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Introduction

Introduction

@ In studies of foundations of quantum theory, it is of interest
to study mixed states and their origins.

@ Focus has been on separable states and entropy created
by partial tracing.

@ But this method is not so good for identical particles as we
will show.

@ A much more universal construction is based on
restrictions of states to subalgebras and the GNS
construction.

@ This talk will explain this approach
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Entanglement

WHAT THEY DO

Separable state
Consider a bipartite system with Hilbert space Ha ® Hp.

A vector state
) = yli) @ 1)
i

is said to be separable if it can be brought to the form

) = |v) ©[w).

Otherwise, it is said to be entangled.
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Entanglement

Singular value decomposition (SVD)
A m x ncomplex matrix. A can always be written in the form

A= UDV!

@ U: m x m, unitary (columns of U are eigenvectors of AAT).
@ D: m x n, diagonal, positive (eigenvalues of vV AfA.)
@ V : nx nunitary (columns of V are eigenvectors of ATA).
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Entanglement

Schmidt decomposition

¥y =Y Ajliy @) =D _(UDVT)li) @ |j)
i

i7j

=Y Uxk D, Y, iy @ 1)) = th (Z Uik1) ) ® (Zj: ‘7jkf>>

k! *Akék/
=Y Mlk)a®lk)s
3

The Schmidt rank is the number of nonzero X s.

A.P. Balachandran Entanglement and GNS construction



Entanglement

@ [¢)) separable precisely when Schmidt rank = 1.
@ Reduced density matrix: pg = Trgp.

@ von Neumann entropy: S(p) = —Trplog p. We have
S(pa) = S(ps)-
@ |¢) separable precisely when S(pa) = 0.
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Entanglement

WHAT WE DO

Our main motivation

There are certain situations where the use of partial trace may
not be the “best thing to do”. An example of this is provided by
the study of entanglement for systems of indistinguishable
particles, where the notion of separability is more subtle.

Partial trace = Restriction

Thus consider two distinguishable particles A and B in a pure
state |v)) = |¢) 4 @ |x) 5. Partial trace means restricting its
density matrix to observables of subsystem A . They are of the
form K, ® 1 . But for identical fermions....
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Entanglement

Identical Fermions

For identical fermions a two particle state is a linear
combination of vector states of the form

) = 75(18) © 1) ~ 1) ©16)
and observables are all symmetric combinations K @ L + L ® K.
Partial tracing has no physical meaning. How do we study the
mixture created by observing only the single particle
observables? K ® 1 + 1 ® K or perhaps L ® L ? We turn now to
this problem.
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C*-algebras

C*-algebras

Observables in quantum field theory come from C*-algebras.
All finite-dimensional matrix algebras are C*.

Representations of C*-algebras

Given a state or density matrix on such an algebra, there is a
way to recover the Hilbert space due to Gelfand, Naimark and
Segal. We will explain it below. It is used widely in

@ Quantum field theory.
@ Statistical physics.
@ Noncommutative geometry.
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The GNS construction

@ Let A be the C*-algebra of observables and w : A — C a
state. That is w(«) is a complex number, w(a*«) > 0, and

w(ly)=1.
@ Regard A as a vector space: a — |a).
@ Introduce a scalar product: («|3) = w(a*f)

@ This space can have a subspace N of vectors of 0 norm:
N ={ae A| (ala) =0}. Nis aleft ideal: BN = N.
Proved easily using Schwartz inequality.

@ The Hilbert space is: H,, = A/N. An element of this space
is the equivalence class [a] = o + N for ain A.

@ The representation «,, of 4 on this space is given by

mo(a)|[6]) = |[as])
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The GNS construction
A simple example
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von Neumann entropy and the GNS construction

@ Fact: H,, irreducible precisely when w pure.
@ The state w corresponds to the density matrix
po = [[A]){[L]]-
® H, = @®;jH;, where each H; carries an irreducible
representation.
PiI[L])

@ If Pj’s are projectors from H,, to H;, set |[1;]) = PN
o Define 11 = ||Pj|[1])||. Then, 3, u¥ = 1. Finally,

po = > 2 |[1])([17]]. This state is mixed if its rank exceeds 1.

