Rare B decays and B-B mixing in NMFV SUSY

Miguel Arana Catania

http://arxiv.org/hep-ph/1109.6232 Published on JHEP, vol 2012, issue 5

Higgs Boson masses and B-Physics Constraints in Non-Minimal Flavor Violating SUSY scenarios

M. Arana-Catania, S. Heinemeyer, M.J. Herrero and S. Peñaranda

Hunting the NMFV

1. SUSY scenarios with NMFV

2. Constraints from B-Physics

3. Radiative corrections to Higgs masses

4. Higgs mases and B-Physics constraints

SUSY scenarios with NMFV

Quark sector: Interaction basis → Mass basis Squark sector: Interaction basis → SCKM basis

$$\begin{pmatrix} \tilde{u}_{L,R} \\ \tilde{c}_{L,R} \\ \tilde{t}_{L,R} \end{pmatrix} = V_{L,R}^u \begin{pmatrix} \tilde{u}_{L,R}^{\text{int}} \\ \tilde{c}_{L,R}^{\text{int}} \\ \tilde{t}_{L,R}^{\text{int}} \end{pmatrix} , \quad \begin{pmatrix} \tilde{d}_{L,R} \\ \tilde{s}_{L,R} \\ \tilde{b}_{L,R} \end{pmatrix} = V_{L,R}^d \begin{pmatrix} \tilde{d}_{L,R}^{\text{int}} \\ \tilde{s}_{L,R}^{\text{int}} \\ \tilde{b}_{L,R}^{\text{int}} \end{pmatrix}$$

$$V_{\text{CKM}} = V_L^u V_L^{d\dagger}, \qquad \begin{aligned} &\text{diag}\{m_{\tilde{u}_1}^2, m_{\tilde{u}_2}^2, m_{\tilde{u}_3}^2, m_{\tilde{u}_4}^2, m_{\tilde{u}_5}^2, m_{\tilde{u}_6}^2\} = R^{\tilde{u}} \mathcal{M}_{\tilde{u}}^2 R^{\tilde{u}\dagger} \\ &\text{diag}\{m_{\tilde{d}_1}^2, m_{\tilde{d}_2}^2, m_{\tilde{d}_3}^2, m_{\tilde{d}_4}^2, m_{\tilde{d}_5}^2, m_{\tilde{d}_6}^2\} = R^{\tilde{d}} \mathcal{M}_{\tilde{d}}^2 R^{\tilde{d}\dagger} \end{aligned}$$

6 squarks with intergenerational mixing

SUSY scenarios with NMFV

$$\mathcal{M}_{\tilde{q}}^{2} = \begin{pmatrix} M_{\tilde{q}LL}^{2} & M_{\tilde{q}LR}^{2} \\ M_{\tilde{q}LR}^{2\dagger} & M_{\tilde{q}RR}^{2} \end{pmatrix} \qquad \begin{aligned} M_{\tilde{u}LLij}^{2} = m_{\tilde{U}_{L}ij}^{2} + \left(m_{u_{i}}^{2} + (T_{3}^{u} - Q_{u}\sin^{2}\theta_{W})M_{Z}^{2}\cos 2\beta\right)\delta_{ij}, \\ M_{\tilde{u}RRij}^{2} = m_{\tilde{U}_{R}ij}^{2} + \left(m_{u_{i}}^{2} + Q_{u}\sin^{2}\theta_{W}M_{Z}^{2}\cos 2\beta\right)\delta_{ij}, \\ M_{\tilde{u}LRij}^{2} = \langle \mathcal{H}_{2}^{0} \rangle \mathcal{A}_{ij}^{u} - m_{u_{i}}\mu\cot\beta\delta_{ij}, \end{aligned}$$

We consider all possible deltas parameterizing 2 and 3 generation mixing.

