XL International Meeting on Fundamental Physics

> Benasque, May (12

BABAR

BELLE

 \mathcal{D}

FROM B-FACTORIES

67

RESULTS

 τ^+ τ^+ τ^- A. Oyanguren (IFIC – Valencia)

B factories

B factories

Integrated luminosity of B factories

492 BaBar + 363 Belle publications !

Outline

B Physics:

- Radiative $b \rightarrow s\gamma$ (NEW, Moriond '12)
- Rare $B \rightarrow X \ell \ell$ (NEW, Moriond '12)
- Semileptonic $B \rightarrow D^{(*)} \tau v$ (update, FPCP '12)
- Time Reversal Violation (NEW, FPCP '12)

• Charm Physics:

- Mixing and CPV (NEW, CHARM '12, FPCP '12)
- τ Physics:
- CPV (RECENT, SUSY '11)

Summary

B Physics

Motivation:

Flavor-Changing Neutral-Current processes, forbidden at tree level in the Standard Model

- LO radiative penguin diagram
- For photon energy Eγ>1.6 GeV

 SM-based prediction:
 HFAG average:

[Misiak et al. PRL 98 022002 (2007)]

B(B \rightarrow X_sγ)= (3.15 ± 0.23)x10⁻⁴ B(B \rightarrow X_sγ)= (3.55 ± 0.25 ± 0.09)x10⁻⁴ [HFAG arXiv:1010.1589v3 (2011)]

New physics may increase the rate significantly

• Photon energy spectrum important for understanding the *b* quark momentum distribution

 \rightarrow access to HQET parameters: m_b and $\mu_{\pi}^2 \rightarrow |V_{ub}|$

Experimental method:

• m_{ES} fits to a sum of 38 exclusive X_s final states to extract signal yields ($X_s = 1$ or 3 kaons (with $\leq 1 K_s (\rightarrow \pi^+ \pi^-); \leq 1 \eta; \leq 4 \pi' s$ ($\leq 2 \pi^{0'} s$))

 $B \rightarrow X$

 Signal and background separated using random forest classifiers: Signal: B energy and error, m_{Xs}, event shape
 Background: event shape, B direction, veto to photons from π⁰...

Systematics includes quark hadronization models

A. Oyanguren

$\mathbf{B} \longrightarrow \mathbf{X}_{s} \mathbf{\gamma}$

• Fit to m_{xs} spectrum (HQET parameters): PBF/(100 MeV/c²)x10⁶ 30 ⊨ m_{xs} spectrun - Kinetic model 25 20 15 10 5 [Bensen et al. Nucl. Phys. B 710 371 (2005)] - Shape function model **BaBar** [Lange et al. PRD 72 073006 (2005)] preliminary Kinetic Model Shape Function Model $4.568^{+0.038}_{-0.036} \, \text{GeV}/c^2$ $4.579^{+0.032}_{-0.029} \,\mathrm{GeV}/c^2$ Data m_b $0.450^{+0.054}_{-0.054} \,\mathrm{GeV^2}$ $0.257_{-0.039}^{+0.034} \,\underline{\mathrm{GeV}}^2$ μ_{π}^2 -10 Fit using the kinetic model 1.6 1.8 m_{x_s} (GeV/c²) **Compared to HFAG:** $PBF/(100 \text{ MeV/c}^2 \text{ in } m_{X_s}) \text{ x10}^{-1}$ 50 40 Shape function Kinetic model E_v spectrum $4.620\substack{+0.039 \\ -0.032}$ $m_b (\text{GeV}/c^2)$ 4.591 ± 0.031 $0.288^{+0.054}_{-0.054}$ $\mu_\pi^2~(\,{
m GeV}^2)$ 0.454 ± 0.038 -0.07410 **BaBar** The total branching fraction preliminary -10 (E_γ>1.9GeV): 19 2.12.3 2.42.52.2 E_{γ} (GeV) $\mathcal{B}(\overline{B} \to X_s \gamma) = (3.29 \pm 0.19 \pm 0.48) \times 10^{-4}$ In agreement with SM

$\mathbf{B} \longrightarrow \mathbf{K}^{(*)}\ell^+\ell^-$

Motivation:

- $b \rightarrow S\ell^+\ell^-$ forbidden at tree level in the Standard Model
- It is allowed in loop and box diagrams with BR~ 10⁻⁶

 $C_9^{\text{eff}}(C_{10}^{\text{eff}})$ from vector (axial-vector) part of Z penguin & W box

- Contribution from New Physics may alter the C_{eff} values
 Observables: descurrents are extended with a second second
 - → Observables: decay rates, rate asymmetries, angular distributions

A. Oyanguren

$\mathbf{B} \longrightarrow \mathbf{K}^{(*)}\ell^+\ell^-$

Experimental method:

[BaBar, PRD, arXiv:1204.3933]

429 fb⁻¹

- Signal reconstructed in the decay channels: $B^{0,+} \rightarrow K^{0}{}_{s}{}^{,+} \ell^{+}\ell$, $B^{0,+} \rightarrow K^{*0,*+} (\rightarrow K\pi) \ell^{+}\ell^{-}$ (μ and e)
- Fit to m_{ES} (and $m_{K\pi}$)
- Veto J/ ψ and ψ (2S) regions ($\rightarrow \ell^+ \ell^-$)
- Background rejected using Bagged Decision Trees (BDT's)

- $\Delta E = E_B^* - E_{CM}/2$, event shape, p_T of the event, decay vertex, angular info of the event

• Results in six bins (s_1-s_6) + one (s_0) of s=m²_{$\ell\ell$}

$\mathbf{B} \longrightarrow \mathbf{K}^{(*)} \ell^+ \ell^-$

[BABAR, arXiv:1204.3933] [Belle, PRL 103, 171801 (2009)] [CDF, PRL 107, 201802 (2011)]

• Total branching fractions:

 $\mathcal{B}(B \to K\ell^+\ell^-) = (4.7 \pm 0.6 \pm 0.2) \times 10^{-7}$

$$\mathcal{B}(B \to K^* \ell^+ \ell^-) = (10.2^{+1.4}_{-1.3} \pm 0.5) \times 10^{-7}$$

[Ball & Zwicky, PRD71, 014015(2005), PRD71, 014029(2005); [Ali et al, PRD 66, 034002 (2002)] • Partial branching fractions:

Good agreement between experiments (also with LHCb, arxiv:1112:3515) and with SM

IMFP 2012

A. Oyanguren

 $\mathbf{B} \longrightarrow \mathbf{K}^{(*)}\ell^+\ell^-$

 Rate asymmetry and dimuon/dielectron rate have less theo. uncertainties (more sensitive to New Physics effects)

A. Oyanguren

$\mathbf{B} \longrightarrow \mathbf{K}^{(*)}\ell^+\ell^-$

• Isospin asymmetry:

$$\mathcal{A}_{I}^{K^{(*)}} \equiv \frac{\mathcal{B}(B^{0} \rightarrow K^{(*)0}\ell^{+}\ell^{-}) - r_{\tau}\mathcal{B}(B^{+} \rightarrow K^{(*)+}\ell^{+}\ell^{-})}{\mathcal{B}(B^{0} \rightarrow K^{(*)0}\ell^{+}\ell^{-}) + r_{\tau}\mathcal{B}(B^{+} \rightarrow K^{(*)+}\ell^{+}\ell^{-})}$$

IMFP 2012

F_L: Fraction of longitudinal polarization of K^{*}

$$\frac{1}{\Gamma(s)}\frac{d\Gamma}{d\cos\theta_{K}} = \frac{3}{2}F_{L}(s)\cos^{2}\theta_{K} + \frac{3}{4}(1-F_{L}(s))(1-\cos^{2}\theta_{K})$$

A_{FB} : Forward-Backward Asymmetry of $\ell^+\ell^-$

$$\frac{1}{\Gamma(s)}\frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{3}{4}F_{L}(s)(1-\cos^{2}\theta_{\ell}) + \frac{3}{8}(1-F_{L}(s))(1+\cos^{2}\theta_{\ell}) + \mathcal{A}_{FB}\cos\theta_{\ell}$$

Lepton Number Violation

Motivation:

- Lepton Number Violation → understanding of quantum nature of neutrinos
 → test predictions in BSM models
- At B-factories LNV may be searched in $\Delta L=2$ B meson decays:

B⁺→ K⁻/ $\pi^{-}\ell^{+}\ell^{+}$ (BaBar, PRD 85, 071103(R) (2012)) B⁺→ D⁻ $\ell^{+}\ell^{+}$ (Belle, PRD 84, 071106(R) (2011))

 \rightarrow Sensitive to heavy Majorana neutrinos (m v_{M} 2-4 GeV) BR's being ~ 10⁻⁷

 \rightarrow Lepton-hadron mass enhancement by resonance production

[J.-M. Zhang and G.-L. Wang, Eur. Phys. J. C 71, 1715(2011);

A. Atre, T. Han, S. Pascali, and B. Zhang, J. High Energy Phys. 05 (2009) 030;

T. Han and B. Zhang, Phys. Rev. Lett. 97, 171804 (2006).]

 D^{-}

Lepton Number Violation

Experimental method:

[Belle, PRD 84, 071106(R) (2011)]

700 fb⁻¹

- Belle: $D^- \rightarrow K^- \pi^+ \pi^- + 2$ leptons of same charge
- 2D fit to ΔE and m_{ES} distributions

90% CL Upper Limits:

Mode	ϵ [%]	N _{obs}	N_{\exp}^{bkg}	U.L. [10 ⁻⁶]
$B^+ \rightarrow D^- e^+ e^+$	1.2	0	0.18 ± 0.13	<2.6
$B^+ \rightarrow D^- e^+ \mu^+$	1.3	0	0.83 ± 0.29	<1.8
$\underline{B^+ \to D^- \mu^+ \mu^+}$	1.9	0	1.10 ± 0.33	<1.1

• Comparison with LHCb:

$$\begin{array}{ccc} \mathcal{B}(B^- \to D^+ \mu^- \mu^-) &< 6.9 \times 10^{-7} \\ \mathcal{B}(B^- \to D^{*+} \mu^- \mu^-) &< 2.4 \times 10^{-6} \end{array}$$

[LHCb, arXiv:1201.5600]

Lepton Number Violation

Experimental method:

429 fb⁻¹

• B \rightarrow K or $\pi + \ell^+ \ell^+$ (selection similar to B \rightarrow K^(*) $\ell^+ \ell^-$)

• 90 % CL Upper Limits:

Mode	$\mathcal{B} (\times 10^{-8})$	$\mathcal{B}_{UL}~(\times 10^{-8})$
$B^+ \to \pi^- e^+ e^+$	$0.27^{+1.1}_{-1.2}\pm0.1$	2.3
$B^+ \to K^- e^+ e^+$	$0.49^{+1.3}_{-0.8}\pm0.1$	3.0
$B^+ \to \pi^- \mu^+ \mu^+$	$0.03^{+5.1}_{-3.2}\pm0.6$	10.7
$B^+ \to K^- \mu^+ \mu^+$	$0.45^{+3.2}_{-2.7}\pm0.4$	6.7

[BaBar, PRD 85, 071103(R) (2012)]

• Limits on resonance production (m $_{\ell h}$), sensitive to $m_{_{V\!M}}$

• Comparison with other experiments:

CLEO [*PRD 65, 111102 (2002)*] BF($B^+ \rightarrow (\pi, K^{(*)}, \rho) \ell^+ \ell^+$) < (1.0 - 8.3)·10⁻⁶ LHCb [*PRL 108, 101601 (2012); arXiv:1201.5600*] BF($B^+ \rightarrow (K^-, \pi^-)\mu^+\mu^+$) < (5.4 - 1.3)·10⁻⁸

IMFP 2012

$B \rightarrow D^{(*)} \tau v$

Motivation:

- Sensitive to charged-Higgs effects
- Involve form factors which can be measured in $B \rightarrow D^{(*)}e/\mu\nu$ decays
- Observables: R(D) and R(D*) ratios

$$R(D^{(*)}) = \frac{\mathcal{B}\left(B \to D^{(*)}\tau\nu_{\tau}\right)}{\mathcal{B}\left(B \to D^{(*)}\ell\nu_{\tau}\right)}$$

- can be enhanced by the charged-Higgs (tan β/m_{H})
- several syst. and theo. uncertainties cancel out

SM predictions:

 $R(D)_{SM} = 0.297 \pm 0.017$ $R(D^*)_{SM} = 0.252 \pm 0.003$

[S. Fajfer, J. F. Kamenik, and I. Nisandzic, arXiv:1203.2654; J. F. Kamenik and F. Mescia, Phys. Rev. D 78, 014003, (2008)]

$B \longrightarrow D^{(*)} \tau \nu$

Experimental method:

- BaBar: Btag fully reconstructed into hadrons (Improved efficiencies (lepton and Btag))
- Bsig: D^(*) and lepton (μ, e)
 - 4 signal samples: $(D^0, D^+, D^{*0}, D^{*+})\ell v$ (to extract $B \rightarrow D^{(*)}\tau v$)
 - 4 control samples: (D⁰, D⁺, D^{*0}, D^{*+}) $\pi^0 \ell \nu$ (to derive D^{**} $\ell \nu$ bkg)
- 2D unbinned ML fit $m_{miss}^2 p_{\ell}^*$ Yields for: $B \rightarrow (D^0, D^+, D^{*0}, D^{*+})\tau v$ $B \rightarrow (D^0, D^+, D^{*0}, D^{*+})\ell v$ $B \rightarrow (D^0, D^+, D^{*0}, D^{*+})\pi^0\ell v$

 \rightarrow R(D) and R(D*)

 $m_{miss}^{2} = (p_{e+e-} - p_{Btag} - p_{D(*)} - p_{\ell})^{2}$

426 fb⁻¹

A. Oyanguren

$B \rightarrow D^{(*)} \tau v$

• New Results (FPCP'12):

to be submitted to PRL

Decay	$N_{ m sig}$	$N_{ m norm}$	$\mathcal{R}(D^{(*)})$	$\mathcal{B}(B \to D^{(*)} \tau \nu) (\%)$	$\Sigma_{\rm tot}$
$B^- \to D^0 \tau^- \overline{\nu}_{\tau}$	314 ± 60	1995 ± 55	$0.429\pm0.082\pm0.052$	$0.99 \pm 0.19 \pm 0.13$	4.7
$B^- \rightarrow D^{*0} \tau^- \overline{\nu}_{\tau}$	639 ± 62	8766 ± 104	$0.322\pm0.032\pm0.021$	$1.71\pm0.17\pm0.13$	9.6
$\overline{B}{}^0 \to D^+ \tau^- \overline{\nu}_{\tau}$	177 ± 31	986 ± 35	$0.469\pm0.084\pm0.052$	$1.01\pm0.18\pm0.12$	5.3
$\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$	245 ± 27	3186 ± 61	$0.355\pm0.039\pm0.020$	$1.74\pm0.19\pm0.12$	10.5
$\overline{B} \rightarrow D\tau^- \overline{\nu}_{\tau}$	489 ± 63	2981 ± 65	$0.440\pm0.058\pm0.042$	$1.02 \pm 0.13 \pm 0.10$	6.8
$\overline{B} \rightarrow D^* \tau^- \overline{\nu}_{\tau}$	888 ± 63	11953 ± 122	$0.332\pm0.024\pm0.017$	$1.76\pm0.13\pm0.11$	13.4

• Comparison with the SM:

 $B \rightarrow D^{(*)} \tau \nu$

• Comparison with previous measurements:

Good agreement between experimental results

• Interpretation Beyond the Standard Model:

A charged Higgs (2HDM type II) could enhance or decrease the R(D) and R(D*) ratios depending on tan β /mH

$$R(D^{(*)}) = R(D^{(*)})_{\rm SM} + A^{(*)} \frac{\tan^2 \beta}{m_{H^+}^2} + B^{(*)} \frac{\tan^4 \beta}{m_{H^+}^4}$$

Effect of 2DHM (accounting for difference in efficiency):

The combination of R(D) and R(D^{*}) excludes the Type II 2HDM in the full $\tan\beta$ -m_H parameter space with a probability of >99.8% (M_H>10GeV)

Charm Physics

Motivation:

• Direct CP violation in D decays arises through interference between:

• In the SM is CKM suppressed O(10⁻³) or less: $V_{cs} \rightarrow 1 - \frac{1}{2}\lambda^2 - i\eta A^2\lambda^4$

- New Physics can increase or reduce the effect:
 - e.g. additional CP phase from charged Higgs boson

