BSM with LHCb: Theory overview of the implications of rare decays

Nazila Mahmoudi

CERN TH & LPC Clermont-Ferrand

XL International Meeting on Fundamental Physics Benasque, Spain May 24th - June 3rd, 2012

Outline

- Introduction and motivations
- Flavour observables
 - $B_{s,d} \rightarrow \mu^+ \mu^-$
 - $B \to K^* \mu^+ \mu^-$
- Implications for New Physics
 - Model independent constraints
 - Applications for Supersymmetry
- SuperIso
- Conclusion

Why rare decays?

- sensitivity to new physics effects
- complementary to other searches
- probe sectors inaccessible to direct searches
- test quantum structure of the SM at loop level
- constrain parameter spaces of new physics scenarios
- valuable data already available
- promising experimental situation
- consistency checks with direct observations

Flavour physics and rare decays in particular are excellent tools to probe BSM physics!

A multi-scale problem

- \bullet new physics: $1/\Lambda_{\rm NP}$
- electroweak interactions: $1/M_W$
- hadronic effects: $1/m_b$
- \bullet QCD interactions: $1/\Lambda_{\rm QCD}$

\Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- Iong distance: local operators

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big(\sum_{i=1\cdots 10, S, P} \Big(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \Big) \Big)$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \delta C_i^{NF}$
- Additional operators:

Nazila Mahmoudi

A multi-scale problem

- \bullet new physics: $1/\Lambda_{\rm NP}$
- electroweak interactions: $1/M_W$
- hadronic effects: $1/m_b$
- QCD interactions: $1/\Lambda_{\rm QCD}$

 \Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1\cdots 10, S, P} \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) \right)$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \delta C_i^{NF}$
- Additional operators:

A multi-scale problem

- \bullet new physics: $1/\Lambda_{\rm NP}$
- electroweak interactions: $1/M_W$
- hadronic effects: $1/m_b$
- \bullet QCD interactions: $1/\Lambda_{\rm QCD}$

 \Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1\cdots 10, S, P} \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) \right)$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \delta C_i^{NP}$
- Additional operators: $\sum C_j^{NP} \mathcal{O}_j^{NP}$

\mathcal{O} perators

$$\begin{aligned} \mathcal{O}_{7} &= \frac{e}{g^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{R} b) F^{\mu\nu} & \mathcal{O}_{7}' &= \frac{e}{g^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{L} b) F^{\mu\nu} \\ \mathcal{O}_{8} &= \frac{1}{g} m_{b} (\bar{s} \sigma_{\mu\nu} T^{a} P_{R} b) G^{\mu\nu a} & \mathcal{O}_{8}' &= \frac{1}{g} m_{b} (\bar{s} \sigma_{\mu\nu} T^{a} P_{L} b) G^{\mu\nu a} \\ \mathcal{O}_{9} &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\mu} \gamma^{\mu} \mu) & \mathcal{O}_{9}' &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \mu) \\ \mathcal{O}_{10} &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu) & \mathcal{O}_{10}' &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu) \\ \mathcal{O}_{S} &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{R} b) (\bar{\mu} \mu) & \mathcal{O}_{S}' &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{L} b) (\bar{\mu} \mu) \\ \mathcal{O}_{P} &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{R} b) (\bar{\mu} \gamma_{5} \mu) & \mathcal{O}_{P}' &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{L} b) (\bar{\mu} \gamma_{5} \mu) \end{aligned}$$

Primed operators: opposite chirality to the unprimed ones, vanish or highly suppressed in the SM

Two main steps:

• Calculating $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$ by requiring matching between the effective and full theories

$$C_i^{\text{eff}}(\mu) = C_i^{(0)\text{eff}}(\mu) + rac{lpha_s(\mu)}{4\pi}C_i^{(1)\text{eff}}(\mu) + \cdots$$

• Evolving the $C_i^{eff}(\mu)$ to scale $\mu \sim m_b$ using the RGE:

$$\mu \frac{d}{d\mu} C_i^{\text{eff}}(\mu) = C_j^{\text{eff}}(\mu) \gamma_{ji}^{\text{eff}}(\mu)$$

driven by the anomalous dimension matrix $\hat{\gamma}^{\textit{eff}}(\mu)$:

$$\hat{\gamma}^{\mathsf{eff}}(\mu) = rac{lpha_{m{s}}(\mu)}{4\pi} \hat{\gamma}^{(0)\mathsf{eff}} + rac{lpha_{m{s}}^2(\mu)}{(4\pi)^2} \hat{\gamma}^{(1)\mathsf{eff}} + \cdots$$