Not using MIA

 $m_{\tilde{D}_{I}}^{2} = V_{\text{CKM}}^{\dagger} m_{\tilde{U}_{I}}^{2} V_{\text{CKM}}$ SU(2) imposed

SUSY scenarios with NMFV

LHC constraints

SUSY scenarios with NMFV

LHC constraints

 $m_{H_{1,2}}^2 = (1 + \delta_{1,2}) m_0^2$

points	$m_{1/2}$	m_0	A_0	an eta	δ_1	δ_2	m_h	m_H	M_A	$m_{H^{\pm}}$
CMSSM-5	1000	1000	0	5	0	0	117	1747	1746	1749
CMSSM-30	1000	1000	0	30	0	0	122	1416	1416	1418
NUHM-5	600	600	0	5	-1.86	+1.86	114	223	219	233
NUHM-30	1000	1000	0	30	-0.6	2.2	122	267	267	281

Other points with μ <0 and $A_0 \neq$ 0 also considered

Liahtests	points	\widetilde{C}_1^{\pm}	\widetilde{N}_1	\widetilde{g} ,	$\widetilde{ u}_{ au}$	$\widetilde{ au}_1$
sparticles	CMSSM-5	776	427	2174	1189	1061
masses	CMSSM-30	778	428	2175	1145	954
(in GeV) [.]	NUHM-5	371	245	1328	737	582
(11 00 0).	NUHM-30	276	267	2180	1187	908

Heavy SUSY scenarios in order to avoid LHC constraints. All SUSY spectrum very heavy, including lightest squarks (next slide).

Run from GUT to low energy using SPheno

points	$m_{1/2}$	m_0	A_0	an eta	δ_1	δ_2	m_h	m_H	M_A	$m_{H^{\pm}}$
CMSSM-5	1000	1000	0	5	0	0	117	1747	1746	1749
CMSSM-30	1000	1000	0	30	0	0	122	1416	1416	1418
NUHM-5	600	600	0	5	-1.86	+1.86	114	223	219	233
NUHM-30	1000	1000	0	30	-0.6	2.2	122	267	267	281

Lightest squarks order 1 TeV or above for the interesting delta regions

points	$m_{1/2}$	m_0	A_0	aneta	δ_1	δ_2	m_h	m_H	M_A	$m_{H^{\pm}}$
CMSSM-5	1000	1000	0	5	0	0	117	1747	1746	1749
CMSSM-30	1000	1000	0	30	0	0	122	1416	1416	1418
NUHM-5	600	600	0	5	-1.86	+1.86	114	223	219	233
NUHM-30	1000	1000	0	30	-0.6	2.2	122	267	267	281

Similarly for sbottom-type squarks

points	$m_{1/2}$	m_0	A_0	aneta	δ_1	δ_2	m_h	m_H	M_A	$m_{H^{\pm}}$
CMSSM-5	1000	1000	0	5	0	0	117	1747	1746	1749
CMSSM-30	1000	1000	0	30	0	0	122	1416	1416	1418
NUHM-5	600	600	0	5	-1.86	+1.86	114	223	219	233
NUHM-30	1000	1000	0	30	-0.6	2.2	122	267	267	281

points	$m_{1/2}$	m_0	A_0	aneta	δ_1	δ_2	m_h	m_H	M_A	$m_{H^{\pm}}$
CMSSM-5	1000	1000	0	5	0	0	117	1747	1746	1749
CMSSM-30	1000	1000	0	30	0	0	122	1416	1416	1418
NUHM-5	600	600	0	5	-1.86	+1.86	114	223	219	233
NUHM-30	1000	1000	0	30	-0.6	2.2	122	267	267	281

We choose the following observables:

$$BR(B \to X_s \gamma)$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{CKM}^{ts*} V_{CKM}^{tb} \sum_{i=1}^8 (C_i O_i + C'_i O'_i)$$

$$O_7 = \frac{e}{16 - 2} m_b \left(\bar{s}_L \sigma^{\mu\nu} b_R\right) F_{\mu\nu} \qquad \text{or}$$

 $O_{7} = \frac{1}{16\pi^{2}} m_{b} \left(\bar{s}_{L} \sigma^{\mu\nu} b_{R}\right) F_{\mu\nu}$ $O_{8} = \frac{g_{3}}{16\pi^{2}} m_{b} \left(\bar{s}_{L} \sigma^{\mu\nu} T^{a} b_{R}\right) G^{a}_{\mu\nu}$

and prime operators exchanging L by R

We consider MSSM contributions from: Loops with Higgs bosons Loops with charginos

