Flavour Physics from Lattice QCD: Strange and Charm Quark Sectors

Gregorio Herdoíza

IFT, UAM

Flavour Mini-Workshop

XL International Meeting on Fundamental Physics, Benasque, May 27, 2012

Flavour Mini-Workshop, Benasque, 27-05-12

G. Herdoíza Strange and Charm Quark Physics from Lattice QCD

Lattice QCD & Flavour Physics

- Collective effort to test the Standard Model
- What quantities can be addressed on the lattice?

 m_q , M_h , $\langle h|\mathcal{O}|0\rangle$, $\langle h|\mathcal{O}|h'\rangle$, ... $\langle h|\mathcal{O}|h_1h_2\rangle$

- Examples in the strange and charm quark sectors
- ► What are the current uncertainties?
- What is the impact of lattice QCD in heavy flavour physics?
- What are the possible improvements?

LQCD ma K decays mixing decays conclusion systematics

precision in lattice QCD

control of systematic uncertainties

• number of dynamical flavours (*u*,*d*,*s*,*c*,... quarks) $N_{\rm f} = 0$; 2; 2 + 1; 2 + 1 + 1

 cutoff effects: lattice spacing a broken symmetries at $a \neq 0$ $m_a \ll 1/a$

range of auarks masses : simulation/physics

- finite size effects (FSE): lattice size L
- renormalisation
- statistical errors
 - improvement in algorithms •
 - autocorrelations
 - machines

 $m_{\rm PS}L \gg 1$

applicability of γ PT, HQET

O(a) improvement, continuum limit

non-perturbative

CKM matrix & lattice QCD

$$V_{CKM} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right) \quad .$$

lattice determinations in strange and charm sector

CKM	process	lattice	precision (%)
V _{us}	$K \to \ell \nu$	f _K	≤ 1.5
	$K \to \pi \ell \nu$	$f_{+}^{K\pi}(q^2 = 0)$	1.0
$ V_{us} / V_{ud} $	$K \to \mu \nu / \pi \to \mu \nu$	f_K / f_π	≤ 1.5
V _{cd}	$D \rightarrow \ell \nu$	f_{D_s}/f_D	4.0
	$D \rightarrow \pi \ell \nu$	$f_{+,0}^{D\pi}(0)$	~ 10.0
$ V_{cs} $	$D_s \rightarrow \ell \nu$	f _{Ds}	2.5
	$D ightarrow K \ell u$	$f_{+}^{DK}(0)$	~ 7.0
$\overline{V_{tq}^*V_{tq'}}$; $V_{cq}^*V_{cq'}$	ϵ_K	β _κ	4.0
		$K \rightarrow \pi \pi$	→ 30.0

quark masses, BSM four-fermion operators, ...

Flavour Mini-Workshop, Benasque, 27-05-12

G. Herdoíza Strange and Charm Quark Physics from Lattice QCD

m_s m_c

Flavour Mini-Workshop, Benasque, 27-05-12

- fundamental parameters of the SM
- appear in decay rates and induce symmetry breaking
- PDG : large uncertainties

- fundamental parameters of the SM
- appear in decay rates and induce symmetry breaking
- PDG : large uncertainties

How to determine a auark mass in lattice QCD?

- not physical observables
- parameters of the lagrangian ~ nead experimental input
 - use experimental measure of an observable depending on m_{α} $m_{\rm s}: m_{\rm K}, \ldots$

match to lattice determination $\rightsquigarrow m_a^{\text{bare}}$

- renormalisation :

interpolation

non-perturbative

 $m_{\rm s}$: ETMC $N_{\rm f} = 2$ $a = \{0.054, 0.067, 0.085, 0.098\}$ fm from $f_{\pi}^{(exp)}$

light-quark mass and lattice spacing dependence

[ETMC, 1010.3659]

m_s m_c

 $m_{\rm s}$: ETMC $N_{\rm f}=2$ $a = \{0.054, 0.067, 0.085, 0.098\}$ fm from $f_{\pi}^{(exp)}$

lattice spacing dependence

[ETMC, 1010.3659]

m_s m_c

 $m_{\rm s}$: ETMC $N_{\rm f}=2$ $a = \{0.054, 0.067, 0.085, 0.098\}$ fm from $f_{\pi}^{(exp)}$

strange-quark mass dependence

[ETMC, 1010.3659]

