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MOTIVATIONS : Evidence for Quantum Coherence in
Photosynthesys

ANTENNA (capture the photon)→ Creation and Trasport of
excitons (pair electron-hole)→ Reaction Center (Charge
Separation)
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Fundamental Questions

1 Transport efficiency can be up to 99%
2 HOW coherence is maintained ?

M. Sarovar, A. Ishizaki, G.R.Fleming and K.B.Whaley,
Nature Physics 6, 462 (2010).

3 WHY quantum coherence ? (SUPERRADIANCE ?)
S. Lloyd and M. Mohseni, New J. Phys. 12, 075020 (2010);
G.D. Scholes, Chem. Phys. 275, 373 (2002).
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The light-harvesting apparatus of green sulphur
bacteria and the FMO protein.
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Relevant Time scales

Exciton recombination time (number of excitons
conservation) ∼ 1 ns
Energy relaxation of an excition at ambient temperature ∼
1 ps
Exciton dephasing ∼ 100 fs
Phonon correlation time ∼ 50 fs

Rebentrost et al. New J. Phys. (2009)
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MODELLING THE FMO COMPLEX

Single exciton approximation:
|i〉 denote the excitations at site i . Em are the site energies and
Jmn , are the Coulomb couplings of the transition densities of
the chromophores, often taken to be of the (Forster)
dipole-dipole form:
Tight Binding Hamiltonian:

H0 =
7∑

i=1

Ei |i〉〈i |+
∑
i,j

(Ji,j |i〉〈j |+ h.c.)

Typically |Ei − Ej | ∼ Jij ∼ 100 cm−1

Ji,j =
C

R3
i,j

(
~µi~µj−

3
R2

i,j

(
~µi
~Ri,j)(~µj

~Ri,j

))
, C|µ|2 = 134000 cm−1(Ao)3

Disordered system : Exciton States are localized
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OPEN QUANTUM SYSTEM

PHOTON ENVIRONMENT: DISSIPATION
REACTION CENTER: DISSIPATION
PHONON ENVIRONMENT 1 Dephasing due to
classical noise
PHONON THERMAL BATH 2 (with Gibbs relaxation)

While the latter two points have been studied within the
standard master equation approach (Haken-Strobl Master
equation and Lindblad under Born-Markov approximation), for
the first two points we use the Effective non-Hermitian
Hamiltonian.
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ID for non HERMITIAN HAMILTONIAN

1 When it can be applied ? N intrinsic states, |i〉,
coupled to M open channels, |c,E〉 with transition
amplitude Ac

i (E)
2 Advantages : it is non-Perturbative and ideal to study

Superradiance
3 Where it has been applied? Nuclear Physics, cold

atoms, quantum transport in Mesoscopic electron
system.

4 To quote, but a few, FESHBACH, WEIDENMULLER,
ZELEVINSKY, ROTTER and collaborators.

F. Borgonovi Benasque 2012



Effective Hamiltonian and Superradiance

The effective Hamiltonian is:

Heff = H0 + ∆− i
2

W

with
Wi,j = 2π

∑
c

Ac
i Ac

j

and complex energies

Ek = Ek −
i
2

Γk

where Γk are the decay widths and c are the decay channels.
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What is Superradiance?

Discrete quantum systems coupled with environment described
by a continuum of states.

Effect of opening: Energy Shift and Finite Lifetime.

At weak coupling, all internal states are similarly affected by the
opening: lifetime decreases as the coupling increases.

Beyond some critical value, a few states become short-lived
states, leaving all other (long-lived) states effectively decoupled
from the environment.

G.L.Celardo and L. Kaplan, PRB 79, 155108 (2009), G.L.Celardo et al., PRB 82, 165437, (2010)
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Effective Hamiltonian without Phonon Bath

PHOTON ENVIRONMENT: DISSIPATION
REACTION CENTER: DISSIPATION

Heff = H0 − iW , with Wi,j =
∑

c

Ac
i Ac

j

Phonon Bath: Ai
i =

√
~

2T1
with T1 = 1 ns.

Reaction center: A8
3 =

√
~

2T1r
, 1 fs < T1r < 1 ps.

SUPERRADIANCE:

Γ3/2 ≈ D T ST
1r ≈ 0.03ps
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Decay Widths and the Superradiant Transition
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Phonon Bath 1 : Dephasing due to classical noise

HAKEN-STROBL MASTER EQUATION:

dρi,j

dt
= − i

~
[H0, ρ]i,j −

1
~
{W , ρ}i,j − cγφ(1− δi,j )ρ

First term : Coherent Evolution

Second term : Dissipation due to recombination and loss
(reaction center)

Third term : Dephasing due to phonon bath
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More on Dephasing

HSB =
∑

i

qi(t)|i〉〈i |

〈qi(t)qj(t)〉 = ~2δijδ(t)γφ

dephasing time:
Td = (cγφ)−1

γφ = 0.52 T (cmK )−1
“Long-lived quantum coherence in

photosynthetic complexes at

physiological temperature”, G.

