Lepton flavour violation (and neutrinos)

M. Hirsch

mahirsch@ific.uv.es

Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain

\mathcal{I} . Introduction: ν 's

$\ensuremath{\mathcal{II}}$. Charged Lepton Flavour violation

\mathcal{III} . SUSY, neutrino masses and LFV

 $\mathcal{I}\mathcal{V}.$ Discrete symmetries and LFV

Introduction

Lepton flavour is violated!

IMFP 2012, 25/05/2012 - p.3/45

Super-K fixes $\theta_{\rm Atm}$

MINOS fixes $\Delta m^2_{
m Atm}$

Schwetz, Tortola & Valle; arXiv:1103.0734 and arXiv:1108.1376

Super-K fixes $\theta_{\rm Atm}$

 $\begin{array}{l} {\rm MINOS} \\ {\rm fixes} \ \Delta m_{\rm Atm}^2 \end{array}$

Schwetz, Tortola & Valle; arXiv:1103.0734 and arXiv:1108.1376

global

->

solar

Don't know ν 's

Open questions: Which hierarchy: Normal or inverted? What is the absolute neutrino mass scale? Is there CP violation in the lepton sector?

Don't know ν 's

Open questions: Which hierarchy: Normal or inverted? What is the absolute neutrino mass scale? Is there CP violation in the lepton sector? Is lepton number violated???

Absolute mass scale

Tritium decay end point searches:

$$m_{\nu}^{\beta} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2} \le 2.2 \text{ eV} \qquad \qquad \begin{array}{c} \text{KATRIN:} \\ m_{\nu}^{\beta} \le 0.2 \text{ eV} \\ 2017 \ (\ref{eq:model}) \end{array}$$

$$m_{
u}^{\beta\beta} = \sum_{i} U_{ei}^2 m_i \le (0.5 - 1.0) \, \text{eV}$$

Cosmology (CMB + LSS +
$$\cdots$$
):

$$\sum_{i} m_{\nu_i} \le (0.4 - 1.0) \, \text{eV}$$

 \Rightarrow Recall for hierarchical neutrinos:

$$\sqrt{\Delta m^2_{
m Atm}}\sim 50~{
m meV}$$
 and $\sqrt{\Delta m^2_\odot}\sim 9~{
m meV}$

$0\nu\beta\beta$ experiments

Experimental sensitivity:

$$T_{1/2} \ge c \ a \ \sqrt{\frac{Mt}{B\Delta E}}$$

Future experiments

Currently under construction / comissioning:

	EXO-200	GERDA-I/II	CUORE	KamLAND-Zen
A^Z	¹³⁶ Xe	⁷⁶ Ge	¹³⁰ Te	¹³⁶ Xe
Mass	160 kg	35 kg	200 kg	400 kg
Method	liquid TPC	ionization	bolometer	scint.
Location	WIPP	LNGS	LNGS	Kamioka
Starts (?)	2010	2010	2012	2011
$T_{1/2}^{0 uetaeta}$ (est.)	$6.4 imes 10^{25}$	3×10^{25} - 1.5 $\times 10^{26}$ *	(2-6.5) ×10 ²⁶	6 ×10 ²⁶
$\langle m_{ u} angle^{(est.)}$ eV	0.19	0.28-0.12	0.03-0.05 *	0.02-0.06 **

Assumptions:

- * Background level 10^{-2} $10^{-3} e/(y \cdot kg \cdot keV)$, i.e. improvement $\simeq 20 200$
- ** Phase II with 1 ton: 0.020 @ 5 years, BG with MC simulation

If Lepton Number is Violated:

Weinberg, 1979 $m_{\nu} = \frac{1}{\mathcal{M}_{LNV}} (LH) (LH)$

Many possible models:

(i) Seesaw mechanism: Type-I, Type-II,

Type-III, Inverse seesaw, etc ...

(ii) Radiative models: Zee, Babu, LQs ... (iii) SUSY neutrino masses: R_p (iv) · · ·

If Lepton Number is Violated:

Weinberg, 1979 $m_{\nu} = \frac{1}{\mathcal{M}_{LNV}}(LH)(LH)$

Many possible models:

(i) Seesaw mechanism: Type-I, Type-II, Type-III, Inverse seesaw, etc ...

