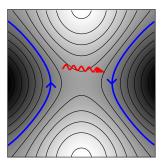

PHYSICAL REVIEW B

VOLUME 56, NUMBER 11

15 SEPTEMBER 1997-

Suppression of chaotic dynamics and localization of two-dimensional electrons by a weak magnetic field

M. M. Fogler, A. Yu. Dobin,* V. I. Perel,* and B. I. Shklovskii Theoretical Physics Institute, University of Minnesota, 116 Church St. Southeast, Minneapolis, Minnesota 55455 (Received 19 February 1997)



•
$$\sigma_{xx} \simeq e^{-B/B_c}$$
 at large B

Exponential decoupling of guiding center and cyclotron motion

Phonon Scattering?

- Huge reduction of Debye temperature T_D at high field due to weaker phase space constraints
 [Zhao & Feng, PRL(1993), Gantmakher & Levinson, Elsevier (1987)]
- T_D reduced from 10K at B = 0 down to 1K (or less) at 1T

• Fermi's Golden Rule calculation for the scattering rate :

$$rac{1}{ au} \propto TB^2$$

Estimation of σ_0 from Phonon Scattering

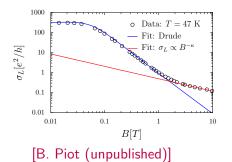
Coarse-grained approach :

Drude's formula with electron-phonon scattering time applies on short length scales :

$$\sigma_0 = rac{n e^2 au / m^*}{1 + \omega_c^2 au^2} \propto rac{1}{\omega_c^2 au} ext{ with } rac{1}{ au} \propto TB^2.$$

• Independent of the magnetic field $\sigma_0(B) \propto \text{const.}$

• Linear temperature dependence $\sigma_0(T) \propto T$

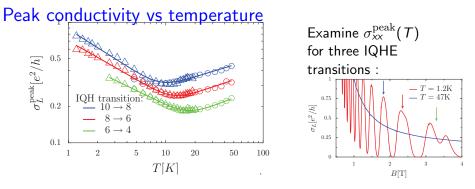

Scaling law vs experiments

Scaling of longitudinal conductivity

 $\underline{\text{Percolation scaling law}:} \ \sigma_{\text{xx}} \propto \sigma_0^{1-\kappa} \left\langle \delta \sigma_{\text{xy}}^2 \right\rangle^{\kappa/2}$

Fluctuation of Hall component : at high-T linearize $\sigma_{xy}(\mathbf{r}) \simeq \frac{e^2}{h} \sum_{m} [n_F(E_m) + V(\mathbf{r}) n'_F(E_m)]$ At plateau transition : $\delta \sigma_{xy}(\mathbf{r}) \simeq \frac{e^2}{h} \left| \frac{1}{4T} + \frac{1}{\hbar\omega_c} \right| V(\mathbf{r})$ <u>Scaling function</u>: $\sigma_{xx} \propto [\sigma_0(T)]^{1-\kappa} \left[\frac{e^2}{h} \sqrt{\langle V^2 \rangle}\right]^{\kappa} \left[\frac{1}{4T} + \frac{1}{\hbar\omega_c}\right]^{\kappa}$ • $\sigma_{vv} \propto T^{1-2\kappa} \simeq T^{-0.5}$ at $T < \hbar\omega_c/4$ \bullet $\sigma_{xx} \propto T^{1-\kappa} \simeq T^{0.2}$ at $T > \hbar \omega_c/4$ σ_{xx} should go through a minimum at $T \simeq \hbar \omega_c/4$ • $\sigma_{xx} \propto B^{-\kappa}$ at $T > \hbar \omega_c / 4$ slower than Drude [Polyakov & Shklovskii, PRB(1994)]

Magnetoconductance σ_L at T = 47K

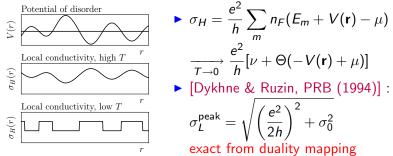

 Clear crossover from low field Drude behavior

$$\sigma_L \propto rac{\sigma(B=0)}{1+(\omega_c au)^2} \propto B^{-2}$$

to high field regime

 $\sigma_L \propto B^{-\kappa}$

- Fit gives $\kappa = 0.62$ (smaller than theoretical expected value $\kappa = 0.77$).
- ▶ But exponent extraction difficult as only small B-field range (onset of oscillations at B ≥ 8T).


Two power-laws : $T^{1-2\kappa} = T^{-0.5}$ (low T) $T^{1-\kappa} = T^{0.2}$ (high T)

 \Rightarrow crossover from classical to quantized cyclotron motion

- The minimum appears as predicted ($\hbar\omega_c$ is not fitted)
- Quantitative agreement with the scaling function for $\sigma_{xx}(T)$ We extract : $\kappa = 0.73 \pm 0.03$

Low Temperature Behavior $k_B T \ll \sqrt{\langle V^2(\mathbf{r}) \rangle}$

Binary model : neglects quantum tunneling, interference...