 $BR(B \to X_s \gamma)_{exp} = (3.55 \pm 0.26) \times 10^{-4}$ $BR(B \to X_s \gamma)_{SM} = (3.15 \pm 0.23) \times 10^{-4}$

$$\begin{aligned} \mathrm{BR}(B_s \to \mu^+ \mu^-) \\ \mathcal{H}_{\mathrm{eff}} &= -\frac{G_F \alpha}{\sqrt{2}\pi} V_{\mathrm{CKM}}^{ts*} V_{\mathrm{CKM}}^{tb} \sum_i (C_i O_i + C_i' O_i') \\ O_{10} &= \left(\bar{s} \gamma^\nu P_L b\right) \left(\bar{\mu} \gamma_\nu \gamma_5 \mu\right), \\ O_S &= m_b \left(\bar{s} P_R b\right) \left(\bar{\mu} \mu\right), \\ O_P &= m_b \left(\bar{s} P_R b\right) \left(\bar{\mu} \gamma_5 \mu\right), \end{aligned}$$

and prime operators exchanging L by R

Box diagrams with charginos

Z-penguin diagrams with charginos

Neutral Higgs penguin diagrams with charginos and gluinos

$$BR(B_s \to \mu^+ \mu^-)_{exp} < 4.5 \times 10^{-9} \quad (95\% \text{ CL})$$

$$BR(B_s \to \mu^+ \mu^-)_{SM} = (3.6 \pm 0.4) \times 10^{-9}$$

$$\begin{split} \Delta M_{B_*} \\ \mathcal{H}_{\text{eff}} &= \frac{G_F^2}{16\pi^2} M_W^2 \left(V_{\text{CKM}}^{tb*} V_{\text{CKM}}^{ts} \right)^2 \sum_i C_i O_i. \\ O^{VLL} &= (\bar{b}^{\alpha} \gamma_{\mu} P_L s^{\alpha}) (\bar{b}^{\beta} \gamma^{\mu} P_L s^{\beta}). \\ O_1^{LR} &= (\bar{b}^{\alpha} \gamma_{\mu} P_L s^{\alpha}) (\bar{b}^{\beta} \gamma^{\mu} P_R s^{\beta}), \qquad O_2^{LR} &= (\bar{b}^{\alpha} P_L s^{\alpha}) (\bar{b}^{\beta} P_R s^{\beta}), \\ O_1^{SLL} &= (\bar{b}^{\alpha} P_L s^{\alpha}) (\bar{b}^{\beta} P_L s^{\beta}), \qquad O_2^{SLL} &= (\bar{b}^{\alpha} \sigma_{\mu\nu} P_L s^{\alpha}) (\bar{b}^{\beta} \sigma^{\mu\nu} P_L s^{\beta}), \end{split}$$

$$\langle \bar{B}_s | \mathcal{H}_{\text{eff}} | B_s \rangle = \frac{G_F^2}{48\pi^2} M_W^2 m_{B_s} f_{B_s}^2 \left(V_{\text{CKM}}^{tb*} V_{\text{CKM}}^{ts} \right)^2 \sum_i P_i C_i \left(\mu_W \right).$$

Box diagrams (charginos and gluinos)

 $\Delta M_{B_s} = 2 |\langle \bar{B}_s | \mathcal{H}_{\text{eff}} | B_s \rangle|,$

Z-penguin diagrams (charginos) Neutral Higgs double penguin diagrams (charginos and gluinos)

$$\Delta M_{B_{s} \exp} = (117.0 \pm 0.8) \times 10^{-10} \text{ MeV} ,$$

$$\Delta M_{B_{s} \text{SM}} = (117.1^{+17.2}_{-16.4}) \times 10^{-10} \text{ MeV} .$$

In the literature usually not all contributions are considered.