(ii) Radiative models: Zee, Babu, LQs ... (iii) SUSY neutrino masses: R_p (iv) · · · Experimental tests?

 $0\nu\beta\beta$ decay!

LHC (???)

Seesaw mechanism

Seesaw type-I, right-handed neutrinos:

$$m_{1/2} \simeq (-rac{Y_{
u}^2 v^2}{M_M}, M_M)$$

Seesaw type-II, scalar triplet:

$$m_{
u} \simeq Y_T \langle \Delta_L^0
angle \simeq Y_T rac{v^2}{m_{\Delta}}$$

Type-III: Replace
$$u_R$$
 by $\mathbf{\Sigma} = (\Sigma^+, \Sigma^0, \Sigma^-)$:

$$m_{1/2} \simeq (-rac{Y_{\Sigma}^2 v^2}{M_{\Sigma}}, M_{\Sigma})$$

 u_L

Linear & inverse seesaw

Inverse seesaw, basis (ν, ν^c, S) :

 $M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix},$

Mohapatra & Valle, 1986

After EWSB the effective light neutrino mass matrix is given by

$$M_{\nu} = m_D M^{T^{-1}} \mu M^{-1} m_D^T.$$

Linear seesaw:

$$M_{\nu} = \begin{pmatrix} 0 & m_D & M_L \\ m_D^T & 0 & M \\ M_L^T & M^T & 0 \end{pmatrix}.$$
 Akhmedov et al., 1995

Light neutrino mass:

$$M_{\nu} = m_D (M_L M^{-1})^T + (M_L M^{-1}) m_D^T$$

IMFP 2012, 25/05/2012 - p.12/45

Charged Lepton Flavour violation

IMFP 2012, 25/05/2012 - p.13/45

Decay	Current Limit
$ au o \mu \gamma$	$4.4 \cdot 10^{-8}$
$ au ightarrow e\gamma$	$3.3 \cdot 10^{-8}$
$\mu ightarrow e \gamma$	$1.2 \cdot 10^{-11}$
$ au o 3\mu$	$2.1 \cdot 10^{-8}$
$\tau^- \to e^- \mu^+ \mu^-$	$2.7 \cdot 10^{-8}$
$\tau^- \to e^+ \mu^- \mu^-$	$1.7 \cdot 10^{-8}$
$\tau^- ightarrow \mu^- e^+ e^-$	$1.8 \cdot 10^{-8}$
$\tau^- ightarrow \mu^+ e^- e^-$	$1.5 \cdot 10^{-8}$
$\tau \to 3e$	$2.7 \cdot 10^{-8}$
$\mu ightarrow 3e$	$1 \cdot 10^{-12}$

All values from: Particle Data Group http://pdg.lbl.gov/

Decay	Current Limit
$ au o \mu \gamma$	$4.4 \cdot 10^{-8}$
$ au ightarrow e\gamma$	$3.3 \cdot 10^{-8}$
$\mu ightarrow e \gamma$	$1.2 \cdot 10^{-11}$
$ au o 3\mu$	$2.1 \cdot 10^{-8}$
$\tau^- \to e^- \mu^+ \mu^-$	$2.7 \cdot 10^{-8}$
$\tau^- \to e^+ \mu^- \mu^-$	$1.7 \cdot 10^{-8}$
$\tau^- ightarrow \mu^- e^+ e^-$	$1.8 \cdot 10^{-8}$
$\tau^- ightarrow \mu^+ e^- e^-$	$1.5 \cdot 10^{-8}$
$\tau \to 3e$	$2.7 \cdot 10^{-8}$
$\mu ightarrow 3e$	$1 \cdot 10^{-12}$

All values from: Particle Data Group http://pdg.lbl.gov/

MEG 2011, PRL107, 171801: Br($\mu \rightarrow e\gamma$) $\leq 2.4 \times 10^{-12}$