Observables

LHCb recent results:

- $B_{s,d} \rightarrow \mu^+ \mu^-$
- $B \rightarrow K^* \mu^+ \mu^-$
 - BR($B \rightarrow K^* \mu^+ \mu^-$)
 - $A_{FB}(B \rightarrow K^* \mu^+ \mu^-)$
 - $F_L(B \rightarrow K^* \mu^+ \mu^-)$
 - $S_3(B \rightarrow K^* \mu^+ \mu^-)$
 - $A_{Im}(B \rightarrow K^* \mu^+ \mu^-)$
 - $A_{FB_0}(B \rightarrow K^* \mu^+ \mu^-)$

Other observables:

- $B \to X_{s,d}\gamma$
- $B \to X_s \mu^+ \mu^-$
- $B \to \tau \nu$

• • • •

 $BR(B_s \rightarrow \mu^+ \mu^-)$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1\cdots 10, S, P} \left(C_i(\mu) \mathcal{O}_i(\mu) + C'_i(\mu) \mathcal{O}'_i(\mu) \right) \right]$$

Relevant operators:

$$\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\gamma_5 \ell)$$
$$\mathcal{O}_S = \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell} \ell)$$
$$\mathcal{O}_S = \frac{e^2}{e^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell} \ell)$$

$$\mathcal{O}_P = \frac{1}{16\pi^2} (\bar{s}_L^\alpha b_R^\alpha) (\ell \gamma_5 \ell)$$

$$BR(B_{s} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} m_{B_{s}}^{3} |V_{tb}V_{ts}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \to \\ \times \left\{ \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}\right) |C_{S} - C_{S}'|^{2} + \left| (C_{P} - C_{P}') + 2(C_{10} - C_{10}') \frac{m_{\mu}}{m_{B_{s}}} \right|^{2} \right\}$$

Very sensitive to new physics, especially for large tan β : SUSY contributions can lead to an O(100) enhancement over the SM!

и

Experimental results:

LHCb: ${
m BR}(B_s o \mu^+ \mu^-) < 4.5 imes 10^{-9}$ at 95% C.L. arXiv:1203.4493

CMS: BR $(B_s \to \mu^+ \mu^-) < 7.7 imes 10^{-9}$ at 95% C.L. CMS BPH11020

 \rightarrow Approaching dangerously the SM value!

 \rightarrow Crucial to have a clear estimation of the SM prediction!

Main source of uncertainty: f_{B_s}

- ETMC-11: 232 ± 10 MeV
- Fermilab-MILC-11: 242 ± 9.5 MeV

Our choice: 234 ± 10 MeV

Most up-to-date input parameters (PDG 2011):

V _{ts}	V _{tb}	m _{Bs}	τ_{B_s}	
-0.0403	0.999152	5.3663 GeV	1.472 ps	

SM prediction:
$${
m BR}(B_s o \mu^+\mu^-) = (3.53\pm0.38) imes 10^{-9}$$

Most important sources of uncertainties:

8% from *f_{Bs}* 2% from EW corrections 2% from scales 2% from B_s lifetime 5% from V_{ts} 1.3% from top mass

Overall TH uncertainty: $\sim 10\%$.

Using $f_{B_e} = 225$ MeV and $\tau_{B_e} = 1.425$ ps, one gets: BR $(B_s \rightarrow \mu^+ \mu^-) = 3.20 \times 10^{-9}$

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0}\ell^+\ell^-$ with $\bar{K}^{*0} \to K^-\pi^+$ on the mass shell is completely described by four independent kinematic variables:

- q²: dilepton invariant mass squared
- $heta_\ell$: angle between ℓ^- and the $ar{B}$ in the dilepton frame
- θ_{K^*} : angle between K^- and \bar{B} in the $K^-\pi^+$ frame
- ϕ : angle between the normals of the $K^-\pi^+$ and the dilepton planes

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{\kappa^*}\,d\phi}=\frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{\kappa^*},\phi)$$

