

FLAVOUR PHYSICS

CENTRO DE CIENCIAS DE BENASQUE PEDRO PASCUAL May 2012

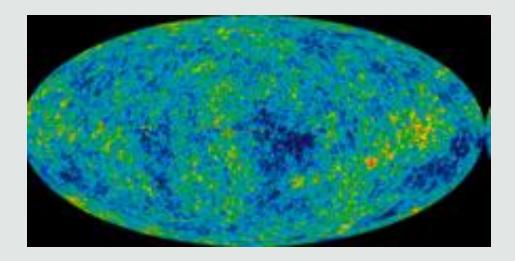
THE FIRST DIRECT OBSERVATION OF TIME REVERSAL VIOLATION

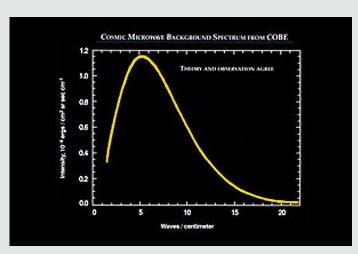
OUTLINE

- Symmetries in the Laws of Physics
- Universe t-Asymmetry, the "Arrow of Time"
- Is it possible to search for TRV in unstable systems?
- > EPR-Entanglement: Flavour-Tag, CP-Tag
- Genuine Observables in B-factories: not needing ΔΓ
- T-violating parameters
- CPV, TRV, CPTV Asymmetries
- Foundations of the Experimental Analysis
- T raw asymmetries & Significance, from BABAR
- Conclusions

SYMMETRIES IN THE LAWS OF PHYSICS

- "Microscopic" Symmetry Violations.
- > T-Violation exists in the Standard Model or any field theoretic extension.
- > All field theories with Lorentz invariance have CPT symmetry
- → Automatic connection between CP-violation ←→ related T-violation
- T and CPT described by ANTIUNITARY rather than unitary operators, introducing many intriguing subtleties.
- Observed CP-Violation → T should be violated as well: Is it observed?

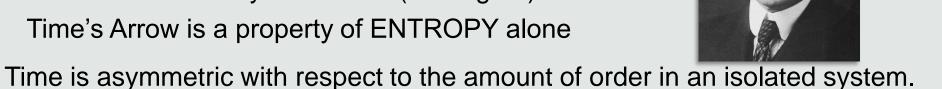

T - Violation means Asymmetry under


Interchange in ← out states

- ➤ Effects in particle physics odd under t = -t are not necessarily T-violating.
- t- asymmetries can occur in theories with exact T- symmetry.

UNIVERSE t - ASYMMETRY

- No doubt Universe is expanding, even accelerating → asymmetry t ← -t
- > BUT this is perfectly compatible with laws of physics that are TR symmetric
- ➤ This t-asymmetry is due to the initial condition of our Universe → Inflation?
- Similar to the fact that in <u>our</u> Universe we have a privileged reference frame
 - ← CMB radiation with same temperature



> BUT this is not a violation of Lorentz invariance of the laws of physics

THE "ARROW OF TIME"

- Macroscopic t-asymmetry
- ➤ Nature of Thermodynamics → (Eddington) Time's Arrow is a property of ENTROPY alone

- Unsolved problem? Is quantum wave function collapse related to the thermodynamic arrow of time?
- In particle physics, Particle <u>Decay</u> is an example of a time-asymmetric process:
- The mismatch between the <u>preparation</u> of $P \longrightarrow 1 + ... + n$ and $1 + ... + n \longrightarrow P$ is <u>not</u> related to T-violation. In fact, it looks like it prevents a true test of T-symmetry in unstable systems [Wolfenstein, Quinn]
- ➤ Any connection between the Universe t-asymmetry and the "arrow of time"? Probably YES, saying that the initial condition was improbable: more ordered.
- But none of these t-asymmetries is a test of TRV

CAN TR BE TESTED IN UNSTABLE SYSTEMS?

- ➤ A direct evidence for TRV would mean an experiment that, considered by itself, clearly shows TRV INDEPENDENT of, and unconnected to, the results for CPV
- ➤ No existing result up to now had demonstrated TRV in this sense. Two types of experiments can do it:
- 1) A non-zero expectation value of a T-odd operator for a non-degenerate stationary state → Electric Dipole Moment: P-odd, C-even, T-odd
 It can be generated by either
 - Strong T-violation \longrightarrow θ -term $\varepsilon_{\mu\nu\varsigma\sigma}$ $F^{\mu\nu}$ $F^{\varsigma\sigma}$ [Peccei & Quinn], or
 - Weak T-violation
 - 2) in \longrightarrow out: $S_{f,i} \longrightarrow S_{-i,-f}$ transition.

