ATLAS detector performance and upgrade plans

Sergio Gonzalez-Sevilla (University of Geneva)

XL International Meeting on Fundamental Physics IMFP 2012

UNIVERSITÉ DE GENÈVE

1.- Introduction

Sergio Gonzalez-Sevilla

The Large Hadron Collider

Sergio Gonzalez-Sevilla

IMFP 2012 - Benasque (Spain) - 300512

The ATLAS collaboration

- 3000 scientists
- 38 countries
- 175 institutions

Sergio Gonzalez-Sevilla

ATLAS spanish contribution

• Strong contribution of several spanish institutes to ATLAS

The ATLAS experiment

ATLAS data-taking

Fraction of good data quality per sub-system (2011, 5.23 fb⁻¹)

ATLAS 2011 p–p run												
Inner Tracking			Calorimeters				Muon Detectors				Magnets	
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.6	99.2	97.5	99.2	99.5	99.2	99.4	98.8	99.4	99.1	99.8	99.3
Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at Vs=7 TeV between March 13 th and October 30 th (in %), after the summer 2011 reprocessing campaign												

2.- Performance

2.- Performance

2.1.- Inner Detector

ID calibration and track reconstruction

- ID calibration
 - ▶ **<u>Pixels</u>**: Time-over-Threshold calibration (charge sharing, dE/dx at low p_T)
 - **TRT**: R-t relations + high threshold probability for particle ID (e/π separation)

• Tracking: inside-out (seeds from silicon) or outside-in (from TRT)

pattern reco, track fitting, ambiguity resolution, vertex reconstruction

Material mapping

- Accurate description of detector material crucial for optimum track reco
 - effect on track resolution and efficiency
- Usage of techniques sensitive to interaction and radiation lengths
 - nuclear hadronic interactions (λ) and photon conversions (X_0): achieved 5%

Inner detector alignment

- include assembly survey, beam-spot constraint
- χ^2 track-residual (unbiased) minimization
- Align at different levels of granularity
 - level 1 (sub-detector), 41 DoF
 - level 2 (substructure), 852 DoF
 - level 3 (module), ~700k DoF
- Changes over time (temp, solenoid ramping...)
 - alignment performed on a run-by-run basis

Inner detector alignment: weak modes

- Weak modes: detector distortions that preserve the helical path (χ²invariance) but systematically bias the track parameters
 - momentum bias, charge assymetries
 - residual minimization not enough = use additional constraints (E/p, resonances...)
- ⁵⁵ *Caratication* **55** *Caratication* **55** *Caratication*
 - solenoid B-field uniform over the entire ID volume
 - its 3D position is of no concern for alignment
 - wrong orientation (~0.5 mrad rotation) wrt origin of coordinates ⇒ p_T bias

b-tagging

- Jets from hadronization of b-quarks (b-jets)
 - ▶ long life-time (~1.6 ps) ➡ secondary vertex (~mm's)
- Algorithms to identify b-jets:
 - impact parameter-based (JetProb, IP3D)
 - secondary vertex-based (SV1)
 - decay length significance
 - advanced b-tagging algorithms
 - multi-variate techniques, rec. vertex decay chain, combination of taggers (NN)

■ Calibration of b-tagging efficiency and mistag rate: ttbar events (t→Wb)

Radiation damage

• Impact of radiation damage through measurement of leakage current

$$I_{\text{leak}} = \alpha \cdot \Phi_{\text{eq}} \cdot V$$

- Effects became visible in 2011, increasing with luminosity
- Pixel and SCT: very good agreement with predictions from the "Hamburg-Dortmund" model
 - predictions include time-dependent self-annealing effects, temperature profile, luminosity delivered and expected-fluences (Phojet+FLUKA)

2.- Performance

2.2.- Calorimetry

Electron and photon performance

Jet energy scale

- Jet energy scale calibration: em scale \rightarrow hadronic scale
 - pileup correction, origin correction, energy η and correction
- Uncertainty in the jet energy measurement is the dominant experimental uncertainty in many physics analyses
 - calo component dominant in central region
 - η-intercalibration component, due to MC modelling, dominant in forward region