Decay	Current Limit
$ au o \mu \gamma$	$4.4 \cdot 10^{-8}$
$ au ightarrow e\gamma$	$3.3 \cdot 10^{-8}$
$\mu ightarrow e \gamma$	$1.2 \cdot 10^{-11}$
$ au o 3\mu$	$2.1 \cdot 10^{-8}$
$\tau^- \to e^- \mu^+ \mu^-$	$2.7 \cdot 10^{-8}$
$\tau^- \to e^+ \mu^- \mu^-$	$1.7 \cdot 10^{-8}$
$\tau^- \to \mu^- e^+ e^-$	$1.8 \cdot 10^{-8}$
$\tau^- \to \mu^+ e^- e^-$	$1.5 \cdot 10^{-8}$
$\tau \to 3e$	$2.7 \cdot 10^{-8}$
$\mu ightarrow 3e$	$1 \cdot 10^{-12}$

All values from: Particle Data Group http://pdg.lbl.gov/

MEG 2011, PRL107, 171801: Br($\mu \rightarrow e\gamma$) $\leq 2.4 \times 10^{-12}$

Limit on $\mu \rightarrow 3e$ from: SINDRUM 1988

New experiment could reach:

 $Br(\mu \to 3e) \simeq 10^{-16}$ (?)

A. Schöning et al., Physics Procedia 17 (2011) 181

Capture	Current Limit
$\mu^{-32}S \to e^{-32}S$	$7 \cdot 10^{-11}$
$\mu^{-32}S \to e^{+32}Si$	$9 \cdot 10^{-10}$
$\mu^- Ti \to e^- Ti$	$4.3 \cdot 10^{-12}$
$\mu^- Ti \to e^+ Ca$	$3.6 \cdot 10^{-11}$
$\mu^- Pb \rightarrow e^- Pb$	$4.6 \cdot 10^{-11}$
$\mu^- A u \to e^- A u$	$7 \cdot 10^{-13}$

All values from: Particle Data Group http://pdg.lbl.gov/

Capture	Current Limit
$\mu^{-32}S \to e^{-32}S$	$7 \cdot 10^{-11}$
$\mu^{-32}S \to e^{+32}Si$	$9 \cdot 10^{-10}$
$\mu^- Ti \to e^- Ti$	$4.3 \cdot 10^{-12}$
$\mu^- Ti \to e^+ Ca$	$3.6 \cdot 10^{-11}$
$\mu^- Pb \rightarrow e^- Pb$	$4.6 \cdot 10^{-11}$
$\mu^- A u \to e^- A u$	$7 \cdot 10^{-13}$

All values from: Particle Data Group http://pdg.lbl.gov/

Future experiments: Sensitivities of $\mathcal{O}(10^{-16})$ (?)

COMET: Letter of interest @: http://j-parc.jp/

Mu2E:

Proposal @: http://mu2e.fnal.gov/

Timeline: 2016 (?)

Guaranteed CLFV

Oscillations experiments have shown that $m_{\nu} \neq 0$:

$$\operatorname{Br}(\mu \to e\gamma) \sim$$

$$\frac{3\alpha}{32\pi} \left(\sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{m_W^2}\right)^2$$

$$\leq 10^{-53}$$

 \Rightarrow GIM suppressed by small neutrino masses

Guaranteed CLFV

Oscillations experiments have shown that $m_{\nu} \neq 0$:

 $\operatorname{Br}(\mu \to e\gamma) \sim$ $\frac{3\alpha}{32\pi} \left(\sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{m_W^2}\right)^2$ $\leq 10^{-53}$

 \Rightarrow GIM suppressed by small neutrino masses

Any observation of charged LFV points to physics beyond neutrino masses

CLFV beyond m_{ν}

Simple example: Heavy neutrinos (N) with $m_N \mathcal{O}(TeV)$:

$$\begin{aligned} & \text{Br}(\mu \to e\gamma) \sim \\ & \frac{\alpha^3 s_W^2}{256\pi^2} \frac{m_{\mu}^5}{m_W^4 \Gamma_{\mu}} \Big(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \Big)^2 \\ & \leq 9 \times 10^{-6} \Big(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \Big)^2 \end{aligned}$$

 $-K_{ik}$ heavy neutrino - lepton mixing - G(x) loop function, G(1) = 1/8

CLFV beyond m_{ν}

Simple example: Heavy neutrinos (N) with $m_N \mathcal{O}(TeV)$:

$$\begin{aligned} & \text{Br}(\mu \to e\gamma) \sim \\ & \frac{\alpha^3 s_W^2}{256\pi^2} \frac{m_{\mu}^5}{m_W^4 \Gamma_{\mu}} \Big(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \Big)^2 \\ & \leq 9 \times 10^{-6} \Big(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \Big)^2 \end{aligned}$$

 $-K_{ik}$ heavy neutrino - lepton mixing

- G(x) loop function, G(1) = 1/8

Practically any extension of SM with new states at TeV scale generates large charged LFV!