The Kabir asymmetry $K^0 o \overline{K}^0 v\underline{s}. \overline{K}^0 o K^0$ has been measured in CP-LEAR with non-vanishing value. But $K^0 o \overline{K}^0$ is a CPT-even transition, so CP \equiv T here! This is apparent in that the effect is t-independent and proportional to $\Delta\Gamma$

CP-Violation observed in Mixing x Decay transitions. Is it possible to search for TRV?

NEUTRAL MESON FACTORIES

EPR-ENTANGLEMENT: FLAVOUR-TAG

> The opportunity arises [M.C. Bañuls, J.B.] from the Quantum Mechanical

Entanglement imposed by the EPR correlation:

one can have SEPARATE tests of CP, T and CPT!

- $\triangleright B^0 \overline{B}^0$ EPR-Entanglement imposed by Particle Identity:
 - B^0, \overline{B}^0 are two states of a unique (complex) field
- \triangleright The two states connected by C, so that $C\mathcal{P} = + [\mathcal{P}: permutation operation].$
- ➤ In neutral meson factories, $B^0 \overline{B}^0$ produced by Y (4S)-decay: J=1, S=0 →

L=1
$$\rightarrow$$
 C= - \rightarrow \mathscr{P} = -, antisymmetric wave function \leftrightarrow

$$|Y \rightarrow B^0 \overline{B}^0 \qquad |i\rangle = \frac{1}{\sqrt{2}} \left[B^0(t_1) \overline{B}^0(t_2) - \overline{B}^0(t_1) B^0(t_2) \right]$$

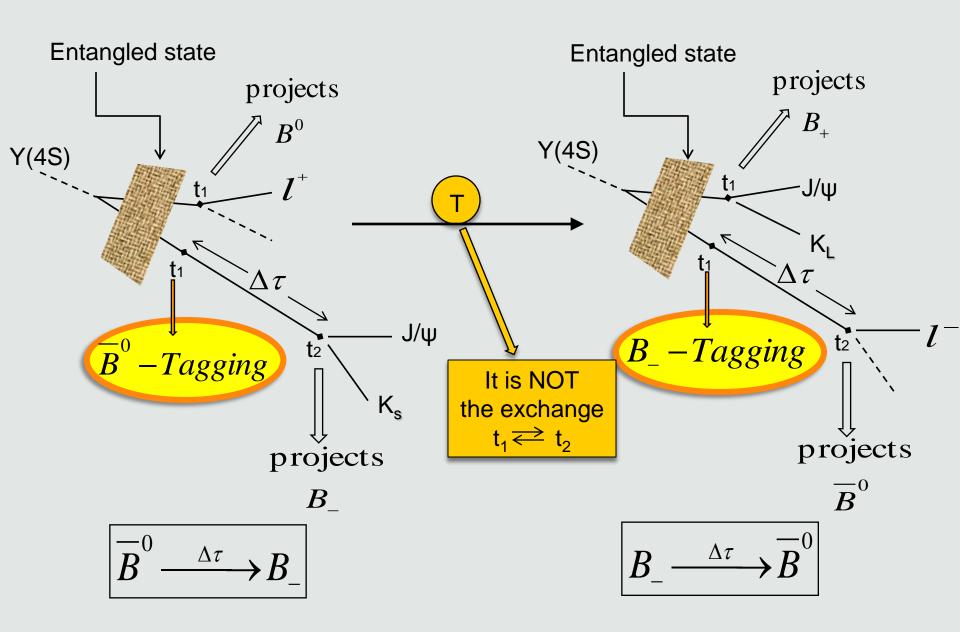
where the states 1 and 2 are defined by the time of their decay with $t_1 < t_2$.

Time evolution (including the Mixing $B^0 \to \overline{B}^0$) preserves $B^0 \overline{B}^0$ terms only.

Perfect for Flavour-Tag: The observation of $B^0 \rightarrow I^+$, for example, at time t_1 , tells us that the complementary (still living) state is $B^0 \rightarrow I^+$, and, once the state is prepared at t_1 , we have single state time evolution for $t_1 < t < t_2$.

