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Why Lie-Jordan Algebras?

Jordan 1932. Considered the set of observables in
Quantum Mechanics as an abelian, non-associative
algebra.

The Jordan algebra accounts for the spectral properties
of the observable: measurement in QM.

Symmetries and time evolution are encoded in the Lie
algebra structure.

Altogether they form a Lie-Jordan algebra.

It includes as a particular case the Poisson and C∗

algebras.

We will study the reduction of classical and quantum
systems emphasizing its common algebraic structure.
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Reduction by symmetries
Dirac reduction
Symmetries+constraints. Marsden-Ratiu reduction
More general reductions.

Reduction of Lie-Jordan-Banach algebras
Symmetries
T-procedure (constraints)
Symmetries + constraints
More general reductions?

F.F, M. Zambon. Lett. Math. Phys. 85 (2008). arXiv:0806.0638

F.F, L. Ferro, A. Ibort and G. Marmo. arXiv:1202.3969
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Lie-Jordan Algebra L

(L, ◦) real, abelian algebra with unit.

(L, [ , ]) Lie algebra: antisymmetric, bilinear bracket s.t.

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

Leibniz rule: [a ◦ b, c] = a ◦ [b, c] + [a, c] ◦ b

Associator identity: (a ◦ b) ◦ c− a ◦ (b ◦ c) = ~2[[a, c], b]
for some ~ ∈ R

~ = 0
(L, ◦) is associative and (L, ◦, { , }) is a Poisson algebra.
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then (LC, ·) is a complex associative algebra with
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(a+ ib)∗ = a− ib
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Lie-Jordan and C∗ algebras

Define a product in LC by

a · b = a ◦ b− i~[a, b]

then (LC, ·) is a complex associative algebra with
involution

(a+ ib)∗ = a− ib

Conversely, given a complex associative algebra (A, ·)
with involution ∗, the selfadjoint elements

Asa = {x ∈ A|x∗ = x}

form a Lie-Jordan algebra (Asa, ◦, [ , ]) with ~ 6= 0,

a ◦ b =
1

2
(a · b+ b · a), [a, b] =

i

2~
(a · b− b · a)
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(C∞(M), ◦, {, })
- ◦ product of functions.
- { , } a Poisson bracket, i.e.

{f, g} = Π(f, g) with Π ∈ Γ(
∧2

TM), [Π,Π] = 0

Reduction by symmetries

E ⊂ TM integrable distribution.

E = {f ∈ C∞(M) s.t. Xf = 0, ∀X ∈ Γ(E)} is a Jordan
subalgebra.

If it is also a Lie subalgebra, i.e. {E , E} ⊂ E

then E inherits a Poisson algebra structure.

e.g. if E is the linear span of Hamiltonian vector fields.
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Dirac reduction (constraints)

(C∞(M), ◦, {, }). Constrained submanifold N ⊂ M

I = {f ∈ C∞(M) s.t. f |N = 0}, Jordan ideal.

The normaliser N = {g ∈ C∞(M) s.t. {g, I} ⊂ I} is a
Lie-Jordan subalgebra and N ∩ I is its ideal.

N /(N ∩ I) inherits a Lie-Jordan structure which is a
Poisson algebra.

J. Grabowski, G. Landi, G. Marmo, G. Vilasi. Forts. Phys 42 (1994) 393.

N /(N ∩ I) ∼ (N + I)/I

Dirac bracket on (first class) functions restricted to N .

Reduction by symmetries and constraints can be combined
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J. E. Marsden, T. Ratiu. Lett. Math. Phys. 11 (1986) 161.

J. Grabowski, G. Landi, G. Marmo, G. Vilasi. Forts. Phys 42 (1994) 393.

(C∞(M), ◦, {, }) Poisson algebra, N ⊂ M , I Jordan ideal.

- B ⊂ TNM . B = {f ∈ C∞(M) s.t. Xf = 0 ∀X ∈ Γ(B)}

is a Jordan subalgebra and B ∩ I is a Jordan ideal.

