on FUNDAMENTAL Physics **IMFP 2012** LOMMITTEE "A. Faus-Golfe (IFIC) / A. Santamaria (IFIC) / C. Lacasta (IFIC) / C. Garcia (IFIC), co-chair / ir / J.W.F. Valle (IFIC) / J. Fuster (IFIC), chair / J.J. Gómez-Cadenas (IFIC) / J.J. Hernández (IFIC) / S. Martí (IFIC)

XL INTERNATIONAL MEETING

TECHNICAL SUPPORT A. Gili (CCBPP) / D. Fuentes (CCBPP) / M.T. Andreu (IFIC) / M. Fatas (UZ) / T. Paterson (CCBPI

Benasque (SPAIN) 25 May-3 June 2012

2012: a milestone year for Particle and Astroparticle Physics

A new observable to measure the top quark mass at hadron colliders

XL International Meeting on Fundamental Physics 1 Junio 2012

J. Fuster , A. Irles , M. Vos IFIC-VALENCIA S. Moch P. Uwer Desy, Zeuthen, Berlin Humboldt Universität, Berlin S. Alioli Ernest Orlando Lawrence BNL U. of California

1. Introduction: top quark mass and its measurement

2. A new observable to measure the top quark mass at hadron colliders. Theoretical Study.

3. Generic study of experimental viability

MC comparisons, systematic uncertainties, unfolding method etc

4. Conclusions

A new observable to measure the top quark mass at hadron colliders.

The observable: dn_1/dp_2 Theoretical calculations

tt+1Jet theoretical calculations at NLO

S. Dittmaier, P. Uwer, Weinzierl Eur. Phys. J. C. (2009) 59: 625-646

Definition of the Observable

New observable defined for ttbar+1Jet topologies.

$$\frac{d n_3}{d \rho_s}(m_{top}^{pole},\mu) = \frac{1}{\sigma_{t \,\overline{t} + 1 \text{Jet}}} \frac{d \sigma_{t \,\overline{t} + 1 \text{Jet}}}{d \rho_s}(m_{top}^{pole},\mu)$$

is based on the normalized differential cross section of ttbar+1Jet.

The $dn_3/d\rho_s(m_{top},\mu)$ distribution at NLO for different top quark masses (160, 170 and 180 GeV)

The observable is defined :

At NLO

• In a defined mass scheme (pole mass) The observable is sensitive to the top quark mass.

Theoretical uncertainties (scale & PDF) are small.

A new observable to measure the top quark mass at hadron colliders.

Theoretical uncertainties from the scale variations and the PDF choice are small ~0.5GeV

Generator and MC dependences

The tt+1Jet NLO predictions of the $dn_3/d\rho_s$ observable has been compared with NLO calculations matched with parton shower algorithms using the POWHEG method

- POWHEG: tt at NLO + Pythia8
- POWHEG: tt+1Jet at NLO + Pythia8

The NLO $dn_3/d\rho_s(m_{top},\mu)$ distribution is used as reference and the equivalent curves for for **POWHEG tt at NLO and tt+1Jet at NLO** are computed to reproduce the same $dn_3/d\rho_s(m_{top},\mu)$ value.

Good agreement between the different calculations.

JHEP 0709 (2007) 126, arXiv:0707.3088 JHEP 1201 (2012) 137 arXiv:1110.5251 [hep-ph]

Experimental viability

Studies with complete MC samples (semileptonic -e, mu- top quark decay, parton showering and hadronization) are being studied.

These preliminary studies indicate that the extraction of the top quark mass using this method is achievable with good precision.

CONCLUSIONS & PROSPECTS

A new method to measure the top quark mass:

- Pole mass defined through NLO calculations.
- Perturbative uncertainties are small and different MC approaches give consistent results.
- Theoretical uncertainties are estimated to be below 0.5 GeV.
- A generic study of the experimental viability is being performed.

Summary of some of the systematic uncertainties studied.

