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Outline
• Reminder: structure of N=2 SUSY QM

• Linear bosonized SUSY

• Nonlinear bosonized SUSY

• Hidden bosonized SUSY in local QM systems

• Extended finite-gap systems: exotic supersymmetry

• Example: electron in periodic magnetic and electric fields

• Exotic supersymmetry in the systems with first order Hamiltonian:

• Klein effect in carbon nanostructures

• Crystalline condensates in Gross-Neveu model

• Comments: origin of bosonized SUSY; exotic SUSY in PT-symmetric systems
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Structure of Supersymmetric Quantum Mechanics

• Second order Hamiltonian operator, H = H†

• First order supercharges, Qa = Q†
a , a = 1, 2

• Grading operator, Γ = σ3, Γ2 = 1

Lie Superalgebra:

[H,Qa] = 0, {Qa, Qb} = 2δabH

Grading relations:

[Γ, H ] = {Γ, Qa} = 0
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H =

(
H+ 0

0 H−

)
, Q1 =

(
0 Q−

Q†
− 0

)
, Q2 = iσ3Q1,

H+ = Q−Q
†
−, H− = Q†

−Q−, Q− = d
dx −W (x), H± = − d2

dx2
+W 2 ∓W ′,

[H,Qa] = 0 ⇔ Q−H− = H+Q−, H−Q
†
− = Q†

−H+, Darboux transformations,

• H− and H+ are (almost) isospectral: energy levels E > 0 of H are doubly

degenerate (in non-periodic case; bound states); level E = 0, if exists, is nonde-

generate.

• Ψ−,E ∝ Q†
−Ψ+,E, Ψ+,E ∝ Q−Ψ−,E, H±Ψ±,E = EΨ±,E
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N = 2 supersymmetry can be realized in non-extended systems,

bosonized SUSY QM [MP, 1996, Ann. Phys. 245, 339]:

H =
1

2

(
− d2

dx2
+W 2(x)−W ′(x)R

)
,

Q1 = −i
(
d

dx
+W (x)R

)
, Q2 = iRQ1,

W (−x) = −W (x) - odd superpotential, Γ = R, R2 = 1, – reflection (parity)

operator, Rψ(x) = ψ(−x), H is a nonlocal operator,

{Qa, Qb} = 2δabH, [Qa, H ] = 0, [R,H ] = 0, {R,Qa} = 0.

6



Hidden nonlinear SUSY in harmonic parabosonic oscillator systems of the or-

der p = 2(k + 1), k = 0, 1, 2 . . ., and in a related two-body Calogero model with

exchange interaction [MP, 2000, Int. J. Mod. Phys. A 15, 3679]:

H = a+a−, Q+ = (a+)2k+1Π−, Q− = (a−)2k+1Π+,

[Q±, H ] = 0, Q2
± = 0, {Q+, Q−} = P2k+1(H),

where Π+ = 1
2(1 +R) = cos2 F, Π− = 1

2(1−R) = sin2 F, F = π
4{a

+, a−},

[{a−, a+}, a±] = ±2a±, a−a+|0⟩ = p|0⟩, a−|0⟩ = 0.

Parabose oscillator → 2-particle Calogero model ([a−, a+] = 1 + νR):

a± =
1√
2
(x∓ iDν), iDν =

d

dx
− ν

2x
R, ν = 2k + 1.
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Spectrum of the parabosonic oscillator system at ν = 5 (k = 2, p = 6)

8



⇒ Some non-extended, purely bosonic quantum mechanical systems with a

local Hamiltonian may have a hidden, bosonized supersymmetry [F. Correa, MP,

Ann. Phys. 2007, 322, 2493]:

• Examples of the systems with a hidden, bosonized supersymmetry :

free particle, Dirac delta potential problem, bound state Aharonov-Bohm effect,

planar Aharonov-Bohm effect, finite-gap reflectionless Pöschl-Teller system, finite-

gap periodic Lamé and associated Lamé systems

• non-periodic Pöschl-Teller and periodic Lamé systems are particular examples

of finite-gap systems related to the KdV equation; corresponding higher order Lax

operators play a role of one of the supercharges of the bosonized supersymmetry
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Extended finite-gap systems: exotic supersymmetry