(C)LFV - Models

 \Rightarrow Example models that produce sizeable CLFV:

- TeV scale seesaw: Inverse seesaw, linear seesaw, etc.
- Radiative neutrino mass models: Zee-, Babu-Zee model, etc.
- RPC Supersymmetry
- RPV Supersymmetry
- Practically any extended Higgs sector: Little Higgs models, additional Higgs doublets, triplets, etc...
- Extra (large) dimensions
- etc ...

⇒ In fact, many models generate way to much CLFV: "Flavour problem" of BSM

Schematically:

Can we learn about different BSM models from different LFV processes?

 $\mu \rightarrow e \gamma$ versus $\mu \rightarrow 3e$

Consider $\mu \rightarrow e\gamma$:

Some physics beyond SM generates blob:

 $\mu \rightarrow e\gamma$ versus $\mu \rightarrow 3e$

Consider $\mu \rightarrow e\gamma$:

Some physics beyond SM generates blob:

Compare $\mu \rightarrow 3e$:

 $\mu \rightarrow 3e$

 $\mu \rightarrow e\gamma$ versus $\mu \rightarrow 3e$

Consider $\mu \rightarrow e\gamma$:

Some physics beyond SM generates blob:

If photon diagram dominates:

$$Br(l_i \to l_j l_k l_k) \sim$$

 $\alpha \times Br(e \to l_j + \gamma)$

Compare $\mu \rightarrow 3e$:

Simple example

Babu-Zee model for neutrino mass:

 ℓ_a

 ℓ_b

 ν_{α}

 $\mathcal{L} = f(L^T L)h^+ + g(e_R^T e_R)k^{++} - \mu h^+ h^+ k^{--}$

Cheng & Li, 1980 Zee, 1985 Babu, 1988

Babu & Macesanu, 2003 Aristizabal & Hirsch, 2006

Large neutrino mixing angles require large CLFV

$$\mathcal{M}^{\nu}_{\alpha\beta} = \frac{8\mu}{(16\pi^2)^2 m_h^2} f_{\alpha a} m_a g_{xy} m_b f_{b\beta} \mathcal{I}(\frac{m_k^2}{m_h^2}),$$

 ν_{β}

CLFV in Babu-Zee model

If $\frac{g^2}{m_k^2} \ll \frac{f^2}{m_h^2}$:

Photon dominance!

 $\mu \rightarrow 3e$ tree-level!

IMFP 2012, 25/05/2012 - p.22/45

μ -capture: Different targets

Fig. from Cirigliano et al., 2009

 \Rightarrow use different nuclear targets to distinguish different operators

SUSY, neutrino masses and LFV

IMFP 2012, 25/05/2012 - p.24/45

SUSY flavour problem

Soft SUSY breaking:

$$V = (m_{\tilde{L}}^2)_{ij} \tilde{L}_i^* \tilde{L}_j + \cdots$$

Off-diagonal elements induce decays, such as:

SUSY flavour problem

Soft SUSY breaking:

$$V = (m_{\tilde{L}}^2)_{ij} \tilde{L}_i^* \tilde{L}_j + \cdots$$

Off-diagonal elements induce decays, such as:

A very old problem indeed!

Ellis and Nanopoulos, 1981 Donoghue et al., 1983 Gerard et al., 1984 Hall et al., 1985 Romao et al., 1985 Borzumati, Masiero, 1986 ... many

$$\delta_{12} = \frac{(m_{\tilde{L}}^2)_{21}}{m_{SUSY}^2} \lesssim 10^{-4}$$

mSugra

Boundary conditions: mSUGRA ("minimal Supergravity"):

$$\begin{split} M_1 &= M_2 = M_3 = M_{1/2}, \\ m_{H_u}^2 &= m_{H_d}^2 = m_0^2, \\ M_{\tilde{Q}}^2 &= M_{\tilde{U}}^2 = M_{\tilde{D}}^2 = M_{\tilde{L}}^2 = M_{\tilde{E}}^2 = m_0^2 \mathbf{1}_3, \\ A_d &= A_0 Y_d, A_u = A_0 Y_u, A_e = A_0 Y_e. \end{split}$$