EPR-ENTANGLEMENT: CP-TAG

- ➤ BUT the INDIVIDUAL STATE of each neutral meson is NOT DEFINED BEFORE its collapse as a filter imposed by the observation of the decay of its orthogonal partner!
- ➤ One can rewrite li> in terms of any other pair of orthogonal states of the individual neutral B-mesons:


Consider B_{+} and B_{-} , where B_{-} is filtered by the decay $J/\Psi K_{+}$, K_{+} being the neutral K-meson decaying $K_{+} \rightarrow \pi\pi$, and B_{+} is the orthogonal to B_{-} , not connected to $J/\Psi K_{+}$.

We may call the preparation of the initial state at t_1 , using the filter imposed by a first observation of one of these decays, a "CP-tag", although B_{\pm} are not CP-eigenstates of B's necessarily.

The same entangled state of the system can be rewritten

$$|i\rangle = \frac{1}{\sqrt{2}} [B_{+}(t_{1})B_{-}(t_{2}) - B_{-}(t_{1})B_{+}(t_{2})]$$

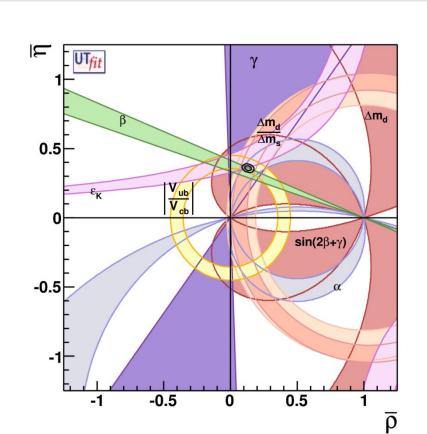
WHAT IS T-TRANSFORMATION EXPERIMENTALLY?

GENUINE OBSERVABLES NOT NEEDING ΔΓ

- We may proceed to a partition of the complete set of events into four categories, defined by the tag in the first decay at t_1 : B_+ , B_- , B^0 or \overline{B}^0 so we have 8 different Decay-Intensities at our disposal as functions of $\Delta \tau = t_2 t_1 > 0$
- ➤ Each of these 8 processes

$$I_{i}(\Delta \tau) \sim e^{-\Gamma \Delta \tau} \left\{ C_{i} \cos(\Delta m \Delta \tau) + S_{i} \sin(\Delta m \Delta \tau) + C'_{i} \cosh(\Delta \Gamma \Delta \tau) + S'_{i} \sinh(\Delta \Gamma \Delta \tau) \right\}$$

- For a genuine test of a symmetry, one has to compare the I_i (Δt) of a transition and its transformed.
- ightharpoonup Careful: Up to now, for CPV analyses in B-factories, BABAR & BELLE have assumed CPT-invariance and $\Delta\Gamma=0$:
- Then Δt = -Δt exchange, which is NOT TR-operation, [M.C.Bañuls, J.B.]
- becomes equivalent to TR.
- \longrightarrow Only 2 independent Intensities to be compared, if CP \sim T \sim Δ t are connected.
- \longrightarrow Alternatively, one may establish $S_i \neq 0$ for a single transition.


INTERLUDE: CP-Violation in Standard Model

- ➤ In the Standard Model, charged weak interactions among quarks are codified in a 3 X 3 unitarity matrix: the **CKM Matrix**.
- The existence of this matrix conveys the fact that the quarks which participate to weak processes are a linear combination of mass eigenstates
- The unitarity conditions can be represented by triangles in the complex plane.
- For the B-Bbar system, the unitarity triangle is given by

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Flavour Mixing and CP-Violation are described with high precision in the SM:

$$S_i \sim \sin(2 \beta) = 0.67 \pm 0.02$$

GENUINE OBSERVABLES NOT NEEDING ΔΓ

 \triangleright 1) Take B₀ →B₊ as the Reference transition and call (X,Y) the observed decays at times t₁ and t₂. The CP, T and CPT transformed transitions are

Transition	$B^0 \rightarrow B_{\scriptscriptstyle +}$	$\overline{B}^{\scriptscriptstyle 0} \to B_{\scriptscriptstyle +}$	$B_+ \rightarrow B^0$	$B_+ \rightarrow \overline{B}^0$
(X,Y)	(I ⁻ ,J/ΨK _L)	(I+,J/ΨK _L)	(J/ΨK _s , I+)	(J/ΨK _s , I ⁻)
Transformation	Reference	СР	Т	CPT

Exercise: Check that the 4 processes are experimentally independent and that Δt -exchange (in the same experimental "sample") $X \Longrightarrow Y$ is NOT in the Table

 \triangleright 2)Take $B^0 \rightarrow B_-$ as the Reference transition. The CP, T and CPT transformed

transitions are

Transition	$B^0 \rightarrow B_{-}$	$\overline{B}^0 \to B$	$B_{-} \rightarrow B^{0}$	$B_{-} \rightarrow \overline{B}^{0}$
(X,Y)	(I ⁻ ,J/ΨK _s)	(I+,J/ΨK _s)	(J/ΨK _L , I+)	(J/ΨK _L , l⁻)
Transformation	Reference	СР	Т	CPT

A second Asymmetry for each of the 3 transformations can be built!