Kinematics: $4m_{\ell}^2 \leq q^2 \leq (M_B - m_{K^*})^2$, $-1 \leq \cos \theta_{\ell} \leq 1$, $-1 \leq \cos \theta_{K^*} \leq 1$, $0 \leq \phi \leq 2\pi$ $J(q^2, \theta_{\ell}, \theta_{K^*}, \phi)$ are written in function of the angular coefficients $J_{1-9}^{s,c}$ J_{1-9} : functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\begin{aligned} \mathcal{O}_{9} &= \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma^{\mu}b_{L})(\bar{\ell}\gamma_{\mu}\ell) \\ \mathcal{O}_{10} &= \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma^{\mu}b_{L})(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell) \\ \mathcal{O}_{S} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha}b_{R}^{\alpha})(\bar{\ell}\ell) \\ \mathcal{O}_{P} &= \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha}b_{R}^{\alpha})(\bar{\ell}\gamma_{5}\ell) \end{aligned}$$

Dilepton invariant mass spectrum

$$\frac{d\Gamma}{dq^2} = \frac{3}{4} \left(J_1 - \frac{J_2}{3} \right)$$

Forward backward asymmetry

Difference between the differential branching fractions in the forward and backward directions:

$$A_{\rm FB}(q^2) \equiv \left[\int_{-1}^{0} - \int_{0}^{1}\right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} \left/ \frac{d\Gamma}{dq^2} = \frac{3}{8}J_6 \right/ \frac{d\Gamma}{dq^2}$$

 \rightarrow Reduced theoretical uncertainty

Forward backward asymmetry zero-crossing

 \rightarrow Reduced form factor uncertainties

$$q_0^2 \simeq -2m_b m_B rac{C_9^{ ext{eff}}(q_0^2)}{C_7} + O(lpha_s, \Lambda/m_b)$$

 \rightarrow fix the sign of $\mathit{C}_{9}/\mathit{C}_{7}$

Polarization fractions:

$$F_L(q^2) = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

$$F_T(q^2) = 1 - F_L(q^2) = \frac{|A_{\perp}|^2 + |A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

 K^* polarization parameter:

$$lpha_{K^*}(q^2) = rac{2F_L}{F_T} - 1 = rac{2|A_0|^2}{|A_{\parallel}|^2 + |A_{\perp}|^2} - 1$$

Transverse asymmetries:

$$A_{T}^{(1)}(q^{2}) = \frac{-2\Re(A_{\parallel}A_{\perp}^{*})}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \qquad A_{T}^{(2)}(q^{2}) = \frac{|A_{\perp}|^{2} - |A_{\parallel}|^{2}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}}$$
$$A_{T}^{(3)}(q^{2}) = \frac{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \qquad A_{T}^{(4)}(q^{2}) = \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}$$
$$I_{Im}(q^{2}) = -2\operatorname{Im}\left(\frac{A_{\parallel}A_{\perp}^{*}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}}\right) \qquad S_{3}(q^{2}) = \frac{1}{2}(1 - F_{L}(q^{2}))A_{T}^{(2)}(q^{2})$$

A

Observable	SM value	(FF)	(SL)	(QM)	(CKM)	(Scale)
$10^7 imes BR(B ightarrow K^* \mu^+ \mu^-)_{[1,6]}$	2.32	±1.34	±0.04	$^{+0.04}_{-0.03}$	+0.08 -0.13	+0.09 -0.05
$\langle A_{FB}(B ightarrow K^* \mu^+ \mu^-) \rangle_{[1,6]}$	-0.06	±0.04	±0.02	± 0.01	—	—
$\langle F_L(B \to K^* \mu^+ \mu^-) \rangle_{[1,6]}$	0.71	±0.13	± 0.01	± 0.01	—	—
$q_0^2(B ightarrow K^* \mu^+ \mu^-)/{ m GeV}^2$	4.26	±0.30	± 0.15	$^{+0.14}_{-0.04}$	_	$^{+0.02}_{-0.04}$

Main uncertainties from:

- form factors
- $1/m_b$ subleading corrections
- parametric uncertainties (m_b, m_c, m_t)
- CKM matrix elements
- scales