Panitchayangkoona at al., PNAS, 107,

12766 (2010).
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Efficiency of Energy Transport

ρ(t = 0) = 1
2(|1〉〈1|+ |6〉〈6|)

η(tmax ) =
1

T1r

∫ tmax

0
dt ρ33(t),

τ =
1

T1r

∫ ∞
0

dt t ρ33(t)/η(∞).
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Phonon Bath 2 : Gibbs relaxation

Lindblad master equation in the Born-Markov and secular
approximations:

dρi,j

dt
= − i

~
[H0, ρ]i,j −

1
~
{W , ρ}i,j + L(ρ)

where

L(ρ) =
∑
ω

∑
m

γ(ω)A†m(ω)ρAm(ω)− 1
2
ρA†m(ω)Am(ω)− 1

2
A†m(ω)Am(ω)ρ

Am(ω) =
∑

Ω′−Ω=ω

c∗m(Ω)cm(Ω)|Ω〉〈Ω′| |Ω〉 =
∑

m

cm(Ω)|m〉

γ(ω) = 2πJ(ω)[1 + n(ω)] + J(−ω)n(−ω) n(ω) = 1/[eβ~ω − 1]

J(ω) = θ(ω)ER/ωc(ω/ωc) exp(−ω/ωc)

M. Mohseni, P. Rebentrost, S. Lloyd and A. Aspuru- Guzik, J. Chem.
Phys. 129, 174106 (2008).
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QUANTUM vs CLASSICAL

dPi/dt =
∑

k

(
Ti,kPk − Ti,kPi

)
− Pi/T1 − δi,3Pi/T1r ,
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Efficiency versus the Distance site 3-Reaction Center

ρ(t = 0) = (1/2)(|1〉〈1|+ |6〉〈6|)

Γ3/2 =
2πρRC |V

RC
3 |

2

~ , Γ3/2 = D

V
RC
i =

C

R3
i,RC

[
~µi · ~µRC − 3(~µi · R̂i,RC )(~µRC · R̂i,RC )

]

doptimal = (2πB2)
1
6 (ρRCρFMO )

1
6

where

B = C
[
~µi · ~µRC − 3(~µi · R̂i,RC )(~µRC · R̂i,RC )

]
,

χ = ρRC/ρFMO
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Physical Interpretation

Why efficiency is maximal at the Superradiance Transition?
We may observe the following

1 At small coupling time T1r , namely strong coupling to RC,
all states are strongly localized and the only state which
can decay fast is localized far from the sites where the
excitation starts, e.g. 1 and/or 6. Efficiency of exciton
transport can NOT be optimal.

2 At large coupling time, namely small coupling to RC, the
states have a small decay width, they can hardly decay,
and in any case exciton performs a kind of classical
random walk. No quantum coherence can be exploited and
efficiency can NOT be optimal too.

Therefore one can expect that at the Superradiance Transition
both effects are mitigated since localization increases (w.r.t. 1)
and decay increases (w.r.t. 2) and maximum can appear.
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Conclusions and Perspectives

SR strongly affects transport: non classical behavior.

SR survives at room temperature!

SR allows to find optimal parameters: distance from
Reaction Center: from 1 nm to 3 nm. These distances are
consistent with available structural data about the RC-FMO
complex

SR is another quantum feature which can be exploited in
ingeneering efficient devices for energy transport.

Perspective: short term: interplay of SR and Disorder
(static and dynamical)
long term: many body problem.
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Thank You for Your Attention

arXiv:1111.5443, submitted to Journal of Physical Chemistry
(2012)
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As is common in quantum optics, we describe the dissipative
system with at most one excitation by states

|ψ〉 =
7∑

i=1

ai |0〉 ⊗ |i〉+
∑

c

∫
dE bc(E)|c,E〉 ⊗ |gs〉, (1)

where |0〉 is the vacuum state of the environment and
|c,E〉 ⊗ |gs〉 is the state with one excitation in the environment
and none on the sites. Here, c, is the quantum number labelling
channels (at energies E) in the environments. The reduced
density matrix is obtained by tracing over the states |0〉 and
|c,E〉,

ρ =
∑
i,j

aia∗j |i〉〈j |+ (1−
∑

i

|ai |2)|gs〉〈gs|, (2)

which is of size 8× 8. However, 〈gs|ρ|i〉 = 0 since with the
choice (1), we neglect any transitions |i〉 → |gs〉. Moreover,
〈gs|ρ|gs〉 is just the loss of probability of excitation of the seven
sites. Therefore, we restrict our considerations to the 7× 7
matrix 〈i |ρ|j〉, which does not have constant trace.
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