 $m_s[\overline{\text{MS}}, \mu = 2 \text{ GeV}] = 95(6) \text{ MeV}$ (6%) \rightarrow

$m_{\rm s}$: comparison

Flavour Mini-Workshop, Benasaue, 27-05-12

update:

G. Herdoíza

Strange and Charm Quark Physics from Lattice QCD

 $m_{\rm c}$: ETMC $N_{\rm f} = 2$ $a = \{0.054, 0.067, 0.085, 0.098\}$ fm from $f_{\pi}^{(exp)}$

m_c

non exhaustive comparison of recent results

Flavour Mini-Workshop, Benasque, 27-05-12

what improvements are needed?

- reduce the uncertainty coming from perturbation theory
- ▶ matching non-perturbative scheme (Schrödinger Functional, RI-MOM) to MS
- \blacktriangleright use of mass-independent scheme with $N_{\rm f} = 4$

[ALPHA, 1006.0672] [ETMC, 1112.1540]

K decays

 $K \to \ell \nu$

 $K \to \pi \,\ell \nu$

V_{us}

Flavour Mini-Workshop, Benasque, 27-05-12

unitarity of the CKM matrix: first row

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + O\left(\frac{M_{W}^{2}}{\Lambda_{NP}^{2}}\right)$$

Relative contributions

- $|V_{ud}| \approx 0.974$: rel. error $\delta \sim 0.02\%$
- $|V_{us}| \approx 0.225$: $\delta \sim 0.50\% \div 1\%$
- $|V_{ub}| \approx 0.004$: small

nuclear β decays $K_{\ell 3}$ and $K_{\ell 2}$ decays

unitarity of the CKM matrix: first row

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + O\left(\frac{M_{W}^{2}}{\Lambda_{NP}^{2}}\right)$$

Relative contributions

- $|V_{ud}| \approx 0.974$: rel. error $\delta \sim 0.02\%$
- $|V_{us}| \approx 0.225$: $\delta \sim 0.50\% \div 1\%$
- $|V_{ub}| \approx 0.004$: small

Determinations of Vus

• semileptonic $K_{\ell 3}$ decays: $K \to \pi \ell \nu$

 $\Gamma(K_{\ell 3(\gamma)}) \propto |V_{us}|^2 f_+(0)^2$

- $\delta(|V_{us}|f_+(0)) \sim 0.20\%$
- $f_{+}^{K^{0}\pi^{-}}(0)$: hadronic matrix element at $q^{2} = 0 \rightsquigarrow$ sub-percent precision in LQCD

nuclear β decays $K_{\ell 3}$ and $K_{\ell 2}$ decays

unitarity of the CKM matrix: first row

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 + O\left(\frac{M_{W}^{2}}{\Lambda_{NP}^{2}}\right)$$

Relative contributions

- $|V_{ud}| \approx 0.974$: rel. error $\delta \sim 0.02\%$
- $|V_{us}| \approx 0.225$: $\delta \sim 0.50\% \div 1\%$
- $|V_{ub}| \approx 0.004$: small

Determinations of Vus

• semileptonic $K_{\ell 3}$ decays: $K \to \pi \ell \nu$

$$\Gamma(K_{\ell 3(\gamma)}) \propto |V_{us}|^2 f_+(0)^2$$

- $\delta(|V_{us}|f_+(0)) \sim 0.20\%$
- $f_{+}^{K^{0}\pi^{-}}(0)$: hadronic matrix element at $q^{2} = 0 \rightsquigarrow$ sub-percent precision in LQCD
- leptonic $K_{\ell 2}$ decays: $K \to \ell \nu$