[PRD 75, 036008 (2007)] [hep-ph/0104008 (2001)] [PRD 51, 003478 (1995)]

- SCS decays are more likely to show the effect if present
- Current experimental sensitivity O(10⁻³)
- LHCb results at 3.5σ, CDF at 2.7σ:

 $\Delta A_{CP} = A_{K^+K^-} - A_{\pi^+\pi^-} = -(0.82 \pm 0.21 \pm 0.11)\%, (LHC_b) 3.5\sigma$ Phys. Rev.lett.108,111602 (2012) $\Delta A_{CP} = A_{K^+K^-} - A_{\pi^+\pi^-} = -(0.62 \pm 0.21 \pm 0.10)\%, (CDF) 2.7\sigma$ arxiv: 1205.3899

• CP violation in various SCS modes has been searched by B-factories Ex. of recent result:

$$\mathcal{A}_{cp}(\mathcal{D}^+ \to \phi \pi^+) = \frac{\Gamma(\mathcal{D}^+ \to \phi \pi^+) - \Gamma(\mathcal{D}^+ \to \phi \pi^+)}{\Gamma(\mathcal{D}^+ \to \phi \pi^+) + \Gamma(\mathcal{D}^+ \to \phi \pi^+)}$$

(Corrected by $\mathsf{A}_{\mathsf{FB}} \text{ and } \mathsf{A}_{\pi}^{\,\epsilon}$)

Mode	Data (fb ⁻¹)	Process type	CP eigen state	Аср (%)	Ref
D ⁰ →K ⁺ K ⁻	540	SCS	Yes	$-0.43 \pm 0.30 \pm 0.11$	PL B670,190(2008)
$D^0 \rightarrow \pi^+ \pi^-$	540	SCS	Yes	$+0.43 \pm 0.52 \pm 0.11$	PL B670,190(2008)
$D_s^+ \rightarrow K_s^0 \pi^+$	673	SCS		$+5.45 \pm 2.50 \pm 0.33$	PRL 104,181602(2010)
$D^+ \rightarrow K_S^0 K^+$	673	SCS		$-0.16 \pm 0.58 \pm 0.25$	PRL 104,181602(2010)
$D^+ \rightarrow \phi \pi^+$	955	SCS		$+0.51 \pm 0.28 \pm 0.05$	PRL 108,071801(2012)
$D^+ \rightarrow \eta \pi^+$	791	SCS		$+1.74 \pm 1.13 \pm 0.19$	PRL 107,221801(2010)
$D^+ \rightarrow \eta^{-} \pi^+$	791	SCS		$-0.12 \pm 1.12 \pm 0.17$	PRL 107,221801(2010)

\rightarrow No CP violation

• Due to CPV in mixing in the kaon sector, the direct CP asymmetry for $D^+ \rightarrow K_s \pi^+$

 $A_{CP} = \frac{\Gamma(D^+ \to \pi^+ K_s^0) - \Gamma(D^- \to \pi^- K_s^0)}{\Gamma(D^+ \to \pi^+ K_s^0) + \Gamma(D^- \to \pi^- K_s^0)} \quad \text{is expected to be [hep-ph/0104008 (2001)]} \\ A_{CP} = -(0.332 \pm 0.006)\%$

Mode	Data (fb⁻¹)	Process type	CP eigen state	Аср (%)	Ref
$D^+ \rightarrow K_S^0 \pi^+$	977	CF/DCS		$-0.36 \pm 0.09 \pm 0.07$	arxiv. 1203.6409
$D_s^+ \rightarrow K_s^0 K^+$	673	CF/DCS		$+0.12 \pm 0.36 \pm 0.22$	PRL 104,181602(2010)
$D^0 \rightarrow K_S^0 \pi^0$	791	CF/DCS	Yes	$-0.28 \pm 0.19 \pm 0.10$	PRL 106,211801(2011)
$D^0 \rightarrow K_S{}^0 \eta$ *	791	CF/DCS	Yes	$-0.54 \pm 0.51 \pm 0.16$	PRL 106,211801(2011)
$D^0 \rightarrow K_S^0 \eta'$ *	791	CF/DCS	Yes	$-0.98 \pm 0.67 \pm 0.14$	PRL 106,211801(2011)

Belle results consistent with SM expectation (CPV in the K sector)