⇐ Flavour blind SUSY breaking!

$$\Rightarrow$$
 # of parameters: $4\frac{1}{2}$ (m_0 , $M_{1/2}$, A_0 , $\tan\beta$, $sgn(\mu)$)

- \Rightarrow Sometimes also called the CMSSM (C = constrained)
- ⇒ All low energy masses can then be calculated by RGE ("renormalization group equations")

\Rightarrow No neutrino masses and no LFV

mSugra and RGEs

Seesaw type-I:

 $(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} f(m_0, A_0, M_{1/2}, ...) (Y_{\nu}^{\dagger} L Y_{\nu})_{ij}$

Note: $L_i = \log[M_G/M_i]$.

 \Rightarrow 9 new independent parameters

Seesaw type-II:

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} g(m_0, A_0, M_{1/2}, ...) (Y_T^{\dagger} Y_T)_{ij} \log(M_G/M_T)$$

 \Rightarrow 9 entries, but proportional to Y_T^2 \Rightarrow Measuring all entries in $(\Delta M_{\tilde{L}}^2)_{ij}$ "over-constrains" type-II seesaw!

Note: type-III equation as type-I, but larger LFV ... see below

Borzumati & Masiero, 1986

Hisano et al. 1996, 1999 Arganda & Herrero, 2006

$\mu \rightarrow e\gamma$ in mSugra sessaw

- \Rightarrow The three different seesaws are: type-III, type-II and type-I
- \Rightarrow General expectation: "Large" LFV for "large" $M_{\rm Seesaw}$
- \Rightarrow General expectation LFV in type-III \gg type-I

Only for Type-II

Neutrino angles fix relative size of entries in Y_T :

Hirsch et al., 2008

Here: $(r_{23}^{13})^2 = \text{Br}(\tau \to e\gamma)/\text{Br}(\tau \to \mu\gamma)$ etc.

Ratios of BR's "predicted" as function of neutrino parameters

SUSY LR model

Consider gauge group:

$SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Advantages:

- . Restoration of parity at high energy
- . Generates seesaw: N^c is part of theory
- . Provides (potentially) solution to CP problems
- . Can be embedded in SO(10)
- . *R*-parity conservation can be automatic

LFV in SUSY LR model

Esteves et al., 2010

 \Rightarrow As in seesaw Br($\mu^+ \rightarrow e^+ \gamma$) strong function of $M_{\rm Seesaw}$... but ...

IMFP 2012, 25/05/2012 - p.31/45

LFV in SUSY LR model

Esteves et al., 2010

Asymmetry:

$$\mathcal{A}(\mu^+ \to e^+ \gamma) = \frac{|A_L|^2 - |A_R|^2}{|A_L|^2 + |A_R|^2},$$

 \Rightarrow Note: In mSugra seesaw $\mathcal{A} = 1$ always

IMFP 2012, 25/05/2012 - p.32/45

SUSY Inverse seesaw

Hirsch, Staub & Vicente, 2012

Z-penguin dominates when MSSM extended:

(i) particle content ($\hat{\nu}^c$) (ii) new Yukawa-like interactions (example also: RPV)