It has entropy
S=- Zujz log Hj2~
J
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A simple example

o A= M(C).
@ wy: A—C, wya)=dag1+ (1 —ANage, 0< A1,
@ The null space N, is generated by those « such that

wi(a*a) =0.
@ Explicit form of this condition:
AJa1[? + |az1 %) + (1 = A)(Jaqz]? + |aze[?) = 0. (1)

@ Each value of X gives a GNS-representation. There are
two inequivalent cases: 0 < A < 1and A =0 (or 1).
@ Notation:

10 0 1
e11:<00>,e12:<00)7e’[0..
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The GNS construction
A simple example
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Case1:0< )\ < 1.

@ For 0 < A < 1 the only solutionto (1) isa =0
= N, = {0}.

@ GNS-space given by H,,, = C*.

@ The g; act on this space as: 7., (&j)|[ex]) = di|[ei])-
For instance, the matrix of «,,, (€11) is:

1000
0100
(&) =19 0 0 0
0000

o H,, = H"aH®), with H!) (I =1,2) invariant and
spanned by {|[ex]) }k=12-
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The GNS construction
A simple example
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Case1:0< )\ < 1.

@ Decomposing w) into pure states (14 = 1»):
[Lal) = [[e11]) + [[€22])
@ The norms of the two components are v/X and v/1 — ), so
[Lal) = VDAl + VT =Albel),  (Dalbgl) = 6.
@ |t follows that

Py = MDAl (Dall + (1 = Mlxal) (D]l

so that w), is not pure.
@ It has von Neumann entropy

S(wy) = —Alog A — (1 — A)log(1 — \).
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A simple example
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Case 2: \ =0.

e If we choose ) = 0, from (1) we see that \V,,, = C?, since it
is spanned by elements of the form

(o191 O
“= ( azr 0 ) '
that is, by linear combinations of |e11) and |ez4).
@ Accordingly, the GNS-space H,,, = A/N,,, = C?is
generated by |[e12]) and |[exz]). In this case the

representation of A is irreducible and given by 2 x 2
matrices ,,, (&j):

Twy ()l [ek2]) = djkl[ei])-

@ The state w) is pure with zero entropy.
@ A similar situation is found for A = 1.
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IDENTICAL PARTICLES: FERMIONS

One-particle space

@ Single-particle space:
H ~ .

@ Symmetry group:
u(d).

@ Algebra of observables: A, given by a x-representation of
CU(d) for the group algebra:

a= | dug)a(g)u(g),
U(d)
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IDENTICAL PARTICLES: FERMIONS

Many-particle space

Consider now a fermion system whose single-particle space is
given by H = C:
@ Many particle space F is the “Fock” space:

H® | where HK) = AfH.
0

d
F=
k=

e NOH = C, generated by the “vacuum" |Q).

o A'VH: 1-particle space, A>H: 2-particle space, and so on..

o dim A*H = (9), so dim F = 29. This reflects the fact that
F=(C?®---®C? an isomorphism often used in statistical
physics models.
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{let1), |ez),...|eq)}: Orthonormal basis for H. Given v; € H
(i=1,...,k), put

Vi AL A V) = 1k' > sgn(o)vi @ ® wi.
€Sk
Then:
@ {|ej A...A€)} 1<i<.<i<d: Orthonormal basis for H(*).
@ A self-adjoint operator A acting on H(!) = 1 can be made
to act on H(¥) by defining dr'(A) follows:

dr¥(A) = Aol y®- - - @1 g+ 14RART4@- - - @l gt A 1g@- - -1 yRA

@ This operator preserves the symmetry of the states on
which it acts, as well as the commutation relations of the
self-adjoint operators acting on H, namely:

drk([A, B]) = [drk(A), dr¥(B)]
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C*-Algebras and the GNS construction

@ dr(A) =3, dr(A) acts on the whole Fock space F (it is
the “second quantized" form of A).