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} \propto \left|\frac{V_{\rm us}}{V_{\rm ud}}\right|^2 \ \left(\frac{f_{\rm K}}{f_{\pi}}\right)^2$$

- $\delta(V_{us}/V_{ud} \times f_K/f_\pi) \sim 0.20\%$
- f_K/f_π : ratio of decay constants \rightarrow sub-percent precision in LQCD is needed

nuclear β decays $K_{\ell 3}$ and $K_{\ell 2}$ decays

 f_K/f_π

 f_K/f_π

[FLAG, 1011.4408]

- $f_{K}/f_{\pi} = 1.193(05)$ [0.4%] $N_{\rm f} = 2 + 1$
 - 1.210(18) [1.5%] $N_{\rm f} = 2$

... preliminary [ETMC, 1012.0200] $N_{\rm f} = 2 + 1 + 1$

$$\mathsf{K}_{\ell 3} : \ \mathsf{K} \to \pi \ell \nu_{\Gamma(\mathsf{K}_{\ell 3(\gamma)}) \propto |V_{us}|^2 \ \mathsf{f}_+(q^2 = 0)^2} \ \rightsquigarrow \ \langle \pi(\rho') \,|\, \mathsf{V}_{\mu} \,|\, \mathsf{K}(\rho) \rangle$$

- interpolation to $q^2 = 0$
- SU(3) breaking : $f_+(0) = 1 + f_2 + f_4$
- Ademollo-Gatto theorem : no LECs of χ PT in f_2 : $f_2 = -0.0226$

compute deviations from $f_+(0) - 1 - f_2$

Flavour Mini-Workshop, Benasque, 27-05-12

LQCD ma K decays mixing decays conclusion

 V_{us} from $K_{\ell 2}$ and $K_{\ell 3}$

[FLAG, 1011.4408]

LQCD m_{q} K decays mixing decays conclusion

CKM: unitarity first row

[FLAG, 1011.4408]

lattice + Kaon branching fractions

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 0.0020(150)$$

attice +
$$|V_{us}|$$
 from β -decay

 $f_+(0)$:
 0.0000(7)

 f_K/f_π :
 -0.0001(6)

V_{us}

what improvements are needed?

KLOE-2

incorporate isospin breaking effects on the lattice

- QED : $q_u \neq q_d$
- QCD: $m_u \neq m_d$
- example: removing QED $\rightsquigarrow \hat{M}_{K^+} \hat{M}_{K^0} \approx -6 \, \text{MeV} [1\%]$

V_{us}

what improvements are needed?

KLOE-2

incorporate isospin breaking effects on the lattice

- QED: $q_u \neq q_d$
- QCD: $m_u \neq m_d$
- example: removing QED $\rightsquigarrow \hat{M}_{K^+} \hat{M}_{K^0} \approx -6 \, {\rm MeV} \, [1\%]$
- expansion in $m_d m_u$ [RM123, 1110.6294]

$$\mathcal{L}_m = \frac{m_u + m_d}{2} (\bar{u}u + \bar{d}d) - \frac{m_d - m_u}{2} (\bar{u}u - \bar{d}d)$$
$$= m_{ud} \bar{q}q - \Delta m_{ud} \bar{q}\tau_3 q$$

expand the path integral

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{\int D\phi \ \mathcal{O} \ e^{-S}}{\int D\phi \ e^{-S}} \\ &= \frac{\int D\phi \ \mathcal{O} \left(1 + \Delta m_{ud} \ \hat{S}_3\right) e^{-S_0}}{\int D\phi \ (1 + \Delta m_{ud} \ \hat{S}_3) e^{-S_0}} + \ldots = \frac{\langle \mathcal{O} \rangle_0 + \Delta m_{ud} \ \langle \mathcal{O} \ \hat{S}_3 \rangle_0}{1 + \Delta m_{ud} \ \langle \hat{S}_3 \rangle_0} + \ldots \end{split}$$