- ➤ 3) Select (Y,X) from 1) as Reference.
- > 4) Select (Y,X) from 2) as Reference.
- Only QM EPR-Entanglement and time resolution assumed.

4 Model-Independent Asymmetries for CP

4 Model-Independent Asymmetries for T

T-VIOLATING PARAMETERS

Asymmetries in time dependent decay rates for any pair of T-conjugated transitions would be apparent through differences between $S_{\alpha,\beta}^{\pm}$ or $C_{\alpha,\beta}^{\pm}$ Example:

A significant difference between the $S^+_{\ell^+,K_S}$ and $S^-_{\ell^-,K_L}$ coefficients implies observation of T violation.

> In the standard model these coeficients are related as a consequence of CPT invariance and $\Delta\Gamma=0$ [J.B., M.C.Bañuls]

$$\begin{split} \mathbf{S} &= \mathbf{S}_{\mathbf{l}^{+}, \mathbf{K}_{\mathbf{S}}}^{+} = -\mathbf{S}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{S}}}^{+} = -\mathbf{S}_{\mathbf{l}^{+}, \mathbf{K}_{\mathbf{S}}}^{-} = \mathbf{S}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{S}}}^{-} = \\ &- \mathbf{S}_{\mathbf{l}^{+}, \mathbf{K}_{\mathbf{L}}}^{+} = \mathbf{S}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{L}}}^{+} = \mathbf{S}_{\mathbf{l}^{+}, \mathbf{K}_{\mathbf{L}}}^{-} = -\mathbf{S}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{L}}}^{-} \approx 0.7 \\ \mathbf{C} &= \mathbf{C}_{\mathbf{l}^{+}, \mathbf{K}_{\mathbf{S}}}^{+} = -\mathbf{C}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{S}}}^{+} = \mathbf{C}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{S}}}^{-} = -\mathbf{C}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{S}}}^{-} = -\mathbf{C}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{S}}}^{-} = \\ \mathbf{C}_{\mathbf{l}^{+}, \mathbf{K}_{\mathbf{L}}}^{+} = -\mathbf{C}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{L}}}^{+} = \mathbf{C}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{L}}}^{-} = -\mathbf{C}_{\mathbf{l}^{-}, \mathbf{K}_{\mathbf{L}}}^{-} \approx 0 \end{split}$$

➤ Any non-vanishing value of the asymmetry parameters

$$\Delta S_{\mathrm{T}}^{+} = S_{\ell^{-},K_{L}}^{-} - S_{\ell^{+},K_{S}}^{+}$$

$$\Delta S_{\mathrm{T}}^{-} = S_{\ell^{-},K_{L}}^{+} - S_{\ell^{+},K_{S}}^{-}$$

$$\Delta C_{\mathrm{T}}^{+} = C_{\ell^{-},K_{L}}^{-} - C_{\ell^{+},K_{S}}^{+}$$

$$\Delta C_{\mathrm{T}}^{-} = C_{\ell^{-},K_{L}}^{+} - C_{\ell^{+},K_{S}}^{-}$$

$$\Delta C_{\mathrm{T}}^{-} = C_{\ell^{-},K_{L}}^{+} - C_{\ell^{+},K_{S}}^{-}$$

measures T violation in the time evolution between the two decays.