$B \to K^* \mu^+ \mu^-$ – Experimental results from LHCb

q^2 range	dBF/dq^2	$A_{\rm FB}$	$F_{\rm L}$	$A_{ m Im}$	$2S_{3}$
(GeV^2/c^4)	$(\times 10^{-7}{\rm GeV}^{-2}c^4)$				
$0.05 < q^2 < 2.00$	$0.68 \pm 0.07 \pm 0.05$	$0.00^{+0.08+0.01}_{-0.07-0.01}$	$0.31\substack{+0.07+0.03\\-0.06-0.03}$	$0.06^{+0.11+0.00}_{-0.10-0.03}$	$0.02^{+0.20+0.00}_{-0.21-0.03}$
$2.00 < q^2 < 4.30$	$0.30 \pm 0.05 \pm 0.02$	$-0.20\substack{+0.08+0.01\\-0.07-0.03}$	$0.74\substack{+0.09+0.02\\-0.08-0.04}$	$-0.02^{+0.10}_{-0.06}$	$-0.05\substack{+0.18+0.05\\-0.12-0.01}$
$4.30 < q^2 < 8.68$	$0.54 \pm 0.05 \pm 0.05$	$0.16\substack{+0.05+0.01\\-0.05-0.01}$	$0.57\substack{+0.05+0.04\\-0.05-0.03}$	$0.02^{+0.07}_{-0.07}^{+0.01}_{-0.01}$	$0.18\substack{+0.13+0.01\\-0.13-0.01}$
$10.09 < q^2 < 12.89$	$0.50 \pm 0.06 \pm 0.04$	$0.27\substack{+0.06+0.02\\-0.06-0.01}$	$0.49\substack{+0.06+0.03\\-0.07-0.03}$	$-0.01^{+0.11}_{-0.11}^{+0.02}_{-0.03}$	$-0.22^{+0.20+0.02}_{-0.17-0.03}$
$14.18 < q^2 < 16.00$	$0.59 \pm 0.07 \pm 0.04$	$0.49^{+0.04+0.02}_{-0.06-0.05}$	$0.35\substack{+0.07+0.07\\-0.06-0.02}$	$-0.01^{+0.08}_{-0.07}^{+0.08}_{-0.02}$	$0.04\substack{+0.15+0.04\\-0.19-0.02}$
$16.00 < q^2 < 19.00$	$0.44 \pm 0.05 \pm 0.03$	$0.30\substack{+0.07+0.04\\-0.07-0.01}$	$0.37\substack{+0.06+0.03\\-0.07-0.04}$	$0.06\substack{+0.09 + 0.03 \\ -0.10 - 0.05}$	$-0.47\substack{+0.21+0.03\\-0.10-0.05}$
$1.00 < q^2 < 6.00$	$0.42 \pm 0.04 \pm 0.04$	$-0.18^{+0.06}_{-0.06}_{-0.02}$	$0.66\substack{+0.06+0.04\\-0.06-0.03}$	$0.07^{+0.07}_{-0.07}^{+0.02}_{-0.01}$	$0.10^{+0.15+0.02}_{-0.16-0.01}$

LHCb-CONF-2012-008

Nazila Mahmoudi

Benasque, May 31st, 2012

Implications

Assuming Minimal Flavour Violation (MFV)

What are the presently allowed ranges of the Wilson coefficients?

Operators of interest:

$$\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_9, \mathcal{O}_{10}$$
 and $\mathcal{O}_{S-P} \propto (\bar{s}P_R b)(\bar{\mu}P_L \mu) \equiv \mathcal{O}_0'$

 NP manisfests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\rm SM}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_7 , δC_8 , δC_9 , δC_{10} , $\delta C_0'$
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

see also: Hurth, Isidori, Kamenik, Mescia, Nucl.Phys. B808 (2009) 326 Descotes-Genon, Gosh, Matias, Ramon, JHEP 1106 (2011) 099 Altmannshofer, Paradisi, Straub, JHEP 1204 (2012) 008 ightarrow Global fits of the $\Delta F=1$ observables obtained by minimization of

$$\chi^2 = \sum_i \frac{\left(O_i^{\text{exp}} - O_i^{\text{th}}\right)^2}{(\sigma_i^{\text{exp}})^2 + (\sigma_i^{\text{th}})^2}$$

Observables:

- $BR(B \rightarrow X_s \gamma)$
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_{s} \mu^{+} \mu^{-})$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_{s} \mu^{+} \mu^{-})$

- BR($B_s \rightarrow \mu^+ \mu^-$)
- $\mathsf{BR}^{\mathsf{low}}(B o K^* \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to K^* \mu^+ \mu^-)$

•
$$A_{FB}^{\text{low}}(B \to K^* \mu^+ \mu^-)$$

•
$$A_{FB}^{high}(B
ightarrow K^* \mu^+ \mu^-)$$

• $q_0^2(A_{FB}(B \rightarrow K^* \mu^+ \mu^-))$

•
$$F_L^{\text{low}}(B \to K^* \mu^+ \mu^-)$$

 $B
ightarrow X_s \gamma$: sensitive to C_7 and C_8

• No linear combination assumed for NP contributions to the electromagnetic and chromomagnetic operators

• Scalar operator strongly restricted by the ${\sf BR}(B_s o\mu^+\mu^-)$ constraint

 $B
ightarrow X_s \gamma$: sensitive to C_7 and C_8

 $B_s \rightarrow \mu^+ \mu^-$: sensitive to C_{10} and C_0'

- No linear combination assumed for NP contributions to the electromagnetic and chromomagnetic operators
- Scalar operator strongly restricted by the ${\sf BR}(B_s o \mu^+ \mu^-)$ constraint

$B \rightarrow K^* \mu^+ \mu^-$ exclusive mode

$B \rightarrow X_s \mu^+ \mu^-$ inclusive mode

Before LHCb:

After LHCb:

Use the allowed ranges for the Wilson coefficients to make predictions for the observables which are not yet measured

In particular:

- BR $(B_d \to \mu^+ \mu^-) < 0.32 \times 10^{-9}$ Current LHCb limit: BR $(B_d \to \mu^+ \mu^-) < 1.0 \times 10^{-9}$
- $B \to K^* \mu^+ \mu^-$ transverse asymmetries:
 - $A_T^{(2)} \in [-0.068, -0.02]$
 - $A_T^{(3)} \in [0.35, 1.00]$
 - $A_T^{(4)} \in [0.18, 1.30]$
 - $A_T^{(5)} \in [0.15, 0.49]$

\rightarrow Test of the MFV hypothesis!

Constraints on Supersymmetry

SuperIso v3.3

CMSSM parameter space

$$\tan \beta = 50, A_0 = 0$$

SuperIso v3.3

Stable charged LSP incompatible with cosmology

SuperIso v3.3

NNLO calculation

Experimental value - HFAG 2011: BR $(\bar{B} \rightarrow X_s \gamma) = (3.55 \pm 0.25) \times 10^{-4}$

SuperIso v3.3

$$BR(B \to \tau\nu) = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \times \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left|1 - \left(\frac{m_B^2}{m_{H^+}^2}\right) \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right|^2$$

HFAG 2011:
BR
$$(B
ightarrow au
u) = (1.64 \pm 0.34) imes 10^{-4}$$

SuperIso v3.3

$$B_s \to \mu^+ \mu^-$$

EPS LHCb + CMS combination: ${\rm BR}(B_{\rm s}\to\mu^+\mu^-)<1.1\times10^{-8}~{\rm at}~95\%~{\rm C.L}.$

SuperIso v3.3

SuperIso v3.3

$$B_d \rightarrow \mu^+ \mu^-$$

EPS LHCb limit:

 ${\sf BR}(B_d \to \mu^+ \mu^-) < 5.1 \times 10^{-9}$ at 95% C.L.

SuperIso v3.3

$$B \rightarrow K^* \mu^+ \mu^-$$

In the region $1 < q^2 < 6$ GeV² (LHCb):

$$\left\langle \frac{d\mathsf{BR}}{dq^2} (B \to K^* \mu^+ \mu^-) \right\rangle = (0.42 \pm 0.04 \pm 0.04) \times 10^{-7}$$

SuperIso v3.3

$$R \to \mu\nu$$

$$R_{\ell 23} = \left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| = \left| 1 - \frac{m_{k+1}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

