Experimental

Neutrino Oscillation Physics

XL International Meeting on Fundamental Physics

Pau Novella CIEMAT

P. Novella, IMFP 2012

Overview

- Neutrino Oscillation physics
- Measuring the oscillation
- The first generation
- The precision generation
- The latest mixing angle
- What's next?
- All in all...

Neutrino Oscillation Physics

In the beginning...

- 1930 Pauli postulates v
- 1956: reactor neutrinos detected
- 1990's: neutrino oscillations...

Physics Beyond the Standard Model

Today...

Reactors play a major role again!

Neutrino mixing

P. Novella, IMFP 2012

Neutrino Oscillations

If neutrinos are massive and have different masses...

Oscillation parameters: $(\theta_{12}, \theta_{13}, \theta_{23}), (\Delta m_{21}^2, \Delta m_{31}^2), \delta$

Measuring The Oscillation

Neutrino Sources

Neutrino Energies

Hunting neutrinos

- Radiochemical experiments: Homestake, Gallex, ...
- Cherenkov: SuperKamiokande, MiniBooNE,...
- Scintillator calorimeters: KamLAND, Double Chooz..
- Tracking calorimeters: MINOS, NOvA, …
- LAr TPCs: ICARUS, MicroBooNE
- Emulsions: OPERA

KamLAND

MINOS

P. Novella, IMFP 2012

10

Setting up the experiment

The first Generation

The Solar Sector

Solar experiments:

- Radiochemical experiments: Homestake, Gallex,...
- Water cherenkov: SuperKamiokande
- Heavy water: SNO
- Liquid scintillator: Borexino

33-50% lower flux than the theoretical predictions

Reactor experiment:

- KamLAND
 - oscillation confirmed
 - Oscillarion parameters measured

The Atmospheric Sector

• Atmospheric neutrinos

Atmospheric experiments:

SuperKamiokande

$$P_{\nu_{\mu}\nu_{\tau}} = \sin^2 2\theta \cdot \sin^2 \left(\frac{\Delta m^2 \cdot L}{4E_{\nu}}\right)$$

Accelerator experiments: K2K, MINOS

 θ_{23}

P. Novella, IMFP 2012

Interference sector: SBL Reactor experiments

Summary of the 1st Generation

Global Analysis in 2008

Phys. Rev. Lett. 101:131802,2008

0.9 sin²(20

3v Global Analysis in 2010

 $\Delta m_{21}^2 = 7.59 \pm 0.20 \ \begin{pmatrix} +0.61 \\ -0.69 \end{pmatrix} \times 10^{-5} \ \text{eV}^2$ $\Delta m_{31}^2 = \begin{cases} -2.36 \pm 0.11 \ (\pm 0.37) \times 10^{-3} \ \text{eV}^2 \\ +2.46 \pm 0.12 \ (\pm 0.37) \times 10^{-3} \ \text{eV}^2 \end{cases}$ $\theta_{12} = 34.4 \pm 1.0 \ \begin{pmatrix} +3.2 \\ -2.9 \end{pmatrix}^{\circ}$ $\theta_{23} = 42.8 \ ^{+4.7}_{-2.9} \ \begin{pmatrix} +10.7 \\ -7.3 \end{pmatrix}^{\circ}$ $\theta_{13} = 5.6 \ ^{+3.0}_{-2.7} \ (\leq 12.5)^{\circ}$ $\left[\sin^2 \theta_{13} = 0.0095 \ ^{+0.013}_{-0.007} \ (\leq 0.047) \right]$ $\delta_{\text{CP}} \in [0, \ 360]$

Global fit for 3-flavour scenario

• Preference for $\theta_{13} \neq 0$

• First hint of θ_{13} : sin²(θ_{13}) ~ 0.01-0.02

Three flavor scenario?

LSND

P. Novella, IMFP 2012

Reactor neutrino anomaly

New reference Reactor Neutrino Spectra PRC83 054615 & PRC84, 024617 (2011)

Re-analysis 19 short Baseline Experiments Results PRD83, 073006 (2011)

R=0.927±0.023: 3.0 σ deviation with respect to R=1 (rate only)

Gallium Neutrino Anomaly

No-oscillation hypothesis disfavored at about 2.7σ

Reactor/Gallium anomalies

$$P_{\nu_e \to \nu_e}(L, E) = 1 - \sin^2(2\theta_{\text{new}}) \sin^2\left(\frac{\Delta m_{\text{new}}^2 L}{E}\right)$$

 But not consistent with LSND
Phys.Rev. D85 (2012) 013017

So after the first round of experiments...