 $\hat{S}_3 = \sum_x [\bar{q}\tau_3 q](x)$

LQCD m_{q} K decays mixing decays conclusion

 V_{us} : isospin breaking

G. Herdoíza

Strange and Charm Quark Physics from Lattice QCD

LQCD m_q K decays **mixing** decays conclusion

neutral meson mixing : bag parameters

Flavour Mini-Workshop, Benasque, 27-05-12

LQCD m_q K decays **mixing** decays conclusion

Kaon bag parameter B_{K} : $K^{0} - \bar{K}^{0}$ oscillations

Bv

CKM matrix and Unitarity Triangle

K-sector : indirect CP violation via ϵ_K

$$\bullet \quad \epsilon_{K} = \frac{A(K_{L} \to (\pi\pi)_{l=0})}{A(K_{S} \to (\pi\pi)_{l=0})}$$
$$\simeq \kappa_{\epsilon} \frac{e^{i\phi_{\epsilon}}}{2\sqrt{2}M_{K}\Delta M_{K}} \operatorname{Im}\{\langle \bar{K}^{0} | \mathcal{H}_{\text{eff}}(\Delta S = 2) | K^{0} \rangle\}$$

•
$$B_K$$
: Kaon bag parameter

$$\langle \bar{K}^0 | \mathcal{O}^{\Delta S=2} | K^0 \rangle = \frac{8}{3} B_K f_K^2 m_k^2$$

 $\mathcal{O}^{\Delta S=2} = \ (\overline{s}\gamma_{\mu}^{L}d)(\overline{s}\gamma_{\mu}^{L}d)$

• among the largest uncertainties in the UTA : $\delta(\epsilon_{\rm K})|_{\rm exp} pprox 0.5\%$

 $\delta(B_K)|_{\rm latt} \approx 4.0\%$

$$\delta(|V_{CD}|^4)|_{\text{incl.}} \approx 4 \times 2.0\%$$

B_K : BMW

- non-perturbative renormalisation
- Wilson fermions : mixing with operators of wrong chirality

Bv

light and strange quark mass dependence

[BMW, 1106.3230]

ĥ

historical perspective

recent determinations

Bv

[FLAG, 1011.4408]

\hat{B}_K	=	0.738(20) [2.7%]	$N_{\rm f} = 2 + 1$
		0.729(30) [4.1%]	$N_{\rm f}=2$
0902.1074]		0.730(30) [4.1%]	$N_{\rm f}=0$
1111.1262]		0.747(18)	$N_{\rm f} = 2 + 1 + 1$
1106.3230]		0.773(12) [1.4%]	$N_{\rm f} = 2 + 1$
	Â _K 0902.1074] 1111.1262] 1106.3230]	\hat{B}_{K} = 0902.1074] 1111.1262] 1106.3230]	$ \hat{B}_{K} = 0.738(20) [2.7\%] \\ 0.729(30) [4.1\%] \\ 0.902.1074] 0.730(30) [4.1\%] \\ 1111.1262] 0.747(18) \\ 1106.3230] 0.773(12) [1.4\%] $

Flavour Mini-Workshop, Benasaue, 27-05-12

G. Herdoíza

Strange and Charm Quark Physics from Lattice QCD

what improvements are needed?

$$\epsilon_{\mathcal{K}} = \exp(i\phi_{\epsilon}) \sin(\phi_{\epsilon}) \left[\frac{\operatorname{Im}[\langle \vec{K}^{0} | \mathcal{H}_{d}^{\Delta S=2} | \mathcal{K}^{0} \rangle]}{\Delta M_{\mathcal{K}}} + \frac{\operatorname{Im}(\mathcal{A}_{0})}{\operatorname{Re}(\mathcal{A}_{0})} \right]$$