 $K \rightarrow uu$

Combined experimental and SM constraint: $R_{l23}^{exp/SM} = 1.004 \pm 0.014$

SuperIso v3.3

SuperIso v3.3

$$B o X_{s} \mu^+ \mu^-$$
, high q^2

Experimental value:

 ${\sf BR}(B o X_{s} \mu^{+} \mu^{-}) = (4.18 \pm 1.35) imes 10^{-7}$

SuperIso v3.3

$$BR(D_{s} \to \ell\nu) =$$

$$\frac{G_{F}^{2}}{8\pi} |V_{cs}|^{2} f_{D_{s}}^{2} m_{\ell}^{2} M_{D_{s}} \tau_{D_{s}} \left(1 - \frac{m_{\ell}^{2}}{M_{D_{s}}^{2}}\right)^{2}$$

$$\times \left[1 + \left(\frac{1}{m_{c} + m_{s}}\right) \left(\frac{M_{D_{s}}}{m_{H^{+}}}\right)^{2} + \left(m_{c} - \frac{m_{s} \tan^{2} \beta}{1 + \epsilon_{0} \tan \beta}\right)\right]^{2}$$

HFAG 2011: BR $(D_s \to \tau \nu) = (5.38 \pm 0.32) \times 10^{-2}$

SuperIso v3.3

$$B o X_{s} \mu^+ \mu^-$$
, low q^2

Experimental value:

 ${\sf BR}(B\to X_{\rm s}\mu^+\mu^-)=(1.60\pm 0.68)\times 10^{-6}$

Black line: CMS exclusion limit with 1.1 fb^{-1} data

SuperIso v3.3

Black line: CMS exclusion limit with 1.1 fb^{-1} data Red line: CMS exclusion limit with 4.4 fb^{-1} data

SuperIso v3.3

Black line: CMS exclusion limit with 1.1 fb⁻¹ data Red line: CMS exclusion limit with 4.4 fb⁻¹ data New LHCb limits for BR($B_s \rightarrow \mu^+\mu^-$) and BR($B_d \rightarrow \mu^+\mu^-$)

SuperIso v3.3

Black line: CMS exclusion limit with 1.1 fb⁻¹ data Red line: CMS exclusion limit with 4.4 fb⁻¹ data New LHCb limits for BR($B_s \rightarrow \mu^+\mu^-$) and BR($B_d \rightarrow \mu^+\mu^-$)

SuperIso v3.3

 $\mathsf{BR}(B \to K^* \mu^+ \mu^-)$ in the low and high q^2 regions:

CMSSM - $\tan \beta = 50$

FM, S. Neshatpour, J. Orloff, arXiv:1205.1845 [hep-ph]

For $m_{\tilde{t}_1} > \sim 300$ GeV, SUSY spread is within the th+exp error

- \rightarrow Look at other observables (A_{FB} , F_{L} ,...)
- \rightarrow Reduce both theory and experimental errors.

Other observables of interest:

CMSSM - $\tan \beta = 50$

FM, S. Neshatpour, J. Orloff, arXiv:1205.1845 [hep-ph]

 A_{FB} in the low q^2 region is especially interesting!

Other observables (not yet measured):

CMSSM - $\tan \beta = 50$

FM, S. Neshatpour, J. Orloff, arXiv:1205.1845 [hep-ph]

Going beyond constrained scenarios

- CMSSM useful for benchmarking, model discrimination,...
- However the mass patterns could be more complicated

Phenomenological MSSM (pMSSM)

- The most general CP/R parity-conserving MSSM
- Minimal Flavour Violation at the TeV scale
- The first two sfermion generations are degenerate
- The three trilinear couplings are general for the 3 generations

ightarrow 19 free parameters

10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsino

A. Djouadi et al., hep-ph/9901246

ightarrow Interplay between low energy observables and high $ho_{\mathcal{T}}$ results

Considering 2 scenarios:

• 2011 bound from LHCb+CMS + estimated th syst:

```
BR(B_s \to \mu^+ \mu^-) < 1.26 \times 10^{-8}
```

• SM like branching ratio with estimated 20% total uncertainty

Light M_A strongly constrained!

