XL International Meeting on Fundamental Physics

CPV in the Charm System

Jernej F. Kamenik

Institut "Jožef Stefan"

26/05/2012, Benasque

Outline

- Significance of CPV in Charm within and beyond SM
- Quantify (parametrize) theory expectations of direct CPV in charm decays
 - Δa_{CP} implications for weak scale NP
 - EFT & models

(new insights into NP CPV in $\Delta F=1$)

- Consequences of NP Δa_{CP} explanations
 - Discriminate among NP, NP vs. SM

Why CP Violation in Charm?

- CPV in charm provides a unique probe of New Physics (NP)
 - sensitive to NP in the up sector
 - SM charm physics is CP conserving to first approximation (2 generation dominance, no hard GIM breaking)
- Common lore "any signal for CPV would be NP":
 - In the SM, CPV in mixing enters at $\mathcal{O}(V_{cb}V_{ub}/V_{cs}V_{us}) \sim 10^{-3}$
 - In the SM, direct CPV enters at $\mathcal{O}([V_{cb}V_{ub}/V_{cs}V_{us}] \alpha_s/\pi) \sim 10^{-4}$ (in singly Cabibbo suppressed decays)

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

$$m \equiv \frac{m_1 + m_2}{2}, \qquad \qquad \Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2},$$
$$x \equiv \frac{m_2 - m_1}{\Gamma}, \qquad \qquad y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}.$$

• Experimentally accessible mixing quantities:

• x,y (CP conserving) Cannot be estimated accurately within SM NP contributions are predictable

flavor specific time-dependent CPV decay asymmetries [sensitive to q/p]

$$a_f(t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)},$$

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

0.8

0.6

1.2

1

1.4 1.6

1.8

lq/pl

0.2

0.4

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

lq/pl

• CPV in Mixing

Isidori, Nir & Perez 1002.0900

	Bounds on Λ (TeV)		Bounds on c_{ij} ($\Lambda = 1$ TeV)		
Operator	Re	Im	Re	Im	Observables
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \varepsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \varepsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^{3}	3.6×10^{3}	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_L \gamma^{\mu} s_L)^2$	1.1×10^{2}	1.1×10^{2}	7.6×10^{-5}	7.6×10^{-5}	Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2	3.7×10^2	1.3×10^{-5}	1.3×10^{-5}	Δm_{B_s}

$$x, y \sim 1\%$$

Imply significant constraints on CPV NP contributions, second only to kaon sector

- CPV in decays (direct CPV)
 - Time-integrated CPV decay asymmetries to CP eigenstates

$$a_f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)} \cdot \qquad a_f = a_f^{\text{dir.}} + \frac{\langle \tau \rangle}{\tau_D} a_{CP}^{\text{indir.}}$$

• Focus on K^+K^- and $\pi^+\pi^-$ final states: $\Delta a_{CP} \equiv a_{K^+K^-} - a_{\pi^+\pi^-}$

• CPV in decays (direct CPV)

- CPV in decays (direct CPV)
 - Time-integrated CPV decay asymmetries to CP eigenstates

$$a_f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)}$$

• Focus on K^+K^- and $\pi^+\pi^-$ final states: $\Delta a_{CP} \equiv a_{K^+K^-} - a_{\pi^+\pi^-}$

$$\Delta a_{CP}^{\rm World} = -(0.67 \pm 0.16)\% \qquad ({\sim}4\sigma \text{ from 0})$$

• $D^0(\overline{D}^0)$ decay amplitudes to CP eigenstate f

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• $D^0(\overline{D}^0)$ decay amplitudes to CP eigenstate f

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

• contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• relevant Hamiltonian in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$

$$\mathcal{H}^{q}_{|\Delta c|=1} = \frac{G_{F}}{\sqrt{2}} \sum_{i=1,2} C^{q}_{i} Q^{s}_{i} + \text{H.c.},$$
$$Q^{q}_{1} = (\bar{u}q)_{V-A} (\bar{q}c)_{V-A},$$
$$Q^{q}_{2} = (\bar{u}_{\alpha}q_{\beta})_{V-A} (\bar{q}_{\beta}c_{\alpha})_{V-A},$$