Gluino boxes are very relevant in NMFV. Double Higgs penguins important at large $\tan\beta$

points	$m_{1/2}$	m_0	A_0	aneta
CMSSM-5	1000	1000	0	5

Results changing the sign of μ (μ <0)

points	$m_{1/2}$	m_0	A_0	aneta
CMSSM-30	1000	1000	0	30

Changing A_0 gives similar results.

If M_A is low, $\operatorname{BR}(B_s \to \mu^+ \mu^-)$ also set restrictions even at low $\tan \beta$ =5

points	$m_{1/2}$	m_0	A_0	$\tan\beta$	δ_1	δ_2
NUHM-5	600	600	0	5	-1.86	+1.86

Excluded MFV points can be recovered in $\ensuremath{\mathsf{NMFV}}$

points	$m_{1/2}$	m_0	A_0	$\tan\beta$	δ_1	δ_2
NUHM-30	1000	1000	0	30	-0.6	2.2

CMSSM-30 0.4 0.4 0.2 0.2 SLR $\delta_{\rm sb}^{\rm RL}$ 0.0 0.0 -0.2-0.2-0.4-0.4-0.50.0 0.5 -0.50.0 0.5 δ_{23}^{LL} δ_{23}^{LL} Large $\tan \beta$ scenarios $BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ $BR(B \to X_s \gamma)$ ΔM_{B_s} very constrained. $BR(B_s \to \mu^+ \mu^-)$ Especially LRsb sector. Mainly by $BR(B \rightarrow X_s \gamma)$ and BR($B_s \rightarrow \mu^+ \mu^-$) $BR(B \rightarrow X_s \gamma)$ $BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ $BR(B_s \to \mu^+ \mu^-)$ ΔM_{B_s} ΔM_{B_s} ΔM_{B_s}

CMSSM-5

NUHM-30 0.15 0.15 0.10 0.10 0.05 0.05 $\delta_{\rm sb}^{\rm LR}$ $\delta_{\rm sb}^{\rm RL}$ 0.00 0.00 -0.05-0.05-0.10-0.10-0.15-0.150.0 0.5 -0.5 0.0 0.5 -0.5 δ_{23}^{LL} δ_{23}^{LL} $BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ $BR(B \to X_s \gamma)$ ΔM_{B_s} $BR(B_s \to \mu^+ \mu^-)$ $BR(B \rightarrow X_s \gamma)$ $BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ $BR(B_s \to \mu^+ \mu^-)$ ΔM_{B_s} ΔM_{B_s} ΔM_{B_s}

NUHM-5 0.2 0.2 0.1 0.1 $\delta_{\rm sb}^{\rm LR}$ $\delta_{\rm sb}^{\rm RL}$ 0.0 0.0 -0.1-0.1-0.2 -0.20.50.0 0.0 0.5 -0.5 -0.5 δ_{23}^{LL} δ_{23}^{LL} In low $\tan\beta$ scenarios if $BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ $BR(B \to X_s \gamma)$ ΔM_{B_s} M_A is small, $BR(B_s \rightarrow \mu^+ \mu^-)$ $BR(B_s \to \mu^+ \mu^-)$ can set bounds, mainly on δ^{LL}_{23} $BR(B \rightarrow X_s \gamma)$ $BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ $BR(B_s \to \mu^+ \mu^-)$ ΔM_{B_s} ΔM_{B_s} ΔM_{B_s}

$$\left[p^{2} - m_{h,\text{tree}}^{2} + \hat{\Sigma}_{hh}(p^{2})\right] \left[p^{2} - m_{H,\text{tree}}^{2} + \hat{\Sigma}_{HH}(p^{2})\right] - \left[\hat{\Sigma}_{hH}(p^{2})\right]^{2} = 0$$

$$p^2 - m_{H^{\pm},\text{tree}}^2 + \hat{\Sigma}_{H^-H^+} \left(p^2 \right) = 0.$$

We computed the NMFV contributions to Higgs masses since this contributions could be relevant.