- Assume B is also a Lie subalgebra, i.e. {B,B} ⊂ B

- Then if B ∩ I is a Poisson ideal of B,

B/(B ∩ I)

inherits a Poisson algebra structure.
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Poisson algebras
Marsden-Ratiu reduction (constraints + symmetries)

J. E. Marsden, T. Ratiu. Lett. Math. Phys. 11 (1986) 161.

J. Grabowski, G. Landi, G. Marmo, G. Vilasi. Forts. Phys 42 (1994) 393.

(C∞(M), ◦, {, }) Poisson algebra, N ⊂ M , I Jordan ideal.

- B ⊂ TNM . B = {f ∈ C∞(M) s.t. Xf = 0 ∀X ∈ Γ(B)}

is a Jordan subalgebra and B ∩ I is a Jordan ideal.

- Assume B is also a Lie subalgebra, i.e. {B,B} ⊂ B

- Then if B ∩ I is a Poisson ideal of B,

B/(B ∩ I)

inherits a Poisson algebra structure.

BUT B a Lie subalgebra is a rather strong condition...
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One can show that if B 6= C∞(M), i.e. 0 6= B ⊂ TNM .
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Mathematical Structures in Quantum Systems and applications Benasque 2012. – p. 9



Poisson algebras
Marsden-Ratiu reduction.

F.F., M. Zambon. Lett. Math. Phys. 85 (2008) 203.

One can show that if B 6= C∞(M), i.e. 0 6= B ⊂ TNM .

-{B,B} ⊂ B ⇒

a) B ⊂ N = {g ∈ C∞(M) s.t.{I, g} ⊂ I}.

Proof:

Assume {f, g} 6∈ I, f ∈ I, g ∈ B

i. e. {f, g}(p) 6= 0, p ∈ N

f2 ∈ B ⇒ f{f, g} ∈ B ⇒ f ∈ B ∩ I

hf ∈ B ∀h ∈ C∞(M) ⇒ h{f, g}+ f{h, g} ∈ B ⇒ h ∈ B
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-{B,B} ⊂ B ⇒

a) B ⊂ N = {g ∈ C∞(M) s.t.{I, g} ⊂ I}.

b) B ∩ I is Poisson ideal of B.
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One can show that if B 6= C∞(M), i.e. 0 6= B ⊂ TNM .

-{B,B} ⊂ B ⇒

a) B ⊂ N = {g ∈ C∞(M) s.t.{I, g} ⊂ I}.

b) B ∩ I is Poisson ideal of B.

c) B/(B ∩ I) always inherits a Poisson bracket.

d) If B ∩ TN = B′ ∩ TN ⇔ B + I = B′ + I

B/(B ∩ I) B′/(B′ ∩ I)
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Marsden-Ratiu reduction.
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One can show that if B 6= C∞(M), i.e. 0 6= B ⊂ TNM .

-{B,B} ⊂ B ⇒

a) B ⊂ N = {g ∈ C∞(M) s.t.{I, g} ⊂ I}.

b) B ∩ I is Poisson ideal of B.

c) B/(B ∩ I) always inherits a Poisson bracket.

d) If B ∩ TN = B′ ∩ TN ⇔ B + I = B′ + I

B/(B ∩ I) ∼ (B + I)/I ∼ B′/(B′ ∩ I)

the Poisson brackets coincide.
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Poisson algebras
Marsden-Ratiu reduction.

F.F., M. Zambon. Lett. Math. Phys. 85 (2008) 203.

One can show that if B 6= C∞(M), i.e. 0 6= B ⊂ TNM .

-{B,B} ⊂ B ⇒

a) B ⊂ N = {g ∈ C∞(M) s.t.{I, g} ⊂ I}.

b) B ∩ I is Poisson ideal of B.

c) B/(B ∩ I) always inherits a Poisson bracket.

d) If B ∩ TN = B′ ∩ TN ⇔ B + I = B′ + I

B/(B ∩ I) ∼ (B + I)/I ∼ B′/(B′ ∩ I)

the Poisson brackets coincide.