Time dependent analyses

• Measurement of lifetime difference between $D^0 \rightarrow K\pi$ and $D^0 \rightarrow KK, \pi\pi$ allow to determine the $D^0-\overline{D}^0$ mixing parameter y_{CP}

$$\tau_{hh}^{+} = \tau (D^{0} \to h^{+}h^{-}) = \frac{1}{\Gamma^{+}}$$
$$\overline{\tau}_{hh}^{+} = \tau (\overline{D}^{0} \to h^{+}h^{-}) = \frac{1}{\Gamma^{-}}$$
$$\tau_{K\pi} = \tau (D^{0} \to K^{-}\pi^{+}) = \frac{1}{\Gamma_{D}}$$

$$\begin{split} y_{CP} &= \frac{\tau_{K\pi}}{2} \big(\frac{1}{\tau_{hh}^+} + \frac{1}{\overline{\tau}_{hh}^+} \big) - 1 \\ y_{CP} &= \frac{\Gamma^+ + \Gamma^-}{2\Gamma_D} - 1 \end{split}$$

 $y_{CP} \neq 0 \rightarrow Mixing$ If CP is conserved $y_{CP} = y$

• Differences in D⁰ and \overline{D}^0 lifetimes are sensitive to contributions from CPV in mixing and decay

$$\Delta Y = \frac{\Gamma^+ + \Gamma^-}{2\Gamma_D} \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$

$$\Delta Y = (1 + y_{CP})A_{\Gamma}$$

$$\Delta Y = \frac{\tau_{K\pi}}{2} \left(\frac{1}{\tau_{hh}^+} - \frac{1}{\overline{\tau}_{hh}^+} \right) \neq 0 \Rightarrow CPV$$

- Similar techniques at BaBar (468 fb⁻¹) and Belle (976 fb⁻¹)
- Tagged analysis:

Use $D^{*+} \rightarrow \pi^+ D^0$ to tag the D^0 flavour and suppress the background, and reconstruct the D^0 into $K\pi$, KK and $\pi\pi$ modes (BaBar uses for Y_{CP} measurement an additional untagged $D^0 \rightarrow K\pi$, KK sample (stat. X 4, less pure))

- Reject D* from B decays (p_{D*} > 2.5GeV)
- Signal yield from mass distributions, bkg from sidebands
- Measure D⁰ proper decay time: t and σ_t , by reconstructing the D momentum and flight length L:

$$t = \frac{L}{\beta \gamma c} = \vec{L} \cdot \frac{\vec{p}}{p} \frac{m_{D^0}}{p}$$

• Fit the proper decay time distribution

NEW @ CHARM '12

Preliminary

$\begin{array}{l} \textbf{y}_{\text{CP}} = (+1.11 \pm 0.22 \pm 0.11)\% \\ \textbf{A}_{\Gamma} = \ \textbf{(-0.03} \pm 0.20 \pm 0.08)\% \end{array}$

No mixing excluded at 4.5 σ A $_{\Gamma}$ consistent with no indirect CPV

Preliminary

 $y_{CP} = (+0.72 \pm 0.18 \pm 0.12)\%$ $\Delta Y = (0.09 \pm 0.26 \pm 0.06)\%$

 $\Delta Y = (1+y_{CP})A_{\Gamma}$

No mixing excluded at 3.3 σ No indirect CPV

• HFAG updated values:

Good agreement between experiments, BaBar and Belle increase precision

τ Physics

Motivation:

- CP violation not yet observed in the lepton sector
- Search for direct CP violation in tau decays: $\tau^- \rightarrow \pi^- K_s v_{\tau}$
- \rightarrow within the SM, due to the K_s presence, the decay rate asymmetry:

$$A_{CP} = \frac{\Gamma(\tau^+ \to \pi^+ K_s^0 \nu_\tau) - \Gamma(\tau^- \to \pi^- K_s^0 \nu_\tau)}{\Gamma(\tau^+ \to \pi^+ K_s^0 \overline{\nu_\tau}) + \Gamma(\tau^- \to \pi^- K_s^0 \nu_\tau)}$$

is expected to be $A^{SM}_{CP} = (0.332 \pm 0.006)\%$ [Bigi and Sanda, PLB 625, 47 (2005)] (same argument than for $D \rightarrow K_s \pi$ decays)