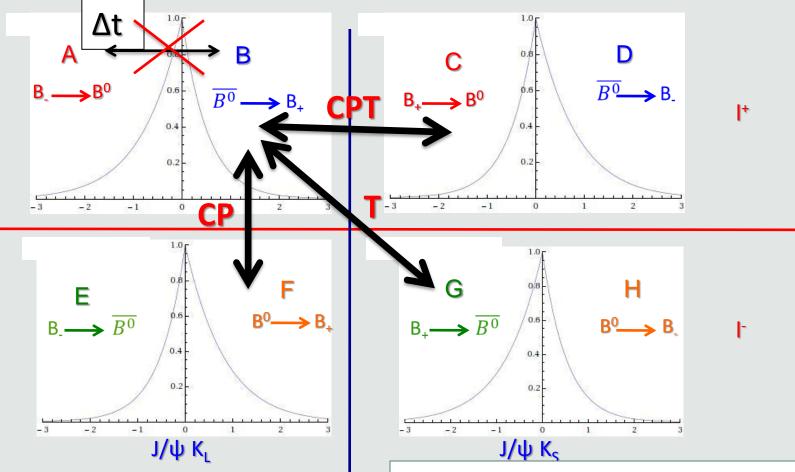
GENUINE CPV-ASYMMETRIES

$$A_{CP,1} = \frac{\Gamma(l^{-}, J/\Psi K_{L}) - \Gamma(l^{+}, J/\Psi K_{L})}{+}$$

$$A_{CP,2} = \frac{\Gamma(l^{-}, J/\Psi K_{S}) - \Gamma(l^{+}, J/\Psi K_{S})}{+} \leftarrow A_{CP,3} = \frac{\Gamma(J/\Psi K_{L}, l^{-}) - \Gamma(J/\Psi K_{L}, l^{+})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{+})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{+})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{+})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{+})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{+})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{+})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(J/\Psi K_{S}, l^{-})}{+} \leftarrow A_{CP,4} = \frac{\Gamma(J/\Psi K_{S}, l^{$$

GENUINE TRV-ASYMMETRIES

$$A_{T,1} = \frac{\Gamma(l^{-}, J/\Psi K_{L}) - \Gamma(J/\Psi K_{S}, l^{+})}{+}$$


$$A_{T,2} = \frac{\Gamma(l^{-}, J/\Psi K_{S}) - \Gamma(J/\Psi K_{L}, l^{+})}{+}$$

$$A_{T,3} = \frac{\Gamma(J/\Psi K_{L}, l^{-}) - \Gamma(l^{+}, J/\Psi K_{S})}{+}$$

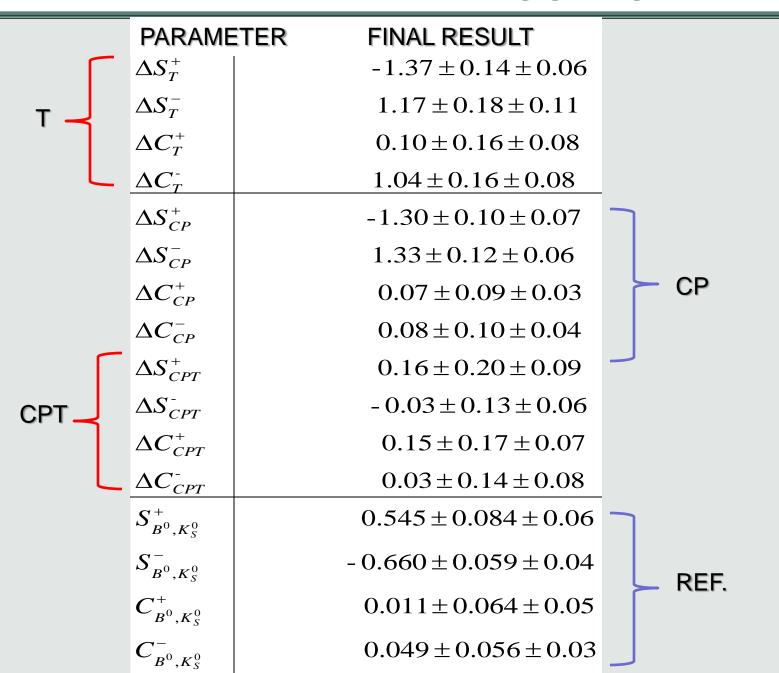
$$A_{T,4} = \frac{\Gamma(J/\Psi K_{S}, l^{-}) - \Gamma(l^{+}, J/\Psi K_{L})}{+}$$

