CMS Physics Results

Luca Scodellaro Instituto de Fisica de Cantabria - CSIC On behalf of the CMS Collaborations

L International Meeting on Fundamental Physics May 24th June 3rd, 2012 Benasque (Spain)

Introduction

- Physics Results from CMS will be presented
- There are hundreds of interesting analyses to show
 To summarize them in half an hour is a frustrating task!
- This selection is based on the following criteria:

Covering (if possible) all the research fields investigated
 Emphasizing hottest topics and more recent results

A complete review is available at the experiment's web page:
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Outline

- Cross section measurements for SM processes
- Precision tests to the Standard Model:

♦ Top properties

♦ Rare baryons' decays

- Higgs boson searches
- Searches for new physics
 \$ Supersymmetry
 \$ Exotic physics

ross Section Measurements for SM Processes

The CMS Experiment

- General-purpose detector at the Large Hadron Collider
 - Oesigned around a solenoid magnet capable of 4T (curr. 3.8T)

 About 3400 scientists and engineers (including ~840 students) from 173 institutes in 40 countries

Oetails on data taking and detector performance in Jesus' talk

Luca Scodellaro, IFCA

Jet Production and PDF

Differential cross section for jet inclusive production
 ◇ Agreement with NLO⊗NP QCD over ≥7 orders of magnitude
 ◇ CMS data can be used to constrain the fits of the PDFs

Heavy Flavor Production

• $\sigma(pp \rightarrow bbX \rightarrow \mu\mu Y)$: 26.4±0.1(stat)±2.4(syst)±1.1(lum)nb $\sigma_{MC@NLO}$ =19.7±0.37(stat)^{+6.5}(syst) nb

- B hadron production:
 - Measured cross sections agree
 with MC@NLO calculations

EWK Boson Production

• Cross sections for boson and diboson productions:

♦ Good agreement over ~4 order of magnitude: ready for new physics!

Z→4l Decay

• First observation of the Z boson decay to 4 leptons in pp collisions

- Clear peak in 4 leptons invariant mass:
 ◇ BR(Z→4I) = 4.4^{+1.0}_{-0.8} (stat) ±0.2(syst) x 10⁻⁶
 ◇ SM prediction: 4.45 x 10⁻⁶
 - \diamond Standard candle for H \rightarrow WW \rightarrow 4l analysis

Top Quark Production

Top pair production cross section measured in four decay channels
 ♦ Good agreement with approx. NNLO QCD calculations

- Shapes of differential cross section well described by theory
- Single top quark production consistent with NLO+NNLL QCD predictions

Precision Tests to the SM

Top Quark Mass

- CMS μ +jets and dilepton combination: m_t = 172.6 ± 0.4 (stat) ± 1.2 (syst) GeV/c²
- Approaching Tevatron sensitivity: $m_t = 172.7 \pm 0.6 \text{ (stat)} \pm 0.9 \text{ (syst) GeV/c}^2$

Top-Antitop Mass Difference

- If CPT is conserved, particle and antiparticle must have same mass
 The top quark is the only one with which we can test this directly
- CMS: reconstruct t (\overline{t}) mass in had. decay in $l^{-}(l^{+})$ +jets events:

 $\Delta m_t = -0.44 \pm 0.46$ (stat.) ± 0.27 (syst.) GeV

Top Quark Decays

Measurement of decay ratio
 R=BR(t→Wb)/BR(t→Zq):

 ◇ Fit to b-tag multiplicity in ttbar dilepton decays
 ◇ R=0.98±0.04, R>0.85 @95% CL

- Search for FCNC top decays into a Z boson t→Zq:
 - ◇ Look for events with three leptons from tt→WbZq→Illvbq decays
 ◇ BR(tWb)<0.0034 @95% CL

Top Quark Charge

- Constraints on top charge:
 - ♦ Top charge from decay products
 - W: muon in W[±] \rightarrow µ[±] υ decay
 - b: muon in semileptonic decay
 - $\diamond q_t = +2/3 \text{ vs } q_t = -4/3 \text{ hypotheses:}$

Good agreement with SM

- Charge asymmetry in ttbar pair:
 - ♦ Sensitive to BSM top production
 - In pp collisions, antitop expected to be produced more centrally
 - ♦ Measurements in agreement to SM A_c^y=0.004±0.010(stat)±0.012(syst)

W Boson Polarization

• W boson polarization tests V-A coupling in top decays:

Luca Scodellaro, IFCA

Rare Decays of B Hadrons

- FCNC decay $B_{s(d)} \rightarrow \mu^+ \mu^-$ highly suppressed in SM:
 - \diamond Helicity suppressed by a factor $(m_{\mu}/m_{B})^{2}$
 - Higher order loop diagrams suppressed
 by CKM couplings

$$\Rightarrow$$
 BR(B_s→ $\mu^+\mu^-$) = (3.2 ± 0.2) x 10⁻⁹

$$\Rightarrow$$
 BR(B_d→ $\mu^+\mu^-$) = (1.0 ± 0.1) x 10⁻¹⁰

SUSY scenarios can significantly boost the BR:
 ♦ Within MSSM: BR ∝ tan⁶β

FCNC Decay $B_{s(d)} \rightarrow \mu^+ \mu^-$

• Blind analysis searching for $B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^-$: \diamond Normalization sample: $B^+ \rightarrow J/\psi K^+$