After 1st round of experiments...

- Oscillation measured: massive neutrinos
 - but need for precision
- Still several questions
 - Mass hierarchy?
 - θ₁₃ ≠ 0?
 - θ_{23} maximal?
 - CP violation in the leptonic sector?
 - Sterile neutrinos?

The Precision Generation

Second Generation

- v flux and energy spectrum: SHINE (NA61)
- v-N cross-sections: SciBooNE, MINERVA, T2K,...

2nd Generation: Accelerator experiments

Oscillation analysis in 3D

$$P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^2 = |\sum_{i=1}^{n} \sum_{j=1}^{n} U_{\alpha i}^* U_{\beta j} \langle \nu_{j} | \nu_{i}(t) \rangle|^2.$$

• (θ_{13}, δ) : need to analyze oscillations in the 3-flavor scenario

- Oscillation parameter correlated
- Still unknown parameters

MINOS (II)

30

P. Novella, IMFP 2012

T2K Results

• First results on v_{μ} disappearance with 1.4×10^{20} pot • v_{e} appearance: 6 events over background of 1.5 (2.5σ) NH (δ =0) sin²($2\theta_{13}$)=0.11 and $0.03 < sin^{2}(2\theta_{13}) < 0.28$ at 90% C.L. IH (δ =0) sin²($2\theta_{13}$)=0.14 and $0.04 < sin^{2}(2\theta_{13}) < 0.34$ at 90% C.L.

The 5σ appearance result is expected by June 2013.

Published in Phys. Rev. Lett. 107, 041801 (2011)

P. Novella, IMFP 2012

Opera and Icarus

• OPERA: direct detection of $v_{\mu} \rightarrow v_{\tau}$ (appearance)

Emulsion Cloud Chambers (granularity!) + trackers

- ICARUS: 1st large scale v detector with LAr (600 tons)
 - Milestone towards future Mton detectors
 - Searches for $v_{\mu} \rightarrow v_{\tau}$ statistically
 - Atm/solar sectors, sterile v, ...

NOvA

2013

LBL Off-axis experiment (NuMI, 700 kW)

- Searches for $v_{\mu} \rightarrow v_{e}$ and $v_{\mu} \rightarrow v_{e}$
- LBL: matter effects!
- Mass hierarchy, θ_{13} , δ

Totally active tracking liq. Scint.

- FD: 15 kton
- ND: 220 ton

P. Novella, IMFP 2012

MiniBooNE

Check LSND results (same L/E) v_{μ} and $\overline{v_{\mu}}$ modes

ν_µ mode:

- E<475 MeV: 3σ excess in e-like events</p>
 - MicroBooNE: LAr TPC
- E>475 MeV: inconsistent with LNSD @ 90% CL
- Events / MeV Data 2.5 v_ from μ from K^{*} from K⁰ π⁰ misid $\Delta \rightarrow N\gamma$ dirt 1.5 other Total Background 0.5 0.2 0.4 0.6 1.4 1.5 0.8 $\mathbf{E}_{v}^{\text{QE}}$ (GeV)

- E<475 MeV: 1.3σ excess in e-like events</p>
- E>475 MeV: 2v fit consistent with LSND @ 99.4 CL

P. Novella, IMFP 2012

Data taking is over

The Latest Mixing Angle: θ₁₃ Reactor experiments

θ_{13} : Why reactor neutrinos?

In contrast to accelerator experiments....

$$P_{ee}(E_{\overline{\nu}_e}, L, \Delta m_{31}^2, \theta_{13}) = 1 - \sin^2(2\theta_{13})\sin^2\left(1.27\frac{\Delta m_{31}^2[10^{-3} \text{ eV}^2]L[\text{km}]}{E_{\overline{\nu}_e}[\text{MeV}]}\right)$$

- No parameter correlations
- Pure \overline{v}_{e} beam
- Low energy

- No matter effects
- Cheap, as source exists
- High flux and large xsection

Setting up the experiment

Expected oscillation signal

New Generation Experiments

Multi-detector setups!

P. Novella, IMFP 2012

The Double Chooz Experiment

The Double Chooz Detector

Far Detector operating since early 2011

Double Chooz Results

- First results on θ_{13} form reactor experiments
 - 100 days of data, FD only, 2011
 - Rate + Shape analysis

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041 \text{ (stat)} \pm 0.030 \text{ (syst)}$

Daya Bay

Flux from 6 x 2.9 GW_{th} reactors

6 detectors in 2 Near (~500m) and 1 Far (1648m) sites

Rate only analysis (55 days): 5.2σ signal (2012)

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016 (\text{stat}) \pm 0.005 (\text{syst})$

RENO

- Flux from 6 x 2.8 Gw_{th} reactors
- Two identical Near (409m) and far detectors (1444m)

Summary on θ_{13}

What's next?

Open questions after 2nd round...

- Mass hierarchy?
- $\theta_{_{23}} = \pi/4$, $\theta_{_{23}} < \pi/4$ or $\theta_{_{23}} > \pi/4$?
- CP violation?
- To address these questions, Super-Beams, Beta-Beams and NF are being studied...
- θ_{13} is now known... and it is large!
 - Is there a fast/easy/cheap way to resolve the above questions?
 - What can be achieved with the current facilities?
 - Can they be upgraded? New kTon detectors?
 - Can we answer any of these questions within ~10 year
- Discussion ongoing to define the roadmap for neutrino physics
 - NuTURN 2012 and Town meeting: European Strategy for Neutrino Oscillation physics
 - Spanish community also planning about next steps

International efforts

- Upgraded beams: more energy, power (>700 kW) and purity
- Detectors: more massive, more granularity and energy resolution
- Degeneracies: different energies, baselines, channels

Detectors

LAGUNA: proton decay, v astrophysics and CP-violation in the lepton sector

- Detectors for Neutrino Factory:
 - MIND: magnetized, MINOS-like
 - TASD: magnetized NOVA-like
 - Magnetized LAr

SuperBeams

Muon Neutrino beam from pion decay:

- beam power 1-4 MW
- $E_v \sim 5$ GeV, On/off axis
- detectors mass ~100 kton
- Long baseline: mass hierarchy
- Data taking: 10 years

Beta-Beams

Electron Neutrino beam from beta decay:

- Pure v_e beam: smaller beam systematics and backgrounds
- Best detectors: water Cerenkov and LAr (LE) and iron calorimeter (HE)
- No v_{μ} disappearance: no θ_{23} measurement
- Technical challenges: ion production, acceleration, storage ring

Neutrino Factory

Muon Neutrino beam from muon decay:

- Dectector able to measure charge μ^+/μ^-
 - Magnetized Iron calorimeters (MIND)
- muon production (MERIT), cooling (MICE), acceleration (EMMA)
- IDS-NF: www.ids-nf.org

Comparing facilities

- Requirements:
 - CPV: 2 complementary channels
 - Degeneracies: different E/L
 - Mass hierarchy: LBL
- Comparison:
 - θ_{13} is measured (large!):
 - Discovery potential not really useful
 - Small CP asymmetries (systematics!)

$$\frac{P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})}{P(\nu_{\alpha} \to \nu_{\beta}) + P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})} \propto \frac{1}{\sin 2\theta_{13}}$$

Better compare in terms of precision!

Projects for Next Generation

CERN to Fréjus (SBL):

- SuperBeam (5GeV, 4MW)
- Water Cherenkov
- Upgrade: Beta-Beam
- CERN to Phyhäsalmi (LBL):
 - SuperBeam (5GeV, 4MW)
 - LAr+Mag. Iron, Liq. Scint.
 - Upgrade: Neutrino Factory
- T2HK

-AGUNA-LBNO

- JPARC 4 MW, H2K
- LBNE
 - Fermilab 2.3 MW beam, LAr

- CERN to Kamioka (arXiv:1204.4217v1)
 - SuperBeam (~5GeV, 4MW)
 - Super-Kamiokande (8770 km)

Still one more question...

Sterile neutrinos?

- Indications that three-flavor mixing might not be the sufficient:
 - SBL reactor anti-neutrino measurements: reactor flux anomaly
 - Radioactive source measurements: Gallium anomaly
 - Accelerator-based experiments: LSND & MiniBooNE

Testing the Reactor Flux Anomaly

Anti-v detectors close to compact reactor cores (~10m)

- First experiment already at commissioning stage:
 - Nucifer (Non Proliferation: Pth & Fuel Composition)
 - 1m³ Gd-LS detector
 - Osiris Site in Saclay (70 MW)
- Other projects:
 - Stereo, SCRAMM, DANSS (building), NIST

Testing the Gallium anomaly

- Place v/v source close/inside v detectors
 - Existing detectors (KamLAND, Borexino, ...)
 - Several options:
 - ⁵¹Cr: Borexino, SNO+, Baksan
 - ¹⁴⁴Ce: Ce-LAND in KamLAND/Borexino, …

arXiv:1204.5379

P. Novella, IMFP 2012

Sterile neutrinos with accelerators

- Accelerator based short baseline proposals: LAr detectors @CERN & Fermilab
- Requested features for a definitive experiment:
 - L/E matching Δm^2
 - $\sqrt{\nu}$ run modes
 - At least two detection locations
 - v appearance and v disappearance
- Fermilab: BooNE, LArLAr, SBL Nova
- CERN: ICARUS/NESSIE
 - LAr (1kton) + Muon spectrometer (3kton)

ICARUS/NESSIE

Sterile neutrinos with accelerators

- Accelerator based short baseline proposals: LAr detectors @CERN & Fermilab
- Requested features for a definitive experiment:
 - L/E matching Δm^2
 - $\sqrt{\nu}$ run modes
 - At least two detection locations
 - v appearance and v disappearance
- Fermilab: BooNE, LArLAr, SBL Nova
- CERN: ICARUS/NESSIE
 - LAr (1kton) + Muon spectrometer (3kton)

ICARUS/NESSIE

Where we are...

Summary

- Atm/sol oscillation parameters have been measured
 - Time for precision: mass hierarchy, θ_{23} ?
 - Interference sector...
- θ_{13} is large: need to define the next step
 - Search for CPV in leptonic sector (δ)
 - Super-beams, beta-beams?, NF?
 - Mass ordering, θ_{23} , ... CP?
- Not everything understood in current results:
 - Sterile neutrinos?: SBL experiments
- Exciting times! P. Novella, IMFP 2012

Thank you!

Solar Sector

SNO

Sensitive to all flavors:

$$\begin{array}{c} \textbf{CC} \\ \textbf{V}_{e} + d \Rightarrow p + p + e^{-} \quad \Phi_{CC} = \phi_{e} \\ \textbf{V}_{x} + e^{-} \Rightarrow \textbf{V}_{x} + e^{-} \quad \Phi_{ES} = \phi_{e} + 0.15 \cdot \phi_{\mu\tau} \\ \textbf{NC} \\ \textbf{V}_{x} + d \Rightarrow p + n + \textbf{V}_{x} \quad \Phi_{NC} = \phi_{e} + \phi_{\mu\tau} \end{array}$$

In case of no oscillations:

$$\Phi_{CC} = \Phi_{NC} = \Phi_{ES}$$

$$\frac{\phi_{\rm CC}^{\rm SNO}}{\phi_{\rm NC}^{\rm SNO}} = 0.301 \pm 0.033 \text{ (total)}$$

Solar Sector

KamLAND

- Rector neutrino experiment (Kamioka)
 - 1 KT liquid scintillator
 - L = 180 Km, E ~ 3 MeV
 - Disappearance of \overline{v}_{e}

Solar sector:

$$L/E \sim 180/0.003 = 60000 \text{ Km/GeV}$$

Atmospheric Sector

SuperKamiokande

- 50 kton water cherenkov detector
- v_{μ} deficit: different energies and baselines

P. Novella, IMFP 2012

Atmospheric Sector

K2K and MINOS

K2K: first accelerator LBL experiment

MINOS: precision accelerator LBL experiment

- Muon neutrino beam @ Fermilab
 - Magnetized iron calorimeters – Steel planes + scint. strips
- Near detector @ 1.04 km from target
- Far detector @ 735 km (Minnesota)