> See talk by: A. Vicente

Discrete symmetries and LFV

IMFP 2012, 25/05/2012 - p.34/45

Discrete flavour symmetries

Group	d	Irr. Repr.'s	Presentation
$D_3 \sim S_3$	6	1, 1′, 2	$A^3 = B^2 = (AB)^2 = 1$
D_4	8	$1_1, \ldots 1_4, 2$	$A^4 = B^2 = (AB)^2 = 1$
D_5	10	1, 1′, 2, 2′	$A^5 = B^2 = (AB)^2 = 1$
D_6	12	1 ₁ ,1 ₄ , 2, 2'	$A^6 = B^2 = (AB)^2 = 1$
D ₇	14	1, 1', 2, 2', 2"	$A^7 = B^2 = (AB)^2 = 1$
A_4	12	1, 1′, 1″, 3	$A^3 = B^2 = (AB)^3 = 1$
$A_5 \sim PSL_2(5)$	60	1, 3, 3′, 4, 5	$A^3 = B^2 = (BA)^5 = 1$
T'	24	1, 1', 1", 2, 2', 2", 3	$A^3 = (AB)^3 = R^2 = 1, \ B^2 = R$
S_4	24	1, 1′, 2, 3, 3′	$BM: A^4 = B^2 = (AB)^3 = 1$
			$TB: A^3 = B^4 = (BA^2)^2 = 1$
$\Delta(27) \sim Z_3 \rtimes Z_3$	27	$1_1, \ldots 1_9, 3, \overline{3}$	
$PSL_2(7)$	168	$1,3,\overline{3},6,7,8$	$A^{3} = B^{2} = (BA)^{7} = (B^{-1}A^{-1}BA)^{4} = 1$
$T_7 \sim Z_7 \rtimes Z_3$	21	$1, 1', \overline{1'}, 3, \overline{3}$	$A^7 = B^3 = 1, \ AB = BA^4$

Many Refs in Reviews by:

Altarelli & Feruglio arXiv:1002.0211

> Ishimori et al. arXiv:1003.3552

Summary: A_4

- 12 elements: rotations
- 4 irreps: 1, 1', 1" and 3
- smallest group with $\boldsymbol{3}$
- \Rightarrow Symmetry of the tetrahedron:

Summary: A_4

- 12 elements: rotations
- 4 irreps: 1, 1', 1" and 3
- smallest group with 3
- \Rightarrow Symmetry of the tetrahedron:

A4 is spontaneously broken in

Z3 in the charged sector Z2 in the neutrino sector

Assign: $L_i, l_j^c, H_k \ (\nu_m^c, \cdots)$ to different irreps of A_4

 $\Rightarrow \cdots$

IMFP 2012, 25/05/2012 - p.36/45

A_4 : models

Type	L_i	ℓ_t^c	ν_t^c	Δ	References
A1				2	[1-14] [15]#
A2	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	121	$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[16-18]
A3				$\underline{1}, \underline{3}$	[19]
B1	3	<u>1</u> , <u>1</u> ', <u>1</u> "	<u>3</u>	5	[4,20-27]# [28-30]* [31-48]
B2	<u>u</u>			$\underline{1}, \underline{3}$	$[49]^{\#}$
C1				-	[2, 50, 51] $[52]$ [#]
C2	3	9		1	[53,54] [55]#
C3	<u>0</u>	<u>a</u>	-	<u>1, 3</u>	[56]
C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[57]
D1				ŝ	[58, 59] [#] $[60, 61]$ [*] $[62]$
D2	9	9	<u>3</u>	1	[63] [64]*
D3	<u>0</u>	<u>0</u>		<u>1</u> ′	[65]*
D4				<u>1', 3</u>	[66]*
E1	3	3	1 1/ 1//	-	[67,68]
E2	<u></u>	<u>0</u>	1,1,1	<u>1</u>	[69]
F	$\underline{1}, \underline{1}', \underline{1}''$	<u>3</u>	<u>3</u>	<u>1</u> or <u>1</u> ′	[70]
G	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1}, \underline{1}', \underline{1}''$	5	[71]
Н	<u>3</u>	1, 1, 1	5 7	2	[72]
Ι	<u>3</u>	1, 1, 1	1	a	[73]*
J	<u>3</u>	1, 1, 1	<u>1, 1</u>	2	[74]* [75]
K	<u>3</u>	1, 1, 1	<u>1, 1, 1</u>	5	[76]*
L	<u>3</u>	<u>1, 1, 1</u>	$\underline{1},\underline{1}',\underline{1}''$		[77]
М	<u>3</u>	<u>1, 1, 1</u>	<u>3</u>	2	[12, 39, 78, 79]
Ν	<u>3</u>	<u>1, 1, 1</u>	$\underline{1}, \underline{1}$	<u>1</u>	[80]*
0	<u>1, 1', 1"</u>	$\underline{1}, \underline{1}', \underline{1}''$	3	4	[81]
Р	<u>1, 1', 1"</u>	$\underline{1}, \underline{1}'', \underline{1}'$	<u>3, 1</u>	2	[82,83]
Q	<u>1, 1', 1"</u>	<u>1</u> , <u>1</u> ", <u>1</u> '	<u>3, 1', 1"</u>	ŝ	[84]