♦ Control sample: $B_s \rightarrow J/\psi K^+ \Phi$

- Observed upper limits at 95% CL:
 ◇ BR(B_s→µ⁺µ⁻) <7.7 x 10⁻⁹ (expected 8.4 x 10⁻⁹)
 ◇ BR(B_d→µ⁺µ⁻) <1.8 x 10⁻⁹
 - (expected 1.6 x 10⁻⁹)

• Strong bounds for BSM theories

FCNC Decay $D^0 \rightarrow \mu^+ \mu^-$

- Charm is an up-type quark: complementary to B decay searches
- Measuring ratio BR(D*+→D⁰(μ+μ)π+)/BR(D*+→D⁰(Kμ+ν)π+)
 ◊ Most of systematic uncertainties cancel out
- No evidence for $D^0 \rightarrow \mu^+ \mu^-$ from D^{*+} :

Luca Scodellaro, IFCA

Searches for Higgs Boson

• CMS searches for the SM Higgs boson in eleven different decay channels in the mass range 110-600 GeV

SM Higgs boson in mass range 127.5-600 GeV excluded @95% CL
 Excess of events at low mass makes the limit weaker then expected

Luca Scodellaro, IFCA

- Minimum p-value for M_H = 125 GeV:
 ◊ Local significance: 2.8σ
 - ♦ Estimated global significance:
 - 0.8σ in [110-600] GeV
 - 2.1σ in [110-145] GeV

- Best fit to signal strength $\mu = \sigma / \sigma_{SM}$ as a function of the Higgs mass
- At low mass several channels show modest excess:
 For M_H=125 GeV, sensitive channels show consistent excess
 More data needed to exclude background-only hypothesis

Luca Scodellaro, IFCA

BSM Higgs Boson

- Interpreting SM Higgs boson search's results in BSM scenarios
- SM with fourth generation:

 Higgs boson excluded in mass range [120-600]GeV @95% CL

- Fermiophobic Higgs boson:
 - ♦ Higgs boson excluded in mass range [110-192]GeV @95% CL

BSM Higgs Boson

- Light pseudoscalar Higgs boson a₀:
 Dimuon decay channel
 - ♦ Limit on production rates in NMSSM

Doubly charged Higgs boson H⁺⁺:
 ◇ Pair production: ≥3 leptons in final states
 ◇ M_{H⁺⁺}>[380-410] GeV for a type-II seesaw model

- Light charged Higgs boson $(M_{H^+} < m_t)$: $\diamond t\bar{t} \rightarrow H^+ b W^- \bar{b}, H^+ \rightarrow \tau^+ \upsilon$
 - \Rightarrow BR(t \rightarrow H⁺b)<2-3% for 80<M_{H⁺}<160 GeV

Searches for BSM Physics

Supersymmetry Searches at CMS

- Highest production cross sections for squarks and gluinos:
 - Production rate depend on model
 R-parity conserved: pair production
- Squarks and gluinos are often the heaviest SUSY particles:

 Long cascades of decays
 Details depend on SUSY masses
- Large missing E_T from LSPs: 10⁻¹
 Research channels categorized by the number of jets or leptons in final states
 Gauge Mediated SUSY also predicts
 - final states with photons

Sample of SUSY Searches

- Fully hadronic final states:
 - \diamond Three jets and large missing $\rm E_{T}$

High signal rate, large SM backgrounds

Multilepton final states:

♦ No missing E_T cut (R-parity violating models)
 ♦ Low signal rate, small SM backgrounds

- Final states with photons:
 - ♦ 1(2) photon, 2(1) jets + large missing E_T ♦ Limits on Gauge Mediated SUSY model

SUSY Limits

• Exclusion regions in the $[m_0, m_{1/2}]$ plane for the Constrained MSSM

Third Generation Squarks

- Large luminosity allows to study more exclusive production modes
 Electroweak production of charginos and neutralinos
 Direct stop and sbottom production
- SUSY naturalness suggests light 3th generation
- Search for SUSY in final states with a lepton, b-jets and missing E_T

Exotic Physics at CMS

• Many new results with ~5 fb⁻¹ presented at winter conferences:

Heavy bosons	W' \rightarrow WZ, tb, td, I+MET	EXO-11-041/001/056/024	Right-handed W' mass>2.5 TeV, Left-handed W' mass>2.43-2.63 TeV
	Z' (KK g)→ttbar	EXO-11-006/092	Limits on cross section x BR
4 th generation fermions	b'b' →tWtW	EXO-11-036	b' mass>611 GeV
	t't' →bWbW	EXO-11-050/051	ť mass>560 GeV
Compositeness	Dimuons	EXO-11-009	Limits on fermion contact interaction scale $\boldsymbol{\Lambda}$
Black holes	Multiple energetic objects	EXO-11-071	Model dependent black hole mass>3.8-5.3TeV, string ball mass>4.6-4.8TeV
Long-lived particles	HSCPs	EXO-11-022	gluino mass>1091 GeV, stop mass>735 GeV, stau mass>232 GeV
Resonances	Three-Jet	EXO-11-060	R-parity violating SUSY gluino mass ≠ 280-460 GeV
	WZ/ZZ→qqll	EXO-11-081	SSM W' mass≠700-929 GeV, RS graviton mass≠700-924 GeV (k/M _{Pl} =0.05)
	ttbar	TOP-11-009/010	Limits on cross section x BR of Z' and KK gluon
	Ditaus	EXO-11-031	SSM Z' mass>1.36 TeV, E6 model Z' $_{\psi}$ mass> 1.10 TeV
	Dileptons	EXO-11-019	SSM Z' mass>2.32 TeV, E6 model Z' $_{\psi}$ mass> 2.00 TeV, KK graviton mass>1.81 TeV (k/M $_{\rm Pl}$ =0.05), >2.135 TeV (k/M $_{\rm Pl}$ =0.1)
	ZZ	EXO-11-061	Limits in the (KK graviton mass, k/M _{Pl}) plane
Dark matter and large extra dimensions	Monojets + MET	EXO-11-059	Constraints on the dark matter-nucleon scattering cross sections
	Photon + MET	EXO-11-096	Constraints on the dark matter-nucleon scattering cross sections
Anomalous production	Multilepton events	EXO-11-045	Limits on production rates, interpretations for SUSY models
	Boosted Z→dimuons	EXO-11-025	Limits on excited quark production and decay

Resonances

• <u>Three-Jet resonances:</u>

♦ High jet multiplicity: N_{jet}≥6 (E_T^j>45 GeV)
 ♦ Large transverse energy: ΣE_T^j >900 GeV

 Limits set on gluino pair production in SUSY model with R-parity violation

◊ M_g≠280-460 GeV @ 95% CL

• Diboson resonances:

 $\diamond X \to WZ/ZZ \to qql^{+}l^{-}$

Several theoretical models considered
 ◇ Sequential SM W': M_{W'}≠884-929 GeV
 ◇ RS graviton: M_{GRS}≠700-924 GeV(k/M_{Pl}=0.05)

Lepton-Quark Compositeness

- Search for contact interaction between fermions
 - Look for effect of interference with
 Standard Model Drell-Yan production

- No significant effect is observed in 5.3 fb⁻¹ of data
- Limits on interaction scale Λ for destructive and constructive interference

Highly Boosted Z

- Anomalous Z bosons production from heavy particle decays: \diamond Identifying the Z bosons from Z $\rightarrow \mu\mu$ decays
 - \diamond Look for events with very large $p_T(\mu\mu)$
- No deviation from SM predictions is observed
- Limits on excited quark q* production and decay are derived
 - \diamond Translate to lower limits on M_{a^*} at about 2 TeV for several models

Luca Scodellaro, IFCA

Conclusions

- CMS reached excellent results with 2011 data taking at 7 TeV:
 - Excellent control of Standard Model processes
 - Challenging precision tests to the Standard Model
 - ♦ SM Higgs boson cornered in the mass range 115-127.5 GeV
 - Probed new phenomena at the TeV scale
- Already recorded 2.61 fb⁻¹ at 8 TeV

Working very hard to provide new results for the summer

Backup Material

LHC and CMS Operations in 2011

- Proton-proton collisions at a center-of-mass energy of 7 TeV
- Integrated luminosity:
 \$ 6.10 fb⁻¹ delivered by LHC
 \$ 5.56 fb⁻¹ recorded by CMS
- Increasing instantaneous luminosity:
 ◊ Record ∠ = 4.02x10³³ cm⁻²s⁻¹

The Challenge of 2011 Data Taking

 High multiplicity of interactions in a single collision of two proton bunches (pileup):

 $<N_{PU}> \sim 6 \text{ at } 2.4 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

• Effects on the reconstruction of the produced events:

 \diamond Jet energy and Missing $\rm E_{T}$

- ♦ Lepton isolation
- ♦ Tagging of heavy quark
- Algorithms developed to subtract activity not coming from the event primary vertex

Photon Production

- Differential isolated prompt photon production:
 - \diamond Photon selection: E_T>25 GeV, $|\eta|$ <2.5
 - Comparing to NLO perturbative QCD

- Searches for heavy neutral boson decaying into ttbar pairs

 Both I+jets and dilepton decay channels explored
- No deviation from SM predictions is observed

Set upper limits on the production cross section as a function of the boson mass in several BSM theories

MSSM Neutral Higgs Bosons

- Search for a neutral Higgs boson $pp \rightarrow \phi(b) \rightarrow \tau \tau(b)$
 - ♦ Fit to reconstructed visible mass
 - Additional b-tagged jet can be required
 - ♦ Limits in the context of the MSSM

Summary of SUSY Searches

- Excluded mass scale in Simplified Model Spectra
 - ♦ CMS is reaching gluinos and squarks mass exclusion up to 1 TeV/c²