"penguin" operator contributions (tiny Wilson coefficients at $m_c < \mu < m_b$)

• $D^0(\overline{D}^0)$ decay amplitudes to CP eigenstate f

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

• contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• relevant Hamiltonian in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$

$$\mathcal{H}^{q}_{|\Delta c|=1} = \frac{G_{F}}{\sqrt{2}} \sum_{i=1,2} C^{q}_{i} Q^{s}_{i} + \text{H.c.},$$
$$Q^{q}_{1} = (\bar{u}q)_{V-A} (\bar{q}c)_{V-A},$$
$$Q^{q}_{2} = (\bar{u}_{\alpha}q_{\beta})_{V-A} (\bar{q}_{\beta}c_{\alpha})_{V-A},$$

"penguin" operator contributions (tiny Wilson coefficients at $m_c < \mu < m_b$)

• $D^0(\overline{D}^0)$ decay amplitudes to CP eigenstate f

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• decay amplitudes in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$

"tree" operator contributions \checkmark \checkmark $A_K = \lambda_d A_K^d + \lambda_s A_K^s + \lambda_b A_K^b$ $A_\pi = \lambda_d A_\pi^d + \lambda_s A_\pi^s + \lambda_b A_\pi^b$ "penguin" operator contribution

• $D^0(\overline{D}^0)$ decay amplitudes to CP eigenstate f

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• decay amplitudes in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$, $\lambda_d + \lambda_s + \lambda_b = 0$

$$A_K = \lambda_s (A_K^s - A_K^d) + \lambda_b (A_K^b - A_K^d)$$
$$A_\pi = \lambda_d (A_\pi^d - A_\pi^s) + \lambda_b (A_\pi^b - A_\pi^s)$$

• $D^{0}(\overline{D}^{0})$ decay amplitudes to CP eigenstate f

$$A_{f} = A_{f}^{T} e^{i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} + \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

$$\bar{A}_{f} = \eta_{CP} A_{f}^{T} e^{-i\phi_{f}^{T}} \left[1 + r_{f} e^{i(\delta_{f} - \phi_{f})} \right], \qquad \eta_{CP} = \pm 1$$

contribution to direct CPV asymmetries

$$a_f^{\text{dir}} = -\frac{2r_f \sin \delta_f \sin \phi_f}{1 + 2r_f \cos \delta_f \cos \phi_f + r_f^2}, \qquad f = K, \pi$$

• decay amplitudes in the SM, $\lambda_q \equiv V_{cq}^* V_{uq}$, $\lambda_d + \lambda_s + \lambda_b = 0$

different weak phase (CKM) -
$$\phi_f$$

 $A_K = \lambda_s (A_K^s) - (A_K^d) + \lambda_b (A_K^b - A_K^d)$
 $A_\pi = \lambda_d (A_\pi^d) - (A_\pi^s) + \lambda_b (A_\pi^b - A_\pi^s)$
different strong phase (isospin) - δ_f

$$r_f \propto \xi = |\lambda_b / \lambda_s| \simeq |\lambda_b / \lambda_d| \approx 0.0007$$
$$\phi_K^{\rm SM} = \arg(\lambda_b / \lambda_s)$$
$$\approx -\arg(\lambda_b / \lambda_d) = -\phi_\pi^{\rm SM}$$
$$\approx 70^{\circ}$$