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847 A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1906

- public C program
- dedicated to the flavour physics observable calculations
- various models implemented
- interfaced to several spectrum calculators
- modular program with a well-defined structure
- complete reference manuals available

```
http://superiso.in2p3.fr
```

FM, Comput. Phys. Commun. 178 (2008) 745
 FM, Comput. Phys. Commun. 180 (2009) 1579
 FM, Comput. Phys. Commun. 180 (2009) 1718

Conclusion

- Flavour physics plays a very important role in constraining BSM scenarios
- $B_s \to \mu^+ \mu^-$ is a particularly sensive to the scalar contributions and the high tan β regime
- $B \to K^* \mu^+ \mu^-$ offers multiple sensitive observables

 \rightarrow complementary information!

- Theory uncertainties under control
- With more data constraints will tighten!

Backup

- Low q^2
 - small 1/m_b corrections
 - sensitivity to the interference of C_7 and C_9
 - high rate
 - long-distance effects not fully under control
 - non-negligible scale and m_c dependence
- High q^2
 - negligible scale and m_c dependence due to the strong sensitivity to C₁₀
 - negligible long-distance effects of the type $B \to J/\Psi X_s \to X_s + X^{'} \ell^+ \ell^-$
 - sizable $1/m_b$ corrections
 - low rate

Isospin asymmetry:

Non-factorizable graphs: annihilation or spectator-scattering diagrams Isospin asymmetry arises when a photon is radiated from the spectator quark

- \rightarrow depends on the charge of the spectator quark
- \rightarrow different for charged and neutral B meson decays

$$\frac{dA_{I}}{dq^{2}} \equiv \frac{\frac{d\Gamma}{dq^{2}}(B^{0} \to K^{*0}\ell^{+}\ell^{-}) - \frac{d\Gamma}{dq^{2}}(B^{-} \to K^{*-}\ell^{+}\ell^{-})}{\frac{d\Gamma}{dq^{2}}(B^{0} \to K^{*0}\ell^{+}\ell^{-}) + \frac{d\Gamma}{dq^{2}}(B^{-} \to K^{*-}\ell^{+}\ell^{-})}$$

The SM is sensitive to C_5 and C_6 at small q^2 , but to C_3 and C_4 at larger q^2

Observable	Experiment	SM prediction
$BR(B \to X_s \gamma)$	$(3.55 \pm 0.24 \pm 0.09) imes 10^{-4}$	$(3.08 \pm 0.24) imes 10^{-4}$
$\Delta_{0}(B o X_{s}\gamma)$	$(5.2 \pm 2.6 \pm 0.09) imes 10^{-2}$	$(8.0 \pm 3.9) \times 10^{-2}$
$BR(B \to X_d \gamma)$	$(1.41 \pm 0.57) \times 10^{-5}$	$(1.49 \pm 0.30) \times 10^{-5}$
$BR(B_{s} \to \mu^{+}\mu^{-})$	$< 4.5 \times 10^{-9}$	$(3.53 \pm 0.38) \times 10^{-9}$
$\langle dBR/dq^2(B \to K^* \mu^+ \mu^-) \rangle_{q^2 \in [1,6] \mathrm{GeV}^2}$	$(0.42 \pm 0.04 \pm 0.04) imes 10^{-7}$	$(0.47 \pm 0.27) \times 10^{-7}$
$\langle dBR/dq^2(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [14.18, 16] \text{GeV}^2}$	$(0.59 \pm 0.07 \pm 0.04) imes 10^{-7}$	$(0.71 \pm 0.18) \times 10^{-7}$
$\langle A_{FB}(B \to K^* \mu^+ \mu^-) \rangle_{q^2 \in [1,6] \text{GeV}^2}$	$-0.18 \pm 0.06 \pm 0.02$	-0.06 ± 0.05
$\langle A_{FB}(B \to K^* \mu^+ \mu^-) \rangle_{q^2 \in [14.18, 16] \mathrm{GeV}^2}$	$0.49 \pm 0.06 \pm 0.05$	0.44 ± 0.10
$q_0^2(A_{FB}(B \to K^* \mu^+ \mu^-))$	$4.9^{+1.1}_{-1.3} \text{ GeV}^2$	$4.26\pm0.34~{\rm GeV}^{2}$
$\langle F_{\boldsymbol{L}}(\boldsymbol{B} \to \boldsymbol{K}^* \boldsymbol{\mu}^+ \boldsymbol{\mu}^-) \rangle_{\boldsymbol{q^2} \in [1, 6] \mathrm{GeV}^2}$	$0.66 \pm 0.06 \pm 0.04$	0.71 ± 0.13
$BR(B \to X_{\mathbf{s}} \mu^+ \mu^-)_{\mathbf{g^2} \in [1, 6] \mathrm{GeV}^2}$	$(1.60\pm0.68) imes10^{-6}$	$(1.78 \pm 0.16) \times 10^{-6}$
$BR(B \to X_{\mathbf{s}} \mu^+ \mu^-)_{\mathbf{g}^2 > \mathbf{14.4 GeV}^2}$	$(4.18 \pm 1.35) imes 10^{-7}$	$(2.18 \pm 0.65) imes 10^{-7}$