• Second order extended (matrix) Hamiltonian, H

• Two Lax operators = integrals of order 2n + 1

• Two supercharges of order 2k and two supercharges of order 2(n− k) + 1

• Alternatives for Γ

• ⇒ Exotic nonlinear supersymmetry reflects peculiarities of the spectrum:

• 2-fold degeneration of each of (2n + 1) edge band energies

• 4-fold degeneration of energy levels inside the allowed bands
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F. Correa, V. Jakubský, L.M. Nieto, M.P., 2008, PRL, 101, 030403 :

Exotic supersymmetry can be realized by a non-relativistic electron in periodic

magnetic and electric fields of a special form

He = (px + Ax)
2 + (py + Ay)

2 + σ3Bz − ϕ,

Ax = 0, Ay = w(x),Bz =
dw
dx ; w(x) = α d

dx ln(dnx), ϕ(x) = βw2(x) + γw(x) + δ

⇒
H±
m,l = − d2

dx2
+ V ±

m,l(x), V +
m,l(x) = V −

m,l(x + L),

V −
m,l(x) = −Cmdn2x− Cl

k′2

dn2x
+ c, Cl = l(l + 1)
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Figure 1: The blue dots and red triangles represent the band-edge states of Hm,l.

The number of nodes of each band-edge state is indicated. For each setting,

the ground state is periodic. The lower order operator, Q+ or Q−, annihilates the

band-edge states represented by triangles while the singlet states indicated by dots

are annihilated by the higher order operator.
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Super-extended system:

H =

(
H̃ 0

0 H

)
, Q± =

(
0 Q±

Q†
± 0

)
, Z =

(
Z̃ 0

0 Z

)
,

[H,Z ] = [H,Q±] = [Q+,Q−] = [Z,Q±] = 0,

Z = Q−Q+ = Q+Q−,

Z2 = PZ(H), Q2
+ = P+(H), Q2

− = P−(H),

PZ(H) =

2n+1∏
j=1

(H− Ej), P+(H) =

2r∏
j=1

(H− E+
j ), P−(H) =

2(n−r)+1∏
j=1

(H− E−
j ),

PZ = P+(H)P−(H) = spectral polynomial
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Γ = σ3: a SUSY subalgebra generated by local integrals H, Z and

Q(1)
± = Q±, Q(2)

± = iσ3Q±,

is identified as a centrally extended nonlinear N = 4 supersymmetry,

{Q(a)
+ ,Q(b)

+ } = 2δabP+(H), {Q(a)
− ,Q(b)

− } = 2δabP−(H),

{Q(a)
+ ,Q(b)

− } = 2δabZ,

[H,Q(a)
± ] = [H,Z ] = [Z,Q(a)

± ] = 0,

in which Z plays a role of the bosonic central charge.
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The supercharges Q(a)
+ annihilate a part of band-edge states organized in super-

symmetric doublets, another part of supersymmetric doublets is annihilated by

Q(a)
− . The band-edge states which do not belong to the kernel of the supercharges

Q(a)
+ (or Q(a)

− ) are transformed (rotated) by these supercharges within the corre-

sponding supersymmetric doublet. The bosonic central charge Z annihilates all

the band-edge states.

⇒ Spontaneously partially broken centrally extended nonlinear N = 4 supersym-

metry, cf. partial supersymmetry breaking in supersymmetric field theories with

BPS-monopoles.
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• In some extended systems, the odd order supercharge is a matrix differential

operator of the first order that may be identified as a Dirac type Hamiltonian.

• A corresponding system may be characterized then by the supersymmetric

structure with the first order matrix Hamiltonian.

⇒ Such an exotic supersymmetry may be used to explain:

• Klein tunneling in carbon nanostructures: V. Jakubsky, L.-M- Nieto, MP, 2011,

PRD, 83, 047702

• some peculiarities of the kink-antikink and kink crystalline condensates in

the Gross-Neveu model (they appear, particularly, in the physics of conducting

polymers): MP, A. Arancibia, L.-M. Nieto, 2011, PRD, 83, 065025
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G. Semenoff (1984): tight binding description of graphene is reduced to the

2D massless Dirac equation in the low-energy approximation (the role of c plays

vF ∼ c/300)