Barry & Rodejohann, PRD81 093002 (2010)

Many - but not all! can give TBM

A_4 : models

Type	L_i	ℓ_t^c	ν_t^c	Δ	References
A1				2	[1-14] $[15]$ #
A2	<u>3</u>	<u>1</u> , <u>1'</u> , <u>1</u> "	127	$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[16-18]
A3				1, 3	[19]
B1	3	1 1/ 1/	<u>3</u>	5	[4,20-27]# [28-30]* [31-48]
B2	<u>0</u>	1.1.1		1, 3	$[49]^{\#}$
C1				=	[2, 50, 51] $[52]$ #
C2	9	2		1	[53,54] [55]#
C3	<u>a</u>	<u>a</u>	-	<u>1, 3</u>	[56]
C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[57]
D1				ŝ	$[58, 59]$ [#] $[60, 61]^*$ $[62]$
D2	9	9	9	1	[63] [64]*
D3	<u>0</u>	<u>0</u>	2	<u>1'</u>	[65]*
D4				<u>1', 3</u>	[66]*
E1	3	3	1 1/ 1//	-	[67,68]
E2	<u>a</u>	<u>n</u>	±, ±, ±	<u>1</u>	[69]
F	$\underline{1}, \underline{1}', \underline{1}''$	<u>3</u>	<u>3</u>	<u>1</u> or <u>1</u> ′	[70]
G	<u>3</u>	<u>1, 1', 1"</u>	$\underline{1}, \underline{1}', \underline{1}''$	5	[71]
H	<u>3</u>	<u>1, 1, 1</u>	a.	S.	[72]
Ι	<u>3</u>	1, 1, 1	1	÷	[73]*
J	<u>3</u>	1, 1, 1	<u>1, 1</u>	2	[74]* [75]
K	<u>3</u>	1, 1, 1	<u>1, 1, 1</u>	5	[76]*
L	<u>3</u>	<u>1, 1, 1</u>	<u>1, 1', 1"</u>	ŝ	[77]
М	<u>3</u>	<u>1, 1, 1</u>	3	a.	[12, 39, 78, 79]
N	3	<u>1, 1, 1</u>	1,1	1	[80]*
0	<u>1, 1', 1"</u>	<u>1</u> , <u>1</u> ', <u>1</u> "	3	÷	[81]
Р	<u>1, 1', 1"</u>	<u>1, 1", 1</u> '	<u>3, 1</u>	2	[82,83]
Q	<u>1, 1', 1"</u>	$\underline{1}, \underline{1}'', \underline{1}'$	$\underline{3}, \underline{1}', \underline{1}''$	₿	[84]

Barry & Rodejohann, PRD81 093002 (2010)

Many - but not all! can give TBM

Predictions?

(a) High-scale models $\rightarrow 0\nu\beta\beta$ decay? $\rightarrow \theta_{13}$? Others?

A_4 : models

Barry & Rodejohann, PRD81 093002 (2010)

Many - but not all! can give TBM

Predictions?

(a) High-scale models $\rightarrow 0\nu\beta\beta$ decay? $\rightarrow \theta_{13}$? Others?

(b) EW-scale models $\rightarrow 0\nu\beta\beta$ decay? $\rightarrow \theta_{13}$? \rightarrow Lepton flavour violation ? \rightarrow New states at LHC?

Others?