Observable	Experiment
$BR(B o X_{s}\gamma)$	$(3.55\pm0.24\pm0.09) imes10^{-4}$
$\Delta_{m 0}(B o X_{m s} \gamma)$	$(5.2 \pm 2.6 \pm 0.09) imes 10^{-2}$
$BR(B o X_d \gamma)$	$(1.41\pm0.57) imes10^{-5}$
$BR(B_{s} o \mu^{+}\mu^{-})$	$< 5.8 imes 10^{-8}$
$\langle dBR/dq^2(B \to K^* \ell^+ \ell^-) \rangle_{q^2 \in [1,6] \text{GeV}^2}$	$(0.32\pm0.11\pm0.03) imes10^{-7}$
$\langle dBR/dq^2(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [14.18, 16] \text{GeV}^2}$	$(0.83 \pm 0.20 \pm 0.07) imes 10^{-7}$
$\langle A_{FB}(B \to K^* \mu^+ \mu^-) \rangle_{q^2 \in [1,6] \text{GeV}^2}$	$0.43 \pm 0.36 \pm 0.06$
$\langle A_{FB}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [14.18, 16] \mathrm{GeV}^2}$	$0.42 \pm 0.16 \pm 0.09$
$\langle F_{\boldsymbol{L}}(\boldsymbol{B} \to \boldsymbol{K}^* \boldsymbol{\mu}^+ \boldsymbol{\mu}^-) \rangle_{\boldsymbol{g^2} \in [1, 6] \mathrm{GeV}^2}$	$0.50 \pm 0.30 \pm 0.03$
$BR(B \to X_{\mathbf{s}} \mu^+ \mu^-)_{\mathbf{q^2} \in [1, 6] \mathrm{GeV}^2}$	$(1.60\pm0.68) imes10^{-6}$
$BR(B \to X_{\mathbf{s}} \mu^+ \mu^-)_{\mathbf{g}^2 > \mathbf{14.4 GeV}^2}$	$(4.18 \pm 1.35) imes 10^{-7}$

$$R = \left(\frac{\mathrm{BR}(B_{s} \to \mu^{+}\mu^{-})}{\mathrm{BR}(B_{u} \to \tau\nu)}\right) \Big/ \left(\frac{\mathrm{BR}(D_{s} \to \tau\nu)}{\mathrm{BR}(D \to \mu\nu)}\right)$$

From the form factor and CKM matrix point of view:

$$R \propto rac{|V_{ts}V_{tb}|^2}{|V_{ub}|^2} rac{(f_{B_s}/f_B)^2}{(f_{D_s}/f_D)^2} \qquad {
m with}: \qquad rac{(f_{B_s}/f_B)}{(f_{D_s}/f_D)} pprox 1$$

R has no dependence on the decay constants, contrary to each decay taken individually!

- No dependence on lattice quantities
- Interesting for V_{ub} determination
- Interesting for probing new physics
- Promising experimental situation

B. Grinstein, Phys. Rev. Lett. 71 (1993)A.G. Akeroyd, FM, JHEP 1010 (2010)

Constraints in CMSSM (all parameters varied)

At 95% C.L., including th uncertainty: ${
m BR}(B_s o \mu^+ \mu^-) < 5.0 imes 10^{-9}$

A.G. Akeroyd, F.M., D. Martinez Santos, JHEP 1112 (2011) 088 Superlso v3.2

Constraints in CNMSSM (all parameters varied)

A.G. Akeroyd, F.M., D. Martinez Santos, JHEP 1112 (2011) 088 Superiso v3.2