GENUINE CPTV-ASYMMETRIES

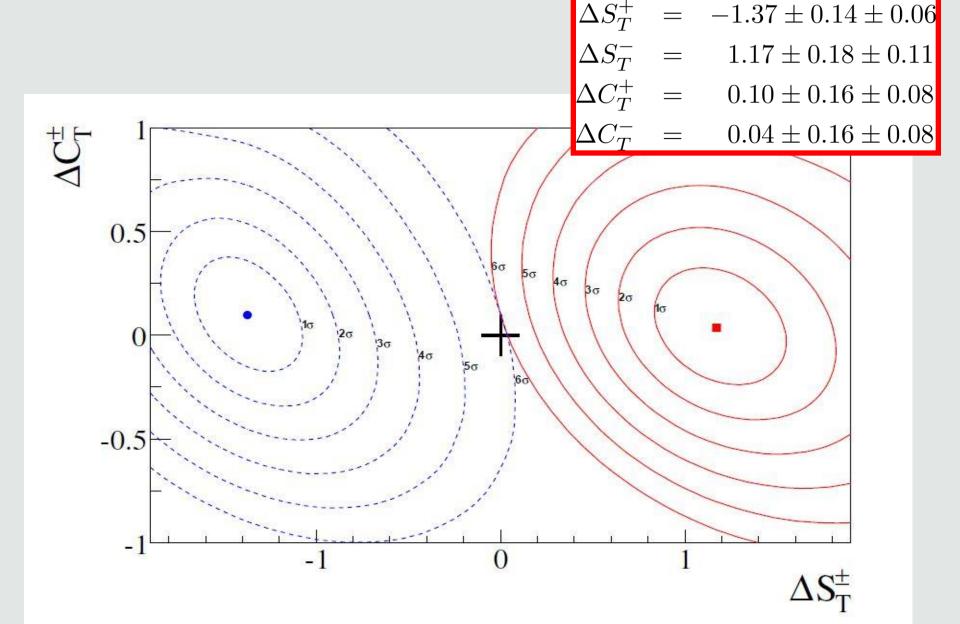
FOUNDATIONS OF THE ANALYSIS

In total we can build:

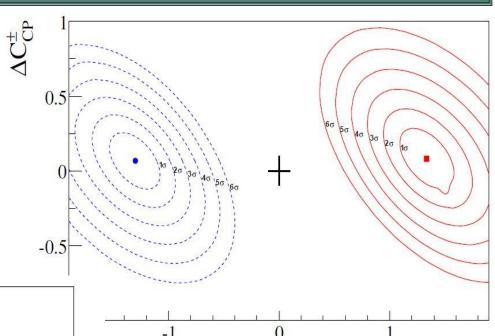
- 4 Independent T comparisons.
- 4 Independent CP comparisons.
- 4 Independent CPT comparisons.

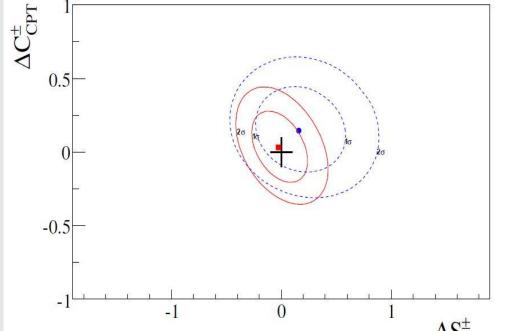

T implies comparison of:

- 1) "Opposite Δt sign", i.e., in \leftrightarrow out
- 2) Different CP states (J/ΨK_S vs. J/ΨK_L)
- 3) Opposite flavour states $(B^{^0} vs. \overline{B}^{^0})$


ΔS^{\pm} , ΔC^{\pm} parameters

EXPERIMENTAL RESULTS




INTERPRETATION OF THE RESULTS

INTERPRETATION OF THE RESULTS

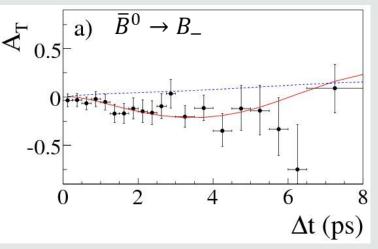
$$\Delta S_{CP}^{+} = -1.30 \pm 0.10 \pm 0.07$$
 $\Delta S_{CP}^{-} = 1.33 \pm 0.12 \pm 0.06$
 $\Delta C_{CP}^{+} = 0.07 \pm 0.10 \pm 0.03$
 $\Delta C_{CP}^{-} = 0.08 \pm 0.09 \pm 0.04$

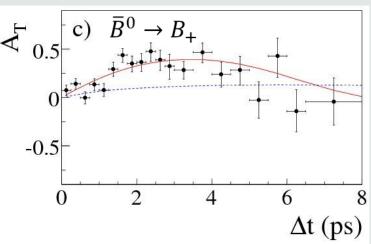
$$\Delta S_{CPT}^{+} = 0.16 \pm 0.20 \pm 0.09$$
 $\Delta S_{CPT}^{-} = -0.03 \pm 0.13 \pm 0.06$
 $\Delta C_{CPT}^{+} = 0.15 \pm 0.17 \pm 0.07$
 $\Delta C_{CPT}^{-} = 0.03 \pm 0.14 \pm 0.08$