Type	L_i	ℓ_i^c	ν_t^c	Δ	References
A1				2	[1-14] $[15]$ #
A2	<u>3</u>	<u>1, 1', 1</u> "	127	$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[16-18]
A3				1, 3	[19]
B1	3	1 1/ 1/	<u>3</u>	5	[4,20-27]# [28-30]* [31-48]
B2	<u>u</u>	±, ±, ±		1, 3	$[49]^{\#}$
C1				5	[2, 50, 51] $[52]$ [#]
C2	2	2		1	[53,54] [55]#
C3	<u>5</u>	<u>a</u>		<u>1, 3</u>	[56]
C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[57]
D1				ŝ	[58, 59] [#] $[60, 61]$ * $[62]$
D2	q	2	q	1	[63] [64]*
D3	<u>0</u>	<u>0</u>	2	<u>1'</u>	[65]*
D4				$\underline{1'}, \underline{3}$	[66]*
E1	3	3	1, 1', 1"	-	[67,68]
E2		<u>u</u>		<u>1</u>	[69]
F	$\underline{1,1}',\underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1} \text{ or } \underline{1}'$	[70]
G	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1},\underline{1}',\underline{1}''$	5	[71]
H	<u>3</u>	<u>1, 1, 1</u>	8 7	2	[72]
Ι	<u>3</u>	1, 1, 1	1		[73]*
J	<u>3</u>	1, 1, 1	<u>1, 1</u>	÷	[74]* [75]
K	<u>3</u>	1, 1, 1	<u>1, 1, 1</u>	5	[76]*
L	<u>3</u>	<u>1, 1, 1</u>	$\underline{1},\underline{1}',\underline{1}''$	Ŷ	[77]
М	<u>3</u>	<u>1, 1, 1</u>	<u>3</u>	5	[12, 39, 78, 79]
Ν	<u>3</u>	<u>1, 1, 1</u>	1,1	<u>1</u>	[80]*
0	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}',\underline{1}''$	3	2	[81]
Р	<u>1, 1', 1"</u>	$\underline{1}, \underline{1}'', \underline{1}'$	<u>3, 1</u>	2	[82,83]
Q	<u>1, 1', 1"</u>	$\underline{1}, \underline{1}'', \underline{1}'$	$\underline{3}, \underline{1}', \underline{1}''$	압	[84]

Discrete sym's and $0\nu\beta\beta$

Altarelli & Feruglio 10⁰ present $0v = 2\beta$ bounds GERDA-1 10^{-1} $\Delta \vec{m}_{23} < 0$ Majorana/GERDA-11/CUORE $|m_{ee}|$ (eV) 10^{-2} $\Delta \vec{m}_{23} > 0$ KATRIN 10^{-3} 10 10^{-2} 10^{-1} 10^{-3} 1**0**0 $m_{\nu}~({
m eV})$

 S_4

IMFP 2012, 25/05/2012 - p.38/45

Linear and inverse SS in A_4

 ${
m Br}(\mu
ightarrow e \gamma)$ for 3 different values of m_N for inverse and linear seesaw

Ratio:

 ${
m Br}(au o \mu \gamma)/{
m Br}(au o e \gamma)$ for inverse and linear seesaw assuming exact TBM mixing as function of $lpha = rac{\Delta m_{\odot}^2}{\Delta m_{Atm}^2}$

Discrete Dark Matter

A4 is spontaneously broken in

Discrete Dark Matter

A4 is spontaneously broken in

Hirsch, Morisi, Peinado & Valle arXiv:1007.0871

Boucenna et al. arXiv:1101.2874

IMFP 2012, 25/05/2012 - p.40/45

Summary

- \Rightarrow Neutrino oscillations show LF is violated
- \Rightarrow last neutrino angle θ_{13} has been measured
- \Rightarrow CLVF interesting model discriminator
- \Rightarrow Discrete symmetries may help, but \cdots

Summary

- \Rightarrow Neutrino oscillations show LF is violated
- \Rightarrow last neutrino angle θ_{13} has been measured
- \Rightarrow CLVF interesting model discriminator
- \Rightarrow Discrete symmetries may help, but \cdots
- \Rightarrow Flavour problem not understood!
- \Rightarrow New ideas needed!

Backup slides

KamLAND-Zen

KamLAND-Zen

With 136 Xe 400 kg loaded liquid scintillator in mini-ballon:

MC background simulation

Experiment has started!

⇒ 2 year sensitivity limit: $\langle m_{\nu} \rangle \le 60 \text{ meV}$ ⇒ 1 ton ¹³⁶Xe & 5 years: $\langle m_{\nu} \rangle \le 20 \text{ meV}$

KamLAND-ZEN: Reality

- $2\nu\beta\beta$ decay measured: $T_{1/2}=(2.38\pm0.14)\times10^{21}$ ys

- but: unexpected background in 0
uetaeta decay region