Summarising: MR reduction is nothing but a successive
application of constraints and symmetries.!!
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Reduction of Poisson algebras
The data: - L a Poisson algebra

- B ⊂ L a multiplicative subalgebra
- I ⊂ L a multiplicative ideal.
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- B ⊂ L a multiplicative subalgebra
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The problem: induce in B/(B ∩ I) a Poisson algebra.

The idea: If {B,B} ⊂ B + I

B × B B + I
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{ , }
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Reduction of Poisson algebras
The data: - L a Poisson algebra

- B ⊂ L a multiplicative subalgebra
- I ⊂ L a multiplicative ideal.

The problem: induce in B/(B ∩ I) a Poisson algebra.

The idea: If {B,B} ⊂ B + I and {B,B ∩ I} ⊂ I.

The flaw: Jacobi identity is not guaranteed.

A solution: introduce Jordan subalgebras B− and B+

s. t. B− ⊂ B ⊂ B+, B± + I = B + I.

Then, we can show:

{B−,B−} ⊂ B+, {B−,B+ ∩ I} ⊂ I ⇒ Jacobi identity.
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Reduction of Poisson algebras

Example: M = R3 ×R3, Π =
∑3

i=1
∂
∂xi

∧ ∂
∂yi
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Reduction of Poisson algebras

Example: M = R3 ×R3, Π =
∑3

i=1
∂
∂xi

∧ ∂
∂yi
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∂yi

- N = {(0, 0, x3,y)}, λ : N → R

- B = span{∂x1
, ∂x2

− λ∂y1} ⊂ TNM , B ⊕ TN = TNM

- B = {f ∈ C∞(M), s.t. Xf |N = 0, ∀ X ∈ Γ(B)}

Then: B + I = C∞(M) and {C∞(M),B ∩ I} ⊂ I
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Induced bivector field on N : ΠN = ∂
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∧ ∂
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That is Poisson if and only if: ∂x3
λ = ∂y3λ = 0

——————————————————–

Take: E = span{∂x1
, ∂x2

− λ∂y1} ⊂ TM , B− = E ⊂ B = B+.

E = {f ∈ C∞(M) s.t. Xf = 0, ∀X ∈ Γ(E)}
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That is Poisson if and only if: ∂x3
λ = ∂y3λ = 0
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Take: E = span{∂x1
, ∂x2

− λ∂y1} ⊂ TM , B− = E ⊂ B = B+.

Then {B−,B+ ∩ I} ⊂ I
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Therefore: {B,B} ⊂ B + I and {B,B ∩ I} ⊂ I.

Induced bivector field on N : ΠN = ∂
∂x3

∧ ∂
∂y3

+ λ ∂
∂y1

∧ ∂
∂y2

That is Poisson if and only if: ∂x3
λ = ∂y3λ = 0

——————————————————–

Take: E = span{∂x1
, ∂x2

− λ∂y1} ⊂ TM , B− = E ⊂ B = B+.

Then {B−,B+ ∩ I} ⊂ I but {B−,B−} ⊂ B+ if and only if

∂x3
λ = ∂y3λ = 0
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Lie-Jordan-Banach algebras

(L, ◦, [ , ], ‖ ‖), ~ 6= 0
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(L, ◦, [ , ], ‖ ‖), ~ 6= 0

- ‖ a ◦ b ‖≤‖ a ‖ ‖ b ‖ - ‖ [a, b] ‖≤ ~−1 ‖ a ‖ ‖ b ‖

- ‖ a2 ‖=‖ a ‖2 - ‖ a2 + b2 ‖≤‖ a2 ‖
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States

A state is a positive, normalised functional in L, i.e.

σ : L → R, σ(a2) ≥ 0 and ‖ σ ‖= σ(1) = 1
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States

A state is a positive, normalised functional in L, i.e.

σ : L → R, σ(a2) ≥ 0 and ‖ σ ‖= σ(1) = 1

The space of states S(L) form a w. compact, convex set.
Pure states are at its boundary.
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Lie-Jordan-Banach algebras

(L, ◦, [ , ], ‖ ‖), ~ 6= 0

- ‖ a ◦ b ‖≤‖ a ‖ ‖ b ‖ - ‖ [a, b] ‖≤ ~−1 ‖ a ‖ ‖ b ‖

- ‖ a2 ‖=‖ a ‖2 - ‖ a2 + b2 ‖≤‖ a2 ‖

States

A state is a positive, normalised functional in L, i.e.