+ boundary conditions ⇒ single wall nanotubes: Ψ(x +Ch) = Ψ(x), where

Ch = n1a1 + n2a2 is a circumference (chiral) vector, a1 and a2 are the primi-

tive translation vectors of the Bravais lattice, n1,2 ∈ Z.
Let Ch be parallel to y ⇒ low energy behavior of charge carriers is approximated

by

Hϵψ = vF (−iσ1∂x + ϵσ2)ψ = Eψ ,

where ϵ = 0 for metallic nanotubes and ϵ = ± 2π
3|Ch|

for semiconducting nanotubes.
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For metallic nanotubes in the presence of impurities, and for the particles in

graphene normally incident on potential barrier V (x) (see Fig. 1):

HVψ = (−ivFσ1∂x + V (x))ψ = Eψ.

Define

H =

(
HV 0

0 H0

)
, Γ =

(
1 0

0 −1

)
.

Besides Γ, the Hamiltonian H has two other symmetries,

U1 =

(
0 U †

U 0

)
, U2 = iΓU1,

where U = U(x) is a unitary operator of a local chiral rotation,

U = eiασ1 = cosα 1 + i sinασ1, α(x) = 1
vF

∫ x
V (τ )dτ.
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They satisfy relations

[H,Ua] = 0, {Ua,Ub} = 2δab1, [Γ,H] = {Γ,Ua} = 0.

• Extended first order system composed from HV and H0 possesses the N = 2

zero-order supersymmetry extended by the central charge 1 and graded by Γ.

• Like in the non-relativistic case of a reflectionless system with the n-gap, second

order Hamiltonian, this structure underlies the absence of the backward scattering

in the 0-gap system given by the first order Hamiltonian HV .

⇒ The relation UHV = H0U , implied by [H,Ua] = 0 and the unitarity of U ,

reveal the unitary equivalence of HV with the free massless Dirac Hamiltonian

H0.

⇒ the setting given by HV is unitary equivalent to the free massless particle

system H0 and, hence, it shares its trivial scattering properties.
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Figure 2: For δky = 0, the transmission coefficient T of the particle bouncing on the y-independent barrier
is equal to one. Thick black arrows illustrate the particle approaching and penetrating the barrier.
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• In massive case (semiconducting nanotubes: m = ϵ = ±2π/|3Ch|; other than
normal incidence in graphene: m = δky ̸= 0), unitary transformation of HV yields

UHV = HmU − 2vFm sinασ3,

where HV = Hm + V , Hm = H0 + vFmσ2.

⇒ the scale of supersymmetry breaking in the massive case is of the order of m,

and the contribution of the potential is controlled by the factor | sinα| ≤ 1.

⇒ For the close-to-the-normal incidence (m = δky ∼ 0), the potential barrier re-

mains almost perfectly transparent for any V (x).

Conclusion: Klein tunneling in carbon nanostructures is explained by the exotic

SUSY with the first-order Hamiltonian and zero-order supercharge operators.
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• Another exotic supersymmetric structure can be revealed in the first-order

finite-gap systems.

Consider one-gap self-isospectral second-order Lamé system with the period 2K,

H = diag(H(x− τ ), H(x + τ )), H(x) = − d2

dx2
+ 2k2sn2(x|k)− k2.

Isospectral (displaced) subsystems H(x + τ ) and H(x− τ ) are related by an in-

tertwining operator, D(x; τ )H(x + τ ) = H(x− τ )D(x; τ ), where

D(x; τ ) = F (x; τ )
d

dx

1

F (x; τ )
,

F (x; τ ) = exp(xz(τ ))Θ(x− τ )/Θ(x + τ ), τ ̸= nK, z(τ ) = Z(2τ + iK′) +i π2K,

describes eigenstates of H(x + τ ) from the lower prohibited band with E < 0.
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As a consequence, H possesses seven local integrals of motion:

• σ3 (zero order),

• Sa, a = 1, 2, (first order),

• Qa, a = 1, 2, (second order),

• La, a = 1, 2, (third order, diagonal Lax operators).

All the six local integrals Sa, Qa and La are constructed in terms of the intertwin-

ing operator.

H has also six nonlocal integrals Rσa, T σa, a = 1, 2, and RT σ3, RT ,

where R and T are the operators of reflections in x and τ .
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S1 =

(
0 D†(x; τ )

D(x; τ ) 0

)
, S2 = iσ3S1 .