Note : σ_L^{peak} finite at $\sigma_0 \rightarrow 0$ [possible as non-analytic $\sigma_H(\mathbf{r})$]

We recover precisely this formula from resummed perturbation theory in $1/\sigma_0$ (from two loops and on)

 \implies Computation of full crossover for $\sigma_{xx}(T)$ possible \bigstar

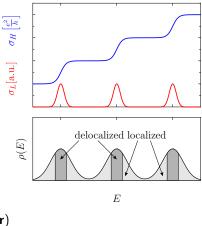
Summary

L'AND AND	
IQH transition: $10 \rightarrow 8$ $-8 \rightarrow 6$ $-6 \rightarrow 4$	

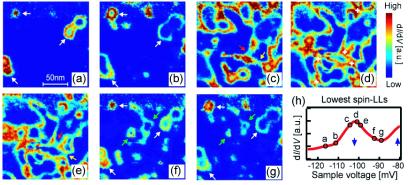
- Diagrammatic method allows microscopic calculation of the conductivity and the critical transport exponent κ
- Scaling laws compatible with experiment :
 - role of classical percolation
 - phonons are dominant dissipation mechanism

Prospects :

- Find better sample or system (spin gap problem)
- Compute complete scaling law (with quantum corrections)
- Investigate phonon scattering with disorder at high field


Extra Slides

Ingredients for the QHE : Landau Levels + Disorder

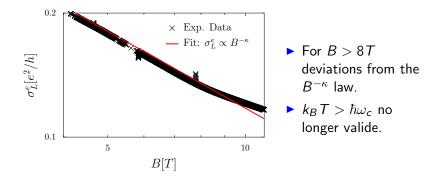

•
$$\mathcal{H}_0 = \frac{1}{2m^*} (\mathbf{p} - e\mathbf{A}(\mathbf{r}))^2$$

• Landau levels (LL) :
 $E_n = \hbar \omega_c \left(n + \frac{1}{2}\right)$
with $\omega_c = \frac{eB}{m^*}$
• typical length scale :
 $I_B = \sqrt{\frac{\hbar}{|e|B}}$
• Disorder Potential $V(\mathbf{r})$
with correlation length ξ
 $\mathcal{H} = \mathcal{H}_0 + V(\mathbf{r})$

localized states

• if
$$I_B \ll \xi$$

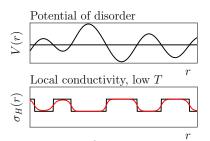
 $E_n(\mathbf{r}) \approx \hbar \omega_c (n + \frac{1}{2}) + V(\mathbf{r})$


STM Images : Density of States Maps Disorder Landscape

(InSb, T = 0.3K, $B \ge 12$ T), [Hashimoto *et al.*, PRL (2008)]

- Low temperature : Quantum percolation physics plays a key role at the plateau transitions.
- High temperature : Role of classical percolation ?

Upper B-field Limit

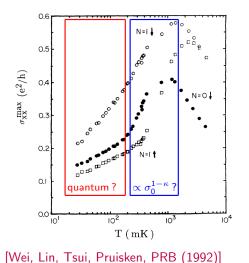


- Zeeman splitting $E_z = \pm \frac{1}{2}g\mu_B B$
- Problem : Interaction effects between the spin species leads to unknown large g_{eff}.

Sample Characteristics

- Density : $4 \cdot 10^{11} cm^{-2}$
- Mobility at $1.2K : 3.3 \cdot 10^{5} cm^{2} V^{-1} s^{-1}$
- Aspect ration : $L_x/L_y = 6$
- Spacer : 102Å

Low Temperature Behavior $k_B T \ll \sqrt{\langle V^2(\mathbf{r}) \rangle}$



- But conductance saturation is not observed experimentally.
- LL wave function spread is missing [Champel, Florens & Canet, PRB(2008)] :

$$\sigma_{H}(\mathbf{r}) = \frac{e^{2}}{h} \int d^{2}R \sum_{m} |\Psi_{m,\mathbf{R}}(\mathbf{r})|^{2} n_{F}(E_{m} + V(\mathbf{r}) - \mu)$$

 \Rightarrow Width of transition between $\sigma_H = \frac{e^2}{h}\nu$ and $\sigma_H = \frac{e^2}{h}(\nu+1)$ no longer given by T, but by I_B .

Low Temperature Behavior $k_B T \ll \sqrt{\langle V^2(\mathbf{r}) \rangle}$

→ $\sqrt{\langle \delta \sigma_H^2(\mathbf{r}) \rangle}$ dominated by I_B ⇒temperature independent at low T.

- $\Rightarrow \text{ again } \sigma_L^e \propto \sigma_0^{1-\kappa} \text{ at } \\ k_B T \ll \sqrt{\langle V^2(\mathbf{r}) \rangle}.$
 - Qualitative explanation of the drop of σ_L at T < 1K.

Extra Slides

Diagram	Multi- plicity	Analytical Value	Decimal Value
	plicity		value
Two loops			
	1	$-\frac{1}{4}\log(2)$	-0.173
	1	$rac{1}{8}(1-\log(4))$	-0.0483
Three loops			
	1	$\frac{1}{96} \left(3 - \pi^2 + 3 \log[3](-3 + \log[9]) + 12 \text{Li}_2\left[\frac{2}{3}\right]\right)$	0.00504
	2	$\frac{1}{32}\log\left[\frac{27}{16}\right]$	0.0164
	1	$\tfrac{1}{16}\left(2\log[2]^2-3\log[3]+\log[8]+\mathrm{Li}_2\left[\tfrac{1}{4}\right]\right)$	0.000760
	2	$rac{1}{384}(2+100\log[2]-63\log[3])$	0.00547
	1	$\frac{1}{8}\log\left[\frac{32}{27}\right]$	0.0212
	1	$\frac{1}{8}\log\left[\frac{27}{16}\right]$	0.0654
	1	$-\frac{1}{48} - \frac{\log[2]}{6} + \frac{9\log[3]}{64}$	0.0181
for the second s	1	$\frac{3}{16}\log\left[\frac{4}{3}\right]$	0.0539

Multiplicity and analytical values of the diagonal elements of the non-zero second and three loop order diagrams. Li₂ is the dilogarithm defined by $\text{Li}_2(z) = \int_z^0 dt \frac{\log(1-t)}{t}$