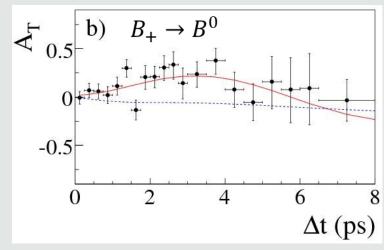
T RAW ASYMMETRIES & SIGNIFICANCE

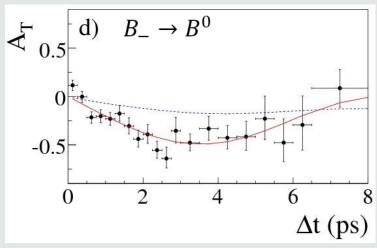
$$s_{NoT}^{2} = 226$$

$$s_{NoCP}^{2} = 307$$


$$14\sigma$$


$$16.6\sigma$$


$$s_{NoCPT}^{2} = 5$$


$$0.33\sigma$$

Stat. only Δν=8

CONCLUSION

- Observed t-Asymmetries are not T-violating:
 - Genuine TRV means Asymmetry under in out
- Unique opportunity for unstable systems: EPR-Entanglement between the two neutral mesons in B, and Φ, factories.
- ➤ Mixing x Decay Channels → 8 different Decay-Intensities.
 In appropriate combinations,
 - 4 Genuine independent Asymmetries for each: CP, T, CPT
 - 2 Independent Asymmetry parameters for each CP, T, CPT
- >T-violating parameters in the time evolution of a neutral B meson, between flavour and CP decay times, have been measured
- \triangleright BABAR observes a large deviation of T invariance at 14 σ level
- The results are consistent with CPT invariance in the time-evolution of the $B^{^{0}}-\overline{B}^{^{0}}$ system, connecting CPV and TRV in DIFFERENT transitions.
- This is the first direct observation of Time Reversal Violation in any system.

THANK YOU VERY MUCH FOR YOUR ATTENTION

IS EPR-ENTANGLEMENT APPLICABLE?

- Proposed tests of separate CP, T, CPT symmetries based on EPR-Entanglement imposed by Particle Identity: K^0, \overline{K}^0 are two states of identical particles.
- Time evolution (including the Mixing $K^0 \overline{K}^0$) preserves $K^0 \overline{K}^0$, or $K_+ K_-$, terms only.
- Perfect for tagging: Flavour-Tag, CP-Tag,...
- > What if the K^0 , \overline{K}^0 Identity is lost?

The two particle system would not satisfy the requirement $C\mathcal{P} = +$. In perturbation theory, if still J=1, C=-,

$$|i\rangle = |antisymmetric\rangle + \omega |symmetric\rangle \implies$$
 the ω -effect

- For the symmetric component, time evolution: ωK^0K^0 terms \longleftrightarrow Demise of tagging
 - Look for Correlated Decay Observables.

THE ω-EFFECT

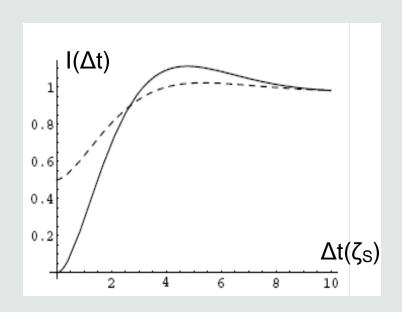
- In some Quantum Gravity models, matter propagation in topologically non-trivial space-time vacua suffers a possible loss of quantum coherence or "decoherence".
- Originated by space-time foam backgrounds? [Wheeler, Ellis et al.]