@ At the group level, we may consider exponentials of such
operators, of the form e/@(A). These are unitary operators
acting on F. Let U = e” be a unitary operator acting on H.
The global version of dr is given by:

fu=Ug - oU.
@ We then have, with F(U) = 3, T*(U),

r(eiA) — eidr(A) ]

A.P. Balachandran Entanglement and GNS construction



The GNS construction
A simple example
Identical particles

C*-Algebras and the GNS construction

@ Following the previous remarks, we see that operators of

the form
ok = du(9)a(9)g®---®g ( k-fold product, g € U(d) ),
u(d)

act properly on H(K).

@ All of this can be conveniently expressed in terms of a
coproduct. approach based on Hopf algebras (can easily
include braid-group statistics).

@ Here, the construction of the observable algebra
corresponds to the following simple choice for the
coproduct A:

A(g)=g®g, ge U(d), )

linearly extended to all of CU(d). This choice fixes the
form of ak.
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A is a homomorphism from the single-particle algebra to the
two-particle Hilbert space. ’

So it makes sense to identify its image with observations of
single-particle observables. ’
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An example with fermions

@ Consider the 2-fermion space (2 for the case d = 3.

@ Let the action of U(3) on H = €2 be given by the defining
representation. Call it U("). (Hence U(")(g) = g).

@ We have U(g)|e)) = -2, D(g)jle)), for a fixed ONB
{le1),]e2),]es)}.

@ The action of CU(3) is then given by the 3-dimensional
conjugate representation (3 ® 3 =6 @ 3).

@ 3is the antisymmetric 3 ®4 3.
@ The basis vectors of 3 are | ) := c/%|e; A ) (k = 1,2,3).
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@ Action of CU(3) on H(V: a = Juga) dr(9)c v(g)DC)(g).

@ Basis: the 8 Gell-Mann matrices {T}, plus 13.

@ On 3, they become T = T (use A and restrict to 3).

@ This amounts to consider only the action of the operators

/ du(9)a(g)D®)(g) ® DB)(g)

on the (invariant) subspace generated by the
antisymmetric vectors |f%) = cji|e; A g)) (k = 1,2,3).

@ Thus, one-particle observables acting on the two-particle
(fermionic) sector are generated by the matrices
{T —T; i}i=1,.8 of 3, plus the identity.
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The algebra of operators A acting on the 2-particle sector
H®) = N\2C3 is the matrix algebra generated by
{T‘], .y T8,:ﬂ.3}
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If we now assume that we only have access to the observables
pertaining to the states |ey) and |e»), then the relevant algebra
of operators will be a subalgebra Ay C A, namely the one
generated by {T1, Tg, T3,15,13}.

In general we expect that a general (2-particle) pure state,
given by a state vector

3
= Zwk‘fk> = y|€x A e3) + oles A e) +1sler A er)

may become mixed when restricted to Ajg.
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C*-Algebras and the GNS construction

In order to detect this “entanglement” we perform the GNS
construction when the state |¢)(¢| is restricted to Ap.

We put wy, o = wy, | 4,- The GNS construction furnishes a
representation = : Ag — B(H%O), as explained before.

In general, H,,, , will split as a sum of irreducibles of Aq. This
reducibility reflects the fact that, when restricted to Ay, the
original state w,, might become mixed. The entropy of this state
can then be computed from the decomposition of H,,,, , into
irreducibles.
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C*-Algebras and the GNS construction

lv) = cos6|f') +sind|f3)
= cosf|ex N e3)+sinbdle A es)

Null states

The number of null states in the GNS construction based on
wy,0 depends on the specific value of 6:

@ For § = 0, there will be 3 null states.

@ For 0 < 6 < 7/2 we find 2 null states.