K

�

0

-k' k' 1-1
E 

=+

(���) 

=-

Figure 3: Spectrum of the periodic Bogoliubov-de Gennes system HBdG = S1.
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• S1 plays a role of the Bogoliubov-de Gennes Hamiltonian, that describes kink-

antikink, or kink solutions (crystalline phases) of the Gross-Neveu model

LGN = ψ̄(iγµ∂µ −m0)ψ +
1

2
g2(ψ̄ψ)2.

•When τ ̸= (12 + n)K, (m0 ̸= 0), there are 4 allowed bands in the spectrum of S1;

for τ = (12 + n)K, (m0 = 0), the middle gap disappears, and only three allowed

bands are left.

• Rσ1 is an integral for the first order Hamiltonian HBdG = S1, which may be

identified as a grading operator Γ, Γ2 = 1.
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• For τ ̸= (12 + n)K, nontrivial odd integrals are L1 = L1 and L2 = iRσ1L1,

{Rσ1,La} = 0, where iL1 = diag(P(x + τ ),P(x− τ )) is a third order Lax in-

tegral for Lamé self-isospectral system H,

P(x) = d3/dx3 + (1 + k2 − 3k2sn2x)d/dx− 3k2snx cnx dnx.

Nonlinear SUSY algebra:

[Rσ1,La] = −2iϵabLb, {La,Lb} = 2δabP̂ (S1, τ ),

where the six order spectral polynomial is

P̂ (S1, τ ) = (S2
1 − ε(τ ))(S2

1 − ε(τ )− k′2)(S2
1 − ε(τ )− 1), ε(τ ) = cn2 2τ

sn2 2τ
,

whose roots correspond to the energies of the six edge states of HBdG = S1.
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For τ = (12 + n)K the system possesses other two integrals of motion, a local,

second order integral Q1 and nonlocal Q2 = iRσ1Q1, which are odd with respect

to Rσ1, {Rσ1,Qa} = 0,

Q1 = i

(
0 Y†(x)

−Y(x) 0

)
,

where Y(x) =
(
1/snx−

d
dx snx−

) (
cnx+

d
dx 1/cnx+

)
, x± = x± 1

2K.

Integrals La are not independent anymore, La = −S1Qa.

[Rσ1,Qa] = −2iϵabQb , {Qa,Qb} = 2δabP̂Q(S1) ,

where P̂Q(S1) = (S2
1 − k′2)(S2

1 − 1).
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• La are the supercharges for HBdG which annihilate all the six edge eigenstates

of HBdG = S1 in the case of τ ̸= (12 + n)K. Anticommutator of supercharges is

the sixth order spectral polynomial in the Hamiltonian S1.

• For τ = (12 + n)K, supercharges Qa annihilate all the four edge states of S1 ;

La = −S1Qa annihilate the two zero energy eigenstates in the middle of the

central band. Anticommutator of the supercharges is the fourth order spectral

polynomial in the Hamiltonian S1.
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• The cases τ ̸= (12 + n)K and τ = (12 + n)K correspond to m0 ̸= 0 and

m0 = 0 in the Gross-Neveu model Lagrangian

LGN = ψ̄(iγµ∂µ −m0)ψ +
1

2
g2(ψ̄ψ)2.

At zero value of the bare mass, m0 = 0, discrete chiral symmetry is restored there.

! ⇒ A restoration of the discrete chiral symmetry at zero value of the bare mass

in GN model, when the kink-antikink crystalline condensate transforms into the

kink crystal, is accompanied by structural changes of the exotic supersymmetry.
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• The origin of the hidden supersymmetric structures in some systems via a non-

local Foldy-Wouthuysen transformation: V. Jakubsky, L.-M. Nieto, MP, 2010,

PLB, 692, 51

• Exotic supersymmetry of finite-gap reflectionless Pöschl-Teller system in the

light of Aharonov-Bohm effect and AdS/CFT holography: F. Correa, V. Jakubsky,

MP, 2009, Ann. Phys. 324, 1078

• Exotic SUSY admits extension to PT symmetric quantum systems where it

sheds a new light on peculiar properties of the complexified Scarf II potential

(which appears in quantum field theory in curved spacetimes, soliton theory in

nonlinear integrable systems and also in the physics of optical solitons) [F. Correa,

MP, 2012, Ann. Phys. 327, 1761]
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