σ : L → R, σ(a2) ≥ 0 and ‖ σ ‖= σ(1) = 1

The space of states S(L) form a w. compact, convex set.
Pure states are at its boundary.

Some properties, σ ∈ S(L):

- σ(a ◦ b)2 ≤ σ(a2)σ(b2)

- σ([a, b])2 ≤ ~−2σ(a2)σ(b2)
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Reduction of LJB algebras

Reduction by symmetries

Mathematical Structures in Quantum Systems and applications Benasque 2012. – p. 13



Reduction of LJB algebras

Reduction by symmetries

Consider the space of Jordan derivations

Der
J
(L) = {δ ∈ B(L) s.t. δ(a ◦ b) = a ◦ δb+ (δa) ◦ b}

Example: δx = [x, .], x ∈ L
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Consider the space of Jordan derivations

Der
J
(L) = {δ ∈ B(L) s.t. δ(a ◦ b) = a ◦ δb+ (δa) ◦ b}

Example: δx = [x, .], x ∈ L

For D ⊂ Der
J
(L) let FD = {a ∈ L s.t. δa = 0 ∀ δ ∈ D}

FD is a closed Jordan subalgebra
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Example: δx = [x, .], x ∈ L

For D ⊂ Der
J
(L) let FD = {a ∈ L s.t. δa = 0 ∀ δ ∈ D}

FD is a closed Jordan subalgebra

If δ is also a Lie derivation for any δ ∈ D then FD is also a
LJB subalgebra.
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Reduction of LJB algebras

Reduction by symmetries

Consider the space of Jordan derivations

Der
J
(L) = {δ ∈ B(L) s.t. δ(a ◦ b) = a ◦ δb+ (δa) ◦ b}

Example: δx = [x, .], x ∈ L

For D ⊂ Der
J
(L) let FD = {a ∈ L s.t. δa = 0 ∀ δ ∈ D}

FD is a closed Jordan subalgebra

If δ is also a Lie derivation for any δ ∈ D then FD is also a
LJB subalgebra.

Example:

Take DX = {[x, .]|x ∈ X ⊂ L} then FDX
is a LJB subalgebra.
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Reduction of LJB algebras
Reduction by constraints (T-procedure): C ⊂ L

H. Grundling, F. Lledo. Rev. Math. Phys. 12 (2000) 1159. [math-ph/9812022]

F. F., L. Ferro, A. Ibort, G. Marmo. arXiv:1202.3969.
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- Dirac states (the constrained submanifold):

D = {σ ∈ S(L) s.t. σ(c2) = 0 ∀ c ∈ C}
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- The vanishing subalgebra:
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Plays the rôle of I but S is a closed Lie-Jordan subalgebra

- The normaliser (first class observables):
N = {a ∈ L s.t. [a,S] ⊂ S}
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F. F., L. Ferro, A. Ibort, G. Marmo. arXiv:1202.3969.

- Dirac states (the constrained submanifold):

D = {σ ∈ S(L) s.t. σ(c2) = 0 ∀ c ∈ C}

- The vanishing subalgebra:

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}

Plays the rôle of I but S is a closed Lie-Jordan subalgebra

- The normaliser (first class observables):
N = {a ∈ L s.t. [a,S] ⊂ S}

- N is closed Lie-Jordan subalgebra and S ⊂ N is its ideal.

Proof: (a ◦ b)2 − ~2[a, b]2 = a ◦ (b ◦ (a ◦ b))− ~2a ◦ [b, [a, b]]

a ∈ S, b ∈ N , σ ∈ D ⇒ σ((a ◦ b)2)− ~2σ([a, b]2) = 0

Mathematical Structures in Quantum Systems and applications Benasque 2012. – p. 14



Reduction of LJB algebras
Reduction by constraints (T-procedure): C ⊂ L

H. Grundling, F. Lledo. Rev. Math. Phys. 12