- SM expectations
 - define ratios of weak amplitudes $R_K^{SM} \equiv \frac{A_K^o A_K^d}{A_V^s A_V^d}$, $R_\pi^{SM} \equiv \frac{A_\pi^o A_\pi^s}{A_\pi^d A_\pi^s}$. $a_{\kappa}^{\mathrm{dir,SM}} \approx 2\xi \operatorname{Im}(R_{\kappa}^{\mathrm{SM}}), \quad a_{\pi}^{\mathrm{dir,SM}} \approx -2\xi \operatorname{Im}(R_{\pi}^{\mathrm{SM}})$ 0.000 update of $\Delta a_{CP} \approx (0.13\%) \mathrm{Im}(\Delta R^{\mathrm{SM}}),$ Isidori, J.F.K, Ligeti & Perez 1111.4987 -0.002 $\Delta R^{\rm SM} \equiv R_{\kappa}^{\rm SM} + R_{\pi}^{\rm SM}$ SM -0.004CDF $\Delta a_{
 m CP}$ (in SU(3) limit $R_{\kappa}^{\rm SM} = R_{\pi}^{\rm SM}$) World aver. -0.006-0.008LHCb -0.010 0.5 0.2 1.0 2.0 5.0 10.0 $|\Delta R^{SM}|$ O(2-3) values of $|R_{K,\pi}|$ needed

- SM expectations
 - define ratios of weak amplitudes $R_K^{\text{SM}} \equiv \frac{A_K^b A_K^d}{A_K^s A_K^d}$, $R_\pi^{\text{SM}} \equiv \frac{A_\pi^b A_\pi^s}{A_\pi^d A_\pi^s}$.
 - In the $m_c >> \Lambda_{\text{QCD}}$ limit, computable perturbatively
 - $|A_K^d/A_K^s| \sim lpha_s(m_c)/\pi \sim 0.1$ $|A^b| \lesssim |A^d|$

Grossman, Kagan & Nir hep-ph/0609178

> see also Cheng & Chiang 1201.0785

- would expect RK,π | << 1
- However: ξ suppressed amplitudes unconstrained by rate measurements " $\Delta I = 1/2$ rule" type enhancement possible

Golden & Grinstein Phys. Lett. B 222 (1989)

- SM expectations
 - define ratios of weak amplitudes $R_K^{\text{SM}} \equiv \frac{A_K^b A_K^d}{A_K^s A_K^d}$, $R_\pi^{\text{SM}} \equiv \frac{A_\pi^b A_\pi^s}{A_\pi^d A_\pi^s}$.
 - In the $m_c >> \Lambda_{QCD}$ limit, computable perturbatively

Brod, Kagan & Zupan 1111.5000 "Tree topologies" - no A_K^d , A_π^s contributions "Penguin contractions" - generate A_K^d , A_π^s See also

Obtain $\Delta a_{CP}^{\rm SM} \lesssim 0.4\%$ with $\mathcal{O}(1)$ error

see also Brod, Grossman, Kagan & Zupan 1203.6659 Feldmann, Nandi & Soni 1202.3795

- Assume SM does not saturate the experimental value
- Parametrize NP contributions in EFT normalized to the effective SM scale

$$\mathcal{H}_{|\Delta c|=1}^{\text{eff}-\text{NP}} = \frac{G_F}{\sqrt{2}} \sum_i C_i^{\text{NP}} Q_i$$

• most general dim 6 Hamiltonian at $\mu < m_{W,t}$

$$Q_{1}^{q} = (\bar{u}q)_{V-A} (\bar{q}c)_{V-A}$$

$$Q_{2}^{q} = (\bar{u}_{\alpha}q_{\beta})_{V-A} (\bar{q}_{\beta}c_{\alpha})_{V-A},$$

$$Q_{5}^{q} = (\bar{u}c)_{V-A} (\bar{q}q)_{V+A},$$

$$Q_{6}^{q} = (\bar{u}_{\alpha}c_{\beta})_{V-A} (\bar{q}_{\beta}q_{\alpha})_{V+A},$$

$$Q_{7} = -\frac{e}{8\pi^{2}} m_{c} \bar{u}\sigma_{\mu\nu} (1+\gamma_{5}) F^{\mu\nu} c,$$

$$Q_{8} = -\frac{g_{s}}{8\pi^{2}} m_{c} \bar{u}\sigma_{\mu\nu} (1+\gamma_{5}) T^{a} G_{a}^{\mu\nu} c,$$

$$+ \text{Ops. with V} \leftrightarrow \text{A}$$

x 5 q \overline{q} flavor structures

- Assume SM does not saturate the experimental value
- Parametrize NP contributions in EFT normalized to the effective SM scale

$$\Delta a_{CP} \approx (0.13\%) \operatorname{Im}(\Delta R^{\mathrm{SM}}) + 9 \sum_{i} \operatorname{Im}(C_{i}^{\mathrm{NP}}) \operatorname{Im}(\Delta R_{i}^{\mathrm{NP}}) \quad R_{K,i}^{\mathrm{NP}} \equiv \frac{G_{F} \langle Q_{i} \rangle}{\sqrt{2}(A_{K}^{s} - A_{K}^{d})}$$