@ For § = /2 we will get 4 null states.
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von Neumann entropy of wy, o:

+ sin? A log

S(0) = cos? 41
(9) = cos Ogcos29 =

Dimensions

C2, 0=0
Hins =S C3=C?aC, 6€(0,7/2)
C, 0=m/2.
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Partial trace vs. GNS

@ In the previous example (two fermions with single-particle
space C3), we obtain a #-dependent entropy, whereas
partial trace entropy always gives log 2 (since Slater rank
1, independently of 6).

@ If C* describes single-particles, there are pure states of
Slater rank 1 with zero for GNS entropy, log 2 for partial
trace entropy (next example).

The former is more reasonable, the state being least
entangled.

A.P. Balachandran Entanglement and GNS construction



The GNS construction
A simple example

C*-Algebras and the GNS construction . .
Identical particles

Two Fermions, H(") = ¢4,

Using creation/annihilation operators

@ Fermionic creation/annihilation operators: af,”, b,
o - a< left, b <:right.
- 0 =1,2 < spin up/down.

e Basis for H® : alab|Q), bibl|Q), albl,|Q) (0,0" € {1,2}).

Algebras
@ A=M(C)(4®24=10a6).
@ Ay : one-particle observables, left location.

o) = (cos fal b} + sin HaEb;f) Q).
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Basis for Ap:
Ao is the six-dimensional algebra generated by

14, Ty := %(axag + a£a1), T = —%(a;fag - a£a1),
T3 := %(ajau — agag), Nyo 1= (aﬁa1 agag), N, = (a1a1 + agag)

Entropy

S(0) = —cos? §log cos? 6 — sin? @ log sin? 6.

Dimensions

S C?, 6=0,7/2
Tl Cr22aC? e (0,7/2).
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@ The significant aspect of this example is the fact that for
the values of 6 for which the Slater rank of |) is one
(¢ =0 and 7), we obtain exactly zero for the entropy.

@ In previous treatments of entanglement for identical
particles, the minimum value for the von Neumann entropy
of the reduced density matrix (obtained by partial trace)
has been found to be log 2.

@ This has been a source for controversy.

@ Different entanglement criteria: non-identical particles,
bosons, fermions..
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An example with bosons.

o H( = €8, with orthonormal basis{|e;), |e2), |es)}.

@ The two-boson space H(?): symmetrized vectors in
HO oH" (323=623).

@ Ap: subalgebra of one-particle observables pertaining only
to the one-particle vectors |ey) and |ey).

@ [Y(g,0)) =
sinfcos ¢|le; V &) +sinfsingley V e3) + cosb|es V e3).
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Dimensions

The 6 SU(3) representation in 3 ® 3 = 6 & 3 decomposes as
6=302d1

with respect to Ag. From this we can read off the decomposition
of H s, into irreducibles, depending on the coefficients of |1).

Entropy

S(6, ¢) =— sin® A[cos? ¢ log(sin 6 cos ¢)? + sin? ¢ log(sin 0 sin ¢)?]
— cos? #log(cos 6)?.
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S(0, o)

Figure: The two-boson entropy as a function of x and y which
represent the (6, ¢)-sphere via stereographic projection. Darker
regions correspond to lower values of the entropy.
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CONCLUSIONS

@ GNS-based approach: generalizes partial trace.

@ Applications to entanglement of indistinguishable particles.
@ Applications to quantum phase transitions?

@ Applications to black hole physics?
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3®3 =6 3in detail:
e [u)®|v)in3®3,with [u) = 3% . U/]e;) and

3
V) =>j=1 V&)
@ Decomposition into irreducible components:

3
Y uvie)ele) = Z%(u’vww'v")(!e»®|ej>+\ej>®!ef>)
i<y

1
+Zﬁ(u’v/—ufv’)|emej>.

i<j

=

@ First term: symmetric, 6-dimensional irreducible
representation.
@ Second term: antisymmetric, 3-dimensional complex

irreducible representation, with basis vectors
€)= clk|e; A g)) (k= 1,2,3), as stated above.
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