→ A deviation of the measured A_{CP} from A_{CP}^{SM} would be a hint of New Physics \circ e.g. an additional CP violating phase from an exotic charged Higgs boson [PLB 398, 407 (1997)]

Can consider $\tau^- \rightarrow \pi^- K_s(>=0\pi^0)v_{\tau}$ since $\pi^0 s$ are not expected to change the asymmetry

Experimental method:

- Reconstruct from continuum $\tau^- \rightarrow \pi^- K_s (>= 0\pi^0) v_{\tau}$ (up to $3\pi^0_s$)
- Electron and muon tags with p_ℓ^{*} > 4 GeV (reduce bkg from non-τ-pairs)
- Reconstructed hadronic mass < 1.8 GeV (rejects qq bkg)
- Remaining background further reduced using information of:

→ qq̄ events: visible energy, number of neutral clusters, thrust, total transverse momentum

→ Fake K_s^0 : displaced vertex, invariant mass, momentum and polar angle of the K_s^0 candidate

- Measured raw A_{CP} value (after subtraction of qq background and non-K⁰_sτ decays) has to be corrected by:
 - Different nuclear reaction cross-section of K⁰ and K⁰ with material detector
 - \odot (0.14±0.03)% for e-tag, (0.14±0.02)% for $\mu\text{-tag}$
 - $\,\circ\,$ Uncertainties from kaon-nucleon cross-sections and isospin
 - Dilution from background modes including K⁰_s

Source	Fraction e-tag (%)	Fraction µ-tag (%)	SM expected A _{CP}
$\tau^{-} \rightarrow \pi^{-} K^{0}{}_{S} (\geq 0 \pi^{0}) \nu_{\tau}$	78.7 ± 4.0	78.4 ± 4.0	(0.33±0.01)%
$\tau \rightarrow K K^{0}_{S} \geq 0 \pi^{0}) \nu_{\tau}$	4.2 ± 0.3	4.1 ± 0.3	(-0.33±0.01)%
$\tau \rightarrow \pi K^0 K^0 (\geq 0 \pi^0) \nu_{\tau}$	15.7 ± 3.7	15.9 ± 3.7	0

• Result:

$$A_{CP} = (-0.36 \pm 0.23 \pm 0.11)\%$$

 2.8σ from the SM prediction

• CP violation in τ decay is possible generally if there is an interference between the SM diagram and the CP violating scalar boson exchange diagrams. (Kuhn, Mirkes 1993)

(
$$d\omega = dQ^2 d\cos heta d\coseta$$
)

$$\simeq \langle \cos\beta\cos\psi\rangle_{\tau^{-}} - \langle \cos\beta\cos\psi\rangle_{\tau^{+}}$$

 $\vartheta = K^{-}$ direction $\psi = \tau^{-}$ direction in K π rest frame

Experimental method:

- 699 fb⁻¹ of Belle data at the Y(3S), Y(4S), Y(4S), Y(5S)
- Reconstruct $\tau \rightarrow \nu K_s \pi$
- \rightarrow Signal events:
- (162.2±0.4) x 10³ events for $\tau^+ \rightarrow \nu K_s \pi^+$ (162.2±0.4) x 10³ events for $\tau^- \rightarrow \nu K_s \pi^-$
- \rightarrow Background: 23%
- After applying small corrections for A_{FB} and A_{ϵ}^{π} (measured in $\tau \rightarrow \nu \pi \pi \pi$), the A_{CP} gives:

- No significant A^{CP} asymmetry
- Limits for the CP violating parameter (depending on the hadronic form factors param.)

 $\Im(\eta_S)| < 0.026$ at 90%CL

Summary

- Flavour Physics is a very active field, as you have already seen in this meeting (look for additional info at CHARM'12, FPCP'12...)
- B factories are still providing high precision results in B, c and τ sectors
- In general, good agreement with the SM predictions
- ~3 σ effects involving τ leptons: $B \rightarrow D^{(*)} \tau v$, CPV in $\tau \rightarrow v K_s \pi$ (BaBar)
- No CPV in charm (contrary to LHCb, CDF)
- Now that we have huge data samples and sophisticated analysis techniques it would be nice to have feedback from theorists...
- And be prepared for the near future...