 $1 \cap 1$

• for
$$\operatorname{Im}(C_i^{\operatorname{NP}}) = \frac{v^2}{\Lambda^2}$$
 : $\frac{(10 \text{ TeV})^2}{\Lambda^2} = \frac{(0.61 \pm 0.17) - 0.12 \operatorname{Im}(\Delta R^{\operatorname{SM}})}{\operatorname{Im}(\Delta R^{\operatorname{NP}})}$

Are such contributions allowed by other flavor constraints?

• In EFT can be estimated via "weak mixing" of operators

- Important constraints expected from D-D mixing and direct CPV in $K^0 \rightarrow \pi^+ \pi^-$ (ϵ'/ϵ)
- Quadratic NP contributions
 - either chirally suppressed...
 - ... or highly UV sensitive

Isidori, J.F.K, Ligeti & Perez

1111.4987

- SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^{\dagger})_{t\!\!/r}, \qquad \mathcal{A}_d \equiv (Y_d Y_d^{\dagger})_{t\!\!/r}$

- SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^{\dagger})_{t\!\!/r}, \qquad \mathcal{A}_d \equiv (Y_d Y_d^{\dagger})_{t\!\!/r}$
 - in the 2-gen limit single source of CPV: $J\equiv i[{\cal A}_u,\,{\cal A}_d]$ Gedalia, Mannelli & Perez 1002.0778, 1003.3869
 - invariant under SO(2) rotations between up-down mass bases

- SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^{\dagger})_{t\!\!/r}, \qquad \mathcal{A}_d \equiv (Y_d Y_d^{\dagger})_{t\!\!/r}$
 - in the 2-gen limit single source of CPV: $J\equiv i[{\cal A}_u,\,{\cal A}_d]$ Gedalia, Mannelli & Perez 1002.0778, 1003.3869
 - invariant under SO(2) rotations between up-down mass bases
- SU(2)_Q breaking NP $\mathcal{O}_L = \left[(X_L)^{ij} \overline{Q}_i \gamma^{\mu} Q_j \right] L_{\mu}$

$$\operatorname{Im}(X_L^u)_{12} = \operatorname{Im}(X_L^d)_{12} \propto \operatorname{Tr}(X_L \cdot J) .$$

- SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^{\dagger})_{t\!\!/r}$, $\mathcal{A}_d \equiv (Y_d Y_d^{\dagger})_{t\!\!/r}$
 - SM 3-gen case characterized by SU(3)/SU(2) breaking pattern by Y_{b,t} Kagan et al., 0903.1794
 - 3-gen X_L can be decomposed under SU(2), constrained separately (barring cancelations)
 - SM breaking of residual SU(2)_Q suppressed by m_c/m_t , m_s/m_b , θ_{13} , θ_{23} (charm and kaon sectors dominated by 2-gen physics)

- SM quark flavor symmetry $\ \mathcal{G}_F = SU(3)_Q imes SU(3)_U imes SU(3)_D$
 - two sources of breaking: $\mathcal{A}_u \equiv (Y_u Y_u^{\dagger})_{t\!\!/r}, \qquad \mathcal{A}_d \equiv (Y_d Y_d^{\dagger})_{t\!\!/r}$
 - Implication: direct correspondence between Δa_{CP} and ε'/ε (no weak loop suppression)
 - constraint on SU(3)_Q breaking NP: $\Delta a_{CP}^{NP} \lesssim 4 \times 10^{-4}$ Gedalia, J.F.K, Ligeti & Perez 1202,5038
 - Similarly for rare semileptonic decays:

• In EFT can be estimated via "weak mixing" of operators

- Important constraints expected from D- \overline{D} mixing and direct CPV in $K^0 \rightarrow \pi^+ \pi^-$ (ϵ'/ϵ)
 - LL 4q operators: excluded
 - LR 4q operators: ajar potentially visible effects in D- \overline{D} and/or ϵ'/ϵ

Model example: Hochberg, Nir, 1112.5268

Isidori, J.F.K, Ligeti & Perez

1111.4987

• In EFT can be estimated via "weak mixing" of operators

- Important constraints expected from D-D mixing and direct CPV in $K^0 \rightarrow \pi^+ \pi^-$ (ϵ'/ϵ)
 - LL 4q operators: excluded
 - LR 4q operators: ajar potentially visible effects in D- \overline{D} and/or ϵ'/ϵ

Isidori, J.F.K, Ligeti & Perez

1111.4987

• **RR 4q operators:** unconstrained in EFT - UV sensitive contributions?

Dipole operators only weakly constrained (edm's)

Δacp in (enter favorite NP model name)

Before LHCb result,

DCPV in charm not on top of NP theorists expectations

Δacp in (enter favorite NP model name)

Before LHCb result,

DCPV in charm not on top of NP theorists expectations

In last 6 months, situation has improved considerably

Δa_{CP} in <u>SUSY Models</u>

• Left-right up-type squark mixing contributions

$$\Delta a_{CP}^{\rm SUSY} | \approx 0.6\% \left(\frac{\left| {\rm Im} \left(\delta_{12}^u \right)_{LR} \right|}{10^{-3}} \right) \left(\frac{{\rm TeV}}{\tilde{m}} \right)$$

- contributions to $\Delta F=2$ helicity suppressed
- requires large trilinear (A) terms, non-trivial flavor in UV

$$\operatorname{Im}\left(\delta_{12}^{u}\right)_{LR} \approx \frac{\operatorname{Im}(A) \ \theta_{12} \ m_{c}}{\tilde{m}} \approx \left(\frac{\operatorname{Im}(A)}{3}\right) \left(\frac{\theta_{12}}{0.3}\right) \left(\frac{\operatorname{TeV}}{\tilde{m}}\right) 0.5 \times 10^{-3}$$

Grossman, Kagan & Nir, hep-ph/0609178

Giudice, Isidori & Paradisi, 1201.6204

Hiller, Hochberg, Nir, 1204.1046

Δa_{CP} in <u>Warped Extra-Dim. Models</u>

• Anarchic flavor with bulk Higgs

$$\left|\Delta a_{CP}^{\mathrm{chromo}}\right|_{\mathrm{RS}} \simeq 0.6\% \times \left(\frac{Y_5}{6}\right)^2 \left(\frac{3\,\mathrm{TeV}}{m_{\mathrm{KK}}}\right)^2$$

requires very large 5D Yukawas

Delaunay, J.F.K., Perez & Randall in progress

Agashe, Azatov & Zhu, 0810.1016 Csaki et al., 0907.0474

• Can be mapped to 4D partial compositness models

Δa_{CP} and <u>4th Generation</u>

• 3-gen CKM non-unitarity and b' penguins

Feldmann, Nandi & Soni 1202.3795

$$\Delta a_{CP} \propto 4 \operatorname{Im} \left[\frac{\lambda_{b'}}{\lambda_d - \lambda_s} \right] \simeq \frac{2 \sin \theta_{14} \sin \theta_{24} \sin(\delta_{14} - \delta_{24})}{\sin \theta_{12}}$$

No parametric enhancement allowed due to existing ΔF=2 CPV bounds

Nandi & Soni, 1011.6091 Buras et al., 1002.2126

- Effects comparable to SM still allowed
- Similar conclusions for generic mixing with vector-like quarks

Grossman, Kagan & Nir hep-ph/0609178 Altmannshofer et al. 1202.2866

Generic Implications for Experiment

• NP explanations of Δa_{CP} via <u>chromo-magnetic dipole operators</u>

 $|\Delta a_{CP}^{\rm NP}| \approx -1.8 |\mathrm{Im}[C_8^{\rm NP}(m_c)]|$,

Grossman, Kagan & Nir, hep-ph/0609178 Giudice, Isidori & Paradisi, 1201.6204 (estimate of matrix element in QCD fact.)