Z→ee

ATLAS Preliminary

- Jet energy calibration validated with in-situ techniques \rightarrow jet energy compared with well calibrated objects
 - \blacktriangleright γ +jet, multi-jet, track-jet

▶ p_T balance in Z+jet events (Z→ee)

200

Missing transverse energy

- Key for many precise measurements and searches
- good data-MC agreement, $\sim 2\%$ (W \rightarrow lv)

IMFP 2012 - Benasque (Spain) - 300512

2.- Performance

2.3.- Muon Spectrometer

Reconstruction efficiency

transition region barrel-endcap (only one muon chamber)

acceptance loss: MS partially equipped with chambers to provide space for services of ID and calos

• MS reco efficiency from T&P in resonances dimuon decays

- ► J/ Ψ (low-p_T) and Z→µµ (high-pT)
 - tag = Combined (CB) muon (MS+ID track-combination)
 - probe = ID-track matched to a CB or segment-tagged muon
 - tagged muons allow to recover "geometrical" inefficiencies

Momentum resolution

MS-only momentum resolution

Sergio Gonzalez-Sevilla

- constrained by $Z \rightarrow \mu \mu$ line-shape and ID-vs-MS measurements from $W \rightarrow ev$
- $\sigma(p_T)/p_T < 5\%$ for $p_T(\mu) \in [20; 200]$ GeV

Combined ID+MS dimuon mass resolution

Run Number: 189280, Event Number: 143576946 Date: 2011-09-14, 11:37:11 CET

EtCut>0.3 GeV PtCut>3.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Cells:Tiles, EMC

Persint

ZZ^(*)→μμμμ

m_{4l}=124.6 GeV

 $m_{12}=89.7 \text{ GeV}$

m₃₄=24.6 GeV

2.- Performance

2.4.- Pileup

IMFP 2012 - Benasque (Spain) - 300512

Pile-up

6

Tracking performance with pile-up

- Performance from runs with medium ($<\mu>=15$) and high pile-up ($<\mu>=30$)
 - no saturation effects observed yet at these luminosities
 - no significant increase in the fake-rate observed
 - Inear relation between <number of tracks> and vertices preserved at high pileup

3.- ATLAS Upgrade

High-Luminosity LHC (HL-LHC)

Phase-0: Insertable B-layer

- 4th Pixel layer, mounted directly on beam-pipe
- Maintain and improve p the HL-LHC
 - new sensor technologies
 - closer to IP: 50.5 mm \rightarrow
 - new (smaller) Be beampi
 expensive but significant
 - very tight clearance (~14

IBL mounted on beam-pipe

Sergio Gonzalez-Sevilla

IBL performance

MIMFP 2012 - Benasque (Spain) - 300b1jet efficiency

Number of pileup interactions

Phase-1: Muon Spectrometer

- Replace muon small wheels with improved trigger capabilities
 - need < 1 mrad resolution and associated trigger vector capability
- By requiring an associated pointing segment on EI, background triggers may be eliminated
- A: high p_T muon coming from the IP
 B & C: background segments causing fake triggers

Phase-2: a new ATLAS inner tracker

- Increase in pile-up events from ~23 to ~120
 - radiation damage
 - ► >10⁵ particles $|\eta| < 3.2 \Rightarrow TRT$ occupancy ~100%

23 pileup

• <u>A completely new ATLAS Inner Detector !!</u>

- Pattern reco, good tracking efficiency + low fake rate, minimize occupancy
 - better detector granularity
 - silicon-based tracker: **pixels** and **strips** (short and long)

IM

Sergio Gonzalez-Sevilla

Strip integration concepts: barrel

Strip endcaps

- Sensors mounted on petals and disks made of petals
 - ► Coverage from R=340 mm to R=950 mm
 - 5 disks
 - ▶ 32 petals/disk
 - Large number of sensors/petal

Petals with constant $R\phi$ overlap along R

Conclusions

- ATLAS is performing extremely well !!
 - ▶ 5.25 fb⁻¹ recorded in 2011, 3.15 fb⁻¹ in 2012
 - data / MC agreement of the order of few %
- Detector performance
 - Inner detector alignment focused in assessing "weak modes"
 - Momentum resolution of ID and MS very close to design values
 - Prepared for the challenges of 2012 !!
 - reconstruction in a high (increasing) pileup environment
- ATLAS upgrade
 - ▶ IBL under assembly and QA, now !!
 - R&D well advanced for Phase-1 and Phase-2
 - prototypes close to final detector under thorough evaluation and testing
- A huge amount of interesting physics results = <u>see Marcel's talk</u>
 - and many more to come !!
 - Higgs 2012 ??

More results :

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome

LAr timing

- Timing alignment to synchronize readout clock with BC
 - Distribution of average time / FEB <t>FEB
 - FEBs are aligned and centered at zero
 - σ = rms of distribution in a time windows of [-0.5; 0.5] ns
- Timing resolution of ~300 ps achieved for a largre energy deposit in a cell of the EM Barrel
 - resolution includes a ~220 ps correlated contribution from the beam spread as determined from Z→ee studies

Jet selection

- Main backgrounds to high p_T jets originating from hard-scattering:
 - beam gas, beam halo, cosmic rays (overlapping in-time with pp), calo noise
 - ► loose selection with ϵ >99.8% for p_T(jet)>20 GeV (T&P on dijet events)

Calo performance

Jet energy scale

- Jets = showers pf highly collimated stable hadrons
 - from partons (q, g) after fragmentation and hadronization

- Measurement of energy deposition in calorimeters => energy of primary parton
 - underlying event contribution
 - response varying with flavours

Muon Spectrometer: momentum resolution

- Contributions to the momentum resolution for muons reconstructed in the Muon Spectrometer as a function of transverse momentum
- The alignment curve is for an uncertainty of 30 μm in the chamber positions

HL-LHC: luminosity levelling

- ~3000 fb⁻¹ total IL / 10-12 years ➡ ~250-300 fb⁻¹ / year ➡ <u>~1 fb⁻¹ / fill</u>
- Luminosity decay in storage rings dominated by parasitic effects
 - Ifetime recovered with operational experience
 - HL-LHC: unavoidable luminosity decay due to proton burning in the luminous collisions

• Luminosity levelling

- optimize data taking and minimize the required "over-design" of detectors and machine comp.
- sustained 5x10³⁴ cm⁻²s⁻¹ while leveling for 3-5 hours + decay of few hours

Sergio Gonzalez-Sevilla

IMFP 2012 - Benasque (Spain) - 300512

ers

esholds fir single electron triggers at d the nominal design

detector granularity present in LAr ergy (2nd layer) in clusters of two-sizes

- develop new front-end digital chain
 - super-cells with higher granularity are formed in the FE shaper sum ASIC and individually digitized

The IBL modules

IBL pixel 3D-sensors

	Pixel array	18X100	80X326
FE-14	Chip size [mm ²]	7.6x10.8	20.2x19.00
• New readout chip for IBL and	Active fraction outer layers of future upgraded	74% Pixel detected	89% or
• Smaller pixel size (50x250 µn	n ²) and hage current a bad ipixles	(160 ₩ B /s)	10
 Improved cost effectiveness Iargo chip (20x19 mm²) w 	Digital current [µA/pix]	17	10
 Low power 	Analog voltage [V]	1.6	1.5
• Increased radiation tolerance	(130 nm)	2.0	1.2
		40	160

FE-13: chip used in current Pixel modules

FE-14: chip used in IBL Pixel modules

Sergio Gonzalez-Sevilla

Powering options

- Current LHC trackers: direct powering
 - high power losses in the cables + significant contribution to material budget
- At the SLHC, assuming 130 nm CMOS ASICS instead of 250 nm
 - ▶ almost same total FE power (~ 40-60 kW)...
 - ... but 2-4 times higher total current (30-50 kA) with fixed cable cross-section
 - Need to transmit power at lower current

Future module design: ABCN-130