	Source of uncertainty	Impact on the top quark mass
Theoretical	µ variations	~ 0.4 GeV
uncertainties	PDF choice	~ 0.2 GeV
Experimental uncertainties	MC comparison	~0.4 ± 0.3 GeV
	JES	~ 0.8 GeV
	Statistics (5 fb-1)	~ 1.2 GeV

Δm_{top} ≈ 1 GeV can be achieved

 $\rho_{_{S}}{>}$ 0.65 (that corresponds to $\sigma~$ (NLO, m=170 GeV) \sim 3.5 pb)

A new observable to measure the top quark mass at hadron colliders: ttbar+jet calculations

tt+1Jet theoretical calculations at NLO

S. Dittmaier, P. Uwer, Weinzierl Eur. Phys. J. C. (2009) 59: 625-646

NLO corrections to the generic 0->ttggg and 0->ttqqg LO matrix elements have been studied to obtain integrated and differential cross sections.

Representative gg->ttg LO (BORN) diagrams.

Example of virtual correction (one-loop corrections to the LO reactions) diagrams.

Schematically NLO contributions:

$$\langle O \rangle^{NLO} = \int_{n+1} O_{n+1} d\sigma_R + \int_n O_n d\sigma_V + \int_n O_n d\sigma_C$$

n=2 initial partons + $t \overline{t} + 1(2)$ final partons

- dσ_R denotes the real-emission contribution (tt+2 partons in the final state)
- dσ_v is the virtual contribution whose matrix elements are given by interference term of the 1-loop amplitudes (tt+1parton f.s) with the corresdpondig Born amplitude.
- $d\sigma_c$ denotes a **collinear subtraction term** (from the factorization of the initial-states collinear singularities)
- The function O_n defined in the n-particle phase space is needed to defined an IR-safe observable

The IR-safe observable has been obtained by defining a jet reconstructed from the final (non-top) partons with the anti-Kt algorrithm (R=0.4)

FastJet Package (Phys. Lett. B 641 (2006) 57) and the anti-Kt algorithm (JHEP 0804 (2008) 63).

Theoretical uncertainties

- **PDF selection:** for study the impact of the PDF selection, the results obtained using two different sets (CTEQ6.6 & MSTW2008nlo90cl) have been compared.
- Scale variations: The usual convention where $\mu_r = \mu_r = \mu$ and it is in the interval of 0.5 m_{top} < μ < 2 m_{top} has been followed.

A new observable to measure the top quark mass at hadron colliders.

The observable: dn₃/dp₅ Systematic studies

Theoretical uncertainties with the PDF election and the scale variations

Mass sensitivity $s(GeV^{-1})$ is defined as: $s(\Delta m_t, m_t) = \frac{|n_3(m_t) - n_3(m_t + \Delta m_t)| + |n_3(m_t) - n_3(m_t - \Delta m_t)|}{2 \cdot n_3(m_t) \cdot \Delta m_t}$ Scale and PDF sistematic dependences on the mass are evaluated as: $\frac{\Delta \mu \setminus \Delta PDF}{s(GeV^{-1})}$

where $\Delta\mu$ and Δ PDF are the scale and PDF sistematic dependences on the dn₃/dp_s

 $\frac{\partial \theta}{\partial t} = 10$ $\frac{dn_{3}}{d\rho_{s}} = \frac{dn_{4}}{d\rho_{5}} = \frac{dn_{4}}{d\rho_{5}} = \frac{dn_{5}}{d\rho_{5}} = \frac{dn_$

Impact to the top mass value (for m_{top} =170 GeV) of the scale. The equivalent impact of the difference between the two PDFs considered in this exercise is also shown.

Dependences lower than 1 GeV for the low invariant mass region

Estimation of JES (Jet Energy Scale) uncertainties

The uncertainty of the n3 distribution due to JES has been evaluated by variation of the JES by ±3% And after, applying the JES correctionts to all reconstructed jet, n3 distribution is reevaluated.

The impact on the top quark mass of the jet energy (JES) evaluation has been estimated \rightarrow 700-900 MeV (Δ JES = 3%)

Comparison with other MC

Objects, at Particle Level:

- Good Electrons: dressed electrons with pT>25 GeV, |η|<2.47
- Good Muons: pT>20 GeV, |η|<2.5
- Neutrinos: neutrinos coming from W boson. pT>20 GeV (muon channel), pT>35 GeV (electron channel)
- Particle Jets: AntiKtTruthJets with pT>25 GeV, |η|<2.5