The matter quantum system is an open system, interacting with the "environment" of quantum gravitational d. o. f. → Apparent loss of unitarity for low-energy observers

Not a well-defined S-matrix between asymptotic states →
The CPT-operator is NOT well-defined [Wald]

- \triangleright It should be disentangled from the case of effective theories for Lorentz violation, in which CPT breaking means [H_{eff}, CPT] ≠ 0.
- The CPT "Violation" discussed here would be an "intrinsic" microscopic time irreversibility, so that \overline{K}^0 is not "well-defined" from K^0 . It implies:
 - 1) a modified single $K^0 \to \overline{K}^0$ evolution: α, β, γ parameterization [Lindblad].
 - 2) for entangled Kaon states in a Φ-factory, the ω-effect

ω-EFFECT OBSERVABLES


Consider the Φ-decay amplitude

$$\begin{split} &A(X,Y) = \langle X \big| K_S \rangle \langle Y \big| K_S \rangle N \big(A_1 + A_2 \big) \\ &A_1 = e^{-i(\lambda_L + \lambda_S)t/2} \Big[\eta_X e^{-i\Delta\lambda\Delta t/2} - \eta_Y e^{i\Delta\lambda\Delta t/2} \Big] \\ &A_2 = \omega \Big[e^{-i\lambda_S t} - \eta_X \eta_Y e^{-i\lambda_L t} \Big] \end{split}$$

- > Strategy: Choose a channel suppressed by η 's: $X = Y = \overline{u}^+ \overline{u}^-$, CP "forbidden"
- Enhanced effects $ω/|η_{+-}|$
- Intensity

$$I(\Delta t) \equiv \frac{1}{2} \int_{\Delta t}^{\infty} dt |A(X,Y)|^2$$
 $for \ |\omega| = |\eta_{+-}|$
 $\Omega = \phi_{+-} - 0.16\pi$

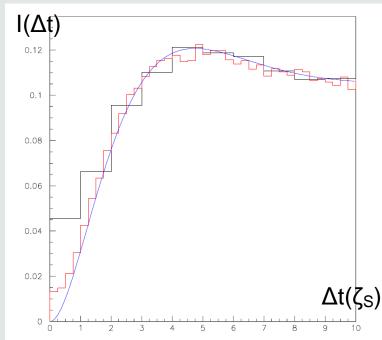
MEASUREMENT OF ω-EFFECT

KLOE [Di Domenico et al.] obtained the first measurement of the ω-parameter

Re(
$$\omega$$
) = $(-1.6^{+3.0}_{-2.1_{stat}} \pm 0.4_{syst})x10^{-4}$
Im(ω) = $(-1.7^{+3.3}_{-3.0_{stat}} \pm 1.2_{syst})x10^{-4}$

 $|\omega|$ <1.0 x 10⁻³ at 95% CL

➤ At least one order of magnitude improvement is expected with KLOE-2 at the


upgraded DAФNE.

All decoherence effects, including the ωeffect, manifest as a DEVIATON from the QM prediction of the correlation

I (π+π-,π+π-;
$$\Delta$$
t=0)=0.

Hence the reconstruction of events in the region near $\Delta t \approx 0$ is crucial \longleftrightarrow vertex resolution.

- In B-factories, there is no such privileged channel.
- With currently available data from BABAR and BELLE, the CPV semileptonic charge asymmetry, in equal sign dilepton channel I(l± l±; Δt), gives the bounds [Alvarez,J.B.,Nebot] -0.0084 ≤ Re(ω) ≤ 0.0100 at 95%CL

Monte Carlo simulation of $I(\pi+\pi-, \pi+\pi-; \Delta t)$, with the KLOE resolution $\sigma_{\Delta t} \approx \zeta s$ and with the expected KLOE-2 resolution $\sigma_{\Delta t} \approx 0.3 \zeta s$

ω-EFFECT FROM SPACE-TIME FOAM MODEL

- > ω-effect: as the result of local distortions of space-time in the neighborhood of defects, interacting with matter [J.B., Mavromatos, Sarkar].
- ➤ Recoil of Planck-mass defect \rightarrow metric deformation $g_{0i} \sim \Delta k^i / M_P = \zeta k^i / M_P$
- \triangleright Lorentz invariance still holds macroscopically $< \zeta k^i > = 0$, but
- > One has non-trivial quantum fluctuations $< \zeta^2 k_i k_j > \alpha \delta_{ij} \zeta^2 |\vec{k}|^2$
- > Stochastic effects of the space-time foam $\sim \sim |\omega|^2 \sim \frac{|\vec{k}|^4}{M_P^2 \Delta m^2}$ enhanced by quasi-degeneracy of mass eigenstates.
- \triangleright At the DAΦNE energy, $|\omega| \sim 10^{-4}$ ζ , which lies within the sensitivity of KLOE-2 for not much small values of the momentum transfer fraction ζ .
- In some concrete string-theory-inspired models examined by [Mavromatos, Sarkar], $\varsigma \sim \sum m^2/|\vec{k}|^2$.