Bv

- Iong-distance contributions
- $\blacktriangleright \quad K \to (\pi\pi)_{l=0} \quad \rightsquigarrow \quad \operatorname{Im}(A_0)$
- $K \to (\pi \pi)_{l=2}$ is easier: $\rightsquigarrow \operatorname{Im}(A_2)$
- ► indirect : chiral effective theory
- direct : QCD in a finite volume

[Lellouch & Lüscher, hep-lat/0003023]

[RBC-UKQCD, 1111.1699]

value of $\operatorname{Re}(A_2)$ [18%] in good agreement with \exp^t [4%]

 $Im(A_2) = -(6.83 \pm 0.51 \pm 1.30) 10^{-13} \text{ GeV}$ [21%]

meanwhile use $\operatorname{Re}(A_{0,2})^{\exp}$ and $(\epsilon'/\epsilon)|_{\exp}$ to estimate $\operatorname{Im}(A_0)$

 $(\kappa_{\epsilon})_{\rm abs} = 0.923(06)$ [Buras, Guadagnoli, Isidori, 1002.3612] 0.940(20) D decays

$D_{s}, D \rightarrow \ell \nu$ \mathcal{D}_{s}

 $D \to K(\pi) \ell \nu$

LQCD m_{q} K decays mixing decays conclusion f_{D} D -

$N_{\rm f}=2$: f_D and $f_{D_{\rm s}}$

 $\Gamma(D_s \to \ell \nu) \propto |V_{cs}|^2 f_{D_s}^2$ with $f_{D_s} p_\mu = \langle 0|\bar{s}\gamma_\mu \gamma_5 c|D_s(p) \rangle$

 $a = \{0.054, 0.067, 0.085, 0.098\}$ fm

[ETMC, 1107.1441]

LQCD mg K decays mixing decays conclusion

 $D \rightarrow K$

f_D and f_{D_s} : comparison

 $\Gamma(D_s \to \ell \nu) \propto |V_{cs}|^2 f_{D_s}^2$ with $f_{D_s} p_\mu = \langle 0|\bar{s}\gamma_\mu \gamma_5 c|D_s(p) \rangle$

$$\begin{split} & \text{SU(3) breaking}: \ f_{D_s}/f_D \\ & \text{unitarity}: \ \text{second row} \quad |V_{cd}| \quad (6\%) \quad |V_{cs}| \quad (4\%) \\ & |V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 - 1 \ \approx \ 2(7) \times 10^{-2} \end{split}$$

Flavour Mini-Workshop, Benasque, 27-05-12

semileptonic $D \rightarrow K$

[ETMC, 1104.0869; PRELIMINARY]

K

Flavour Mini-Workshop, Benasaue, 27-05-12

G. Herdoíza

Strange and Charm Quark Physics from Lattice QCD

 $\frac{d\Gamma}{dq^2}(D \to K\ell\nu_\ell) \propto |V_{cs}|^2 f_+(q^2)^2$

semileptonic $D \rightarrow K$

[Na et al., LAT2011]

Need further improvements to constrain $|V_{cd}|$ and $|V_{cs}|$

conclusions

strange and charm quark physics from the lattice

types of observables :

- ► precise : accuracy $\lesssim 1\%$ $K_{\ell 2}, K_{\ell 3} \rightarrow \text{isospin breaking}$ ► tricky : few % m_a, m_C B_K $f_{D_s}, f_D, f_{+,0}(0)$ ► challenging : > 10% $K \rightarrow \pi\pi$ ► terra incognita
 - $D \rightarrow h_1 h_2$
- other quantities currently being studied on the lattice : BSM operators relevant for $K^0 - \bar{K}^0$ mixing

charmonium spectrum and radiative decays, f_{D^*} , $g_{D^*D\pi}$, B_D ,...