Feynman diagrammatic approach

Masses are determined as poles of the propagators (FeynHiggs; self-energies checked with FeynArts/FormCalc)

In general, larger corrections for the light Higgs coming from LR/RL sector (ct and sb)

points	$m_{1/2}$	m_0	A_0	$\tan\beta$	δ_1	δ_2	m_h	m_H	M_A	$m_{H^{\pm}}$
CMSSM-5	1000	1000	0	5	0	0	117	1747	1746	1749
CMSSM-30	1000	1000	0	30	0	0	122	1416	1416	1418
NUHM-5	600	600	0	5	-1.86	+1.86	114	223	219	233
NUHM-30	1000	1000	0	30	-0.6	2.2	122	267	267	281

points	$m_{1/2}$	m_0	A_0	$\tan\beta$	δ_1	δ_2	m_h	m_H	M_A	$m_{H^{\pm}}$
CMSSM-5	1000	1000	0	5	0	0	117	1747	1746	1749
CMSSM-30	1000	1000	0	30	0	0	122	1416	1416	1418
NUHM-5	600	600	0	5	-1.86	+1.86	114	223	219	233
NUHM-30	1000	1000	0	30	-0.6	2.2	122	267	267	281

CMSSM-5 0.2 0.2 0.2 0.6 016 0.1 0.6 0.5 0.5 0.4 0. 0 0.6 $\delta_{\rm ct}^{\rm RR}$ $\delta_{\rm sb}^{\rm RR}$ 0.0 0.0 0.5 0.5 0.1. 0.1 0.5 0.5 -0.5-0.50.710.3 0 1.2 1.2 0,8 0.3 0.3 0.4 -0.5 0.0 0.5 -0.50.0 0.5 δ_{23}^{LL} δ_{23}^{LL} $BR(B \to X_s \gamma)$ Small Higgs mass $BR(B_s \to \mu^+ \mu^-)$ $BR(B \to X_s \gamma)$ ΔM_{B_s} $BR(B_s \to \mu^+ \mu^-)$ corrections coming from the RR sector. And almost no $BR(B \rightarrow X_s \gamma)$ $BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ space in the $BR(B_s \to \mu^+ \mu^-)$ ΔM_{B_s} ΔM_{B_s} LR/RLsb sector ΔM_{B_s}

Constraints from B-Physics and radiative corrections to Higgs masses

${ m BR}(B o X_s \gamma)$	ΔM_{B_s}	${ m BR}(B_s o \mu^+ \mu^-)$	$BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$
$\frac{\mathrm{BR}(B_s \to \mu^+ \mu^-)}{\Delta M_{B_s}}$	$\frac{\mathrm{BR}(B \to X_s \gamma)}{\Delta M_{B_s}}$	$\begin{array}{l} {\rm BR}(B \rightarrow X_s \gamma) \\ \\ {\rm BR}(B_s \rightarrow \mu^+ \mu^-) \\ \\ \Delta M_{B_s} \end{array}$	

NUHM-5 -600.4 0.4.2 75 0.2 0.2 O SLR 0.0 SRL 0.0 -0.2 -0.2 -5 -20 -0.460 -40-0.4-0.50.0 0.5 -0.5 0.0 0.5 δ_{23}^{LL} δ_{23}^{LL} $BR(B \rightarrow X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ $BR(B \to X_s \gamma)$ ΔM_{B_s} $BR(B_s \to \mu^+ \mu^-)$ $BR(B \rightarrow X_s \gamma)$ $BR(B \to X_s \gamma)$ $BR(B_s \to \mu^+ \mu^-)$ $BR(B_s \rightarrow \mu^+ \mu^-)$ ΔM_{B_s} ΔM_{B_s} ΔM_{B_s}

Conclusions

We found bounds for flavor from B physics, and large corrections to the Higgs boson masses compatible with these bounds, up to several tens GeV for the lightest boson.

These corrections are two orders of magnitude larger than the LHC precission, and three orders than the ILC.

Mainly coming from the ct sector (which is less constrained by B-Physics) and from scenarios with low $\tan \beta$. Also from high $\tan \beta$ if SUSY is very heavy (order 1 TeV or larger).

These corrections can be used to set further bounds on flavour violation

We are planning to study additional constraints on deltact from rare top decays (t \rightarrow c gamma, t \rightarrow c Z, t \rightarrow c h, ...)