Penguin decays at LHCb

Paula Álvarez Cartelle

Universidade de Santiago de Compostela

XL International Meeting on Fundamental Physics, Benasque May 31, 2012

・ロト ・日ト・・ヨト・

Outline

4 Conclusions

・ロト ・回ト ・ヨト ・ヨト

Introduction

Introduction

• Loops are particularly sensitive to New Physics: New heavy particles entering the loops \Rightarrow Observable deviations from SM

- CP-violation: Weak phases $sin(2\beta)$ $(B^0 \to \phi K_S)$ or $\phi_S (B^0_s \to K^{*0} \overline{K}^{*0}, B^0_s \to \phi \phi)$
- $B \rightarrow VV$ polarization puzzle: Observed $f_T/f_L \simeq 1$ in $B^0 \rightarrow \phi K^{*0}$, in opposition to the expectation that $f_T \ll f_L$
- Bd penguin decays studied at other experimens (B-factories, CLEO), new interest in Bs penguin decays.

イロト イポト イヨト イヨ

$B^0_s o K^{*0} \overline{K}^{*0}$

• Very interesting for precision *CP*-violation studies, where $B^0 \rightarrow K^{*0}\overline{K}^{*0}$ channel is used to control the theoretical error (Ciuchini, Pierini and Silvestrini, hep-ph/0703137; Bhattacharya, Datta, Imbeault and London, hep-ph/1203.3435 (2011); Descotes-Genon, Matas and Virto, hep-ph/1111.4882 (2011))

Standard Model \Rightarrow Negligibly small ϕ_S .

• U-spin rotations, $d \leftrightarrow s$, are genuine flavour symmetries. Standard EW and QCD physics predict small breaking ($\lesssim 10\%$)

<ロ> (日) (日) (日) (日) (日)

LHCb results $B_s^0 \to K^{*0} \overline{K}^{*0}$

$B_s^0 \to K^{*0} \overline{K}^{*0}$: Observation

• First observation with $35pb^{-1}$ of 2010 data with very good signal to background ratio

 $\mathcal{B}(B_s^0 \to K^{*0}\overline{K}^{*0}) = (2.81 \pm 0.46(stat) \pm 0.45(syst) \pm 0.34(f_s/f_d)) \times 10^{-5}$

 $\bullet\,$ S-wave component in $\pm 150\,{
m MeV}/c^2$ window around ${\cal K}^{*0}$ mass $\sim 15\%$

• Untagged, time-integrated angular fit to helicity angles.

$$egin{aligned} |A_0|^2 &= 0.30 {\pm} 0.12 (\textit{stat}) {\pm} 0.04 (\textit{syst}) \ & |A_{\perp}|^2 &= 0.38 {\pm} 0.11 (\textit{stat}.) {\pm} 0.04 (\textit{syst}.) \end{aligned}$$

• Remarkable difference with its U-spin partner $B^0 \rightarrow K^{*0}\overline{K}^{*0}$ (BaBar: $|A_0|^2 = 0.80 \pm 0.12(stat)$ $\pm 0.04(syst)$).

Paula Álvarez Cartelle (USC)

LHCb results $B_c^0 \to K^{*0} \overline{K}^{*0}$

$B_s^0 ightarrow K^{*0} \overline{K}^{*0}$: Angular Analysis

• $B \rightarrow VV$ decay: Three polarization amplitudes A_0 , A_{\parallel} and A_{\perp}

 Image: Second second

$B_s^0 \to \phi \phi$

- Golden mode for measurement of ϕ_s (Raidal, arXiv, hep-ph/0209091)
- 801 ± 29 candidates in the full 2011 dataset $(1 f b^{-1})$.
- S-wave component in $\pm 25\,{
 m MeV}/c^2$ window around ϕ mass $\sim 1.3\%$

0-1 -0.5 0

LHCb results

 $B_{\epsilon}^{0} \rightarrow \phi \phi$

 $|A_{\perp}|^2 = 0.291 \pm 0.024(stat) \pm 0.010(syst)$ $cos(\delta_{\parallel}) = -0.844 \pm 0.068(stat) \pm 0.029(syst)$

0.5

 $\cos \theta_1$

$B_s^0 \rightarrow \phi \phi$: Angular Analysis

• Polarization amplitudes in good agreement with CDF measurement.

$$\begin{aligned} & s(\delta_{\parallel}) = -0.844 \pm 0.068(stat) \pm 0.029(syst) \\ & \vdots \\$$

0.5

 $\cos \theta_{2}$

-1 -0.5 0

$B_s^0 \rightarrow \phi \phi$: Triple Product Asymmetries

- Search for NP with no need of tagging or time-dependent analysis (Datta and London, arXiv:hep-ph/0303159)
- Interference terms $\Im(A_0^*A_{\perp})$ and $\Im(A_{\parallel}^*A_{\perp})$ are proportional to the tripple products:

U:
$$\sin \varphi = (\hat{n}_1 \times \hat{n}_2) \cdot \hat{p}_1$$

V: $\sin(2\varphi)/2 = (\hat{n}_1 \cdot \hat{n}_2)(\hat{n}_1 \times \hat{n}_2) \cdot \hat{p}_1$

• TP are odd under time reversal: Non zero TP asymmetries measurement may be a sign of *CP*-violation (*CPT* conservation)

$$A_{U} = \frac{\Gamma(U > 0) - \Gamma(U < 0)}{\Gamma(U > 0) + \Gamma(U < 0)} \quad A_{V} = \frac{\Gamma(V > 0) - \Gamma(V < 0)}{\Gamma(V > 0) + \Gamma(V < 0)}$$

LHCb results $B_s^0 \rightarrow \phi \phi$

$B_s^0 \rightarrow \phi \phi$: Triple Product Asymmetries

• Results are in good agreement with CDF and consistent with the hypothesis of *CP* conservation.

$$egin{aligned} & A_U = -0.055 \pm 0.036(\textit{stat}) \pm 0.018(\textit{syst}) \ & A_V = 0.010 \pm 0.036(\textit{stat}) \pm 0.018(\textit{syst}) \end{aligned}$$

Outlook

Ongoing work and future plans

• 2011 data:

- $B_s^0 \to K^{*0} \overline{K}^{*0}$: $M(K\pi)$ -dependent angular analysis to ensure 1% level S-wave contribution systematics
- Test of U-spin symmetry with simultaneous analysis of $B^0_s \to K^{*0} \overline{K}^{*0}$ and $B^0 \to K^{*0} \overline{K}^{*0}$
- $B^0 \rightarrow \phi K^{*0}$: Angular analysis, TP analysis
- Search for $B^0_s o \phi \overline{K}^{*0}$
- 2011 + 2012 data: Tagged, time-dependent angular analysis to measure ϕ_S
- Key channels for LHCb upgrade: 50 fb-1 & improved hadron trigger, precision of 0.02 rad in ϕ_S

・ロト ・回ト ・ ヨト

- First observation of $B_s^0 \to K^{*0} \overline{K}^{*0}$ with 2010 data. Polarization amplitudes and BR measurement.
- Analysis of $B_s^0 \to \phi \phi$ with 2011 data. Polarization amplitudes and Triple Products analysis.
- Extension of these analysis and new ones $(B^0 \rightarrow \phi K^{*0} \text{ and } B_s^0 \rightarrow \phi \overline{K}^{*0})$ expected with 2011 (&2012) data.
- Hadronic penguin decays are key channels for LHCb CP-violation analysis.

BACKUP

Paula Álvarez Cartelle (USC)

Penguin decays at LHCb

æ 31/05/2012 13 / 19

990

イロト イヨト イヨト イヨト

Polarization puzzle

Longitudinal Polarization Fraction (fL)

31/05/2012 14 / 19

・ロン ・回 と ・ ヨン・

Angular distribution

$$egin{aligned} & A_0 = H_0 \ & A_\parallel = rac{1}{\sqrt{2}}(H_{+1} + H_{-1}) \ & A_\perp = rac{1}{\sqrt{2}}(H_{+1} - H_{-1}) \end{aligned}$$

Normalization $\Rightarrow |A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 = 1$

$B_s^0 ightarrow K^{*0} \overline{K}^{*0}$ systematics

Table: Estimated systematic error sources in the $\mathcal{B}(BsKstKst)$ measurement.

Systematic effect	Error (%)
Trigger efficiency	11
Global angular acceptance	7.2
S-wave fraction	5
Background subtraction	4.7
$B^0_s ightarrow J\!/\psi K^{st 0}$ and $J\!/\psi ightarrow \mu \mu$ BR uncertainty	4.6
Selection efficiency	3.4
Total	15.9

・ロト ・回 ト ・ヨト ・

Polarization amplitudes $B_s^0 \rightarrow \phi \phi$

• • • • • • • • • • •

Source	$ A_0 ^2$	$ A_{\perp} ^2$	$ A_{\parallel} ^2$	$\cos \delta$
S-wave	0.007	0.005	0.012	0.00
Time Acceptance	0.006	0.006	0.002	0.00
Angular Acceptance	0.007	0.006	0.006	0.02
Trigger category	0.003	0.002	0.001	0.00
Background model	0.001	-	0.001	0.00
Total	0.012	0.010	0.014	0.02

イロン イヨン イヨン ・

Source	A_U	A_V	Chosen uncertainty
Angular acceptance	0.009	0.006	0.009
Decay time acceptance	0.006	0.014	0.014
Fit model	0.004	0.005	0.005
Total			0.018

イロト イヨト イヨト イヨト