• generically predict EM dipoles

 $|\text{Im}[C_7^{\text{NP}}(m_c)]| \approx |\text{Im}[C_8^{\text{NP}}(m_c)]| \approx 0.4 \times 10^{-2}$. (QCD RGE evolution with TeV NP)

Isidori & J.F.K., 1205.3164

• rare radiative charm decays $D^0 \rightarrow X\gamma$ $D^0 \rightarrow Xe^+e^-$

Expected NP rates few orders below SM LD contributions

Delaunay, J.F.K., Perez & Randall in progress

Generic Implications for Experiment

• NP explanations of Δa_{CP} via <u>chromo-magnetic dipole operators</u>

 $|\Delta a_{CP}^{\rm NP}| \approx -1.8 |{\rm Im}[C_8^{\rm NP}(m_c)]| ,$

Grossman, Kagan & Nir, hep-ph/0609178 Giudice, Isidori & Paradisi, 1201.6204 (estimate of matrix element in QCD fact.)

• generically predict EM dipoles

 $|\text{Im}[C_7^{\text{NP}}(m_c)]| \approx |\text{Im}[C_8^{\text{NP}}(m_c)]| \approx 0.4 \times 10^{-2}$. (QCD RGE evolution with TeV NP)

- Isidori & J.F.K., 1205.3164
- possibility to access CPV observables in $D^0 \rightarrow \pi \pi \gamma$, $KK\gamma$
 - in SM CPV expected similar as in $D^0 \rightarrow \pi \pi$, KK
 - large strong phases natural for LD SM contributions

$$|a_{(\rho,\omega)\gamma}|^{\max} = 0.04(1) \left| \frac{\operatorname{Im}[C_7(m_c)]}{0.4 \times 10^{-2}} \right| \left[\frac{10^{-5}}{\mathcal{B}(D \to (\rho,\omega)\gamma)} \right]^{1/2} \lesssim 10\%$$

(smaller effects also in $D^0 \rightarrow KK\gamma$ with m_{KK} around Φ mass)

Generic Implications for Experiment

• NP explanations of Δa_{CP} via $\Delta I=3/2$ contributions

Grossman, Kagan & Zupan, 1204.3557

• SM contributions to $A_{K}^{(d)}$, $A_{\pi}^{(s)}$ purely $\Delta I=1/2$

No CPV expected in pure $\Delta I = 3/2$ decays

 $\Gamma(D^+ \to \pi^+ \pi^0) - \Gamma(D^- \to \pi^- \pi^0) = 0 \qquad \text{(up to small isospin breaking)}$

- nonzero difference would point towards CPV $\Delta I=3/2$ NP contributions
- decay amplitude sum-rules even in presence isospin breaking

$$\frac{1}{\sqrt{2}} |A_{\pi^+\pi^-} - \bar{A}_{\pi^-\pi^+}| \neq |A_{\pi^0\pi^0} - \bar{A}_{\pi^0\pi^0}|, \quad \Longrightarrow \quad \text{signal of } \Delta I=3/2 \text{ CPV NP}$$

• experimentally accessible with time-dependent measurements (also Dalitz plot analyses in $D \rightarrow 3\pi$, $D \rightarrow KK\pi$)

Conclusions

- The observed size of CPV is borderline...
 - larger than naive SM expectations
 - however, SM explanation cannot be excluded from first principles
- If NP, points towards <u>new flavor structures in *u*_R sector at the TeV scale</u>
- More experimental observables could clarify the picture
 - (CPV in) rare radiative charm decays sensitive to NP in dipole ops.
 - CPV in isospin related 2-, 3-body modes can test $\Delta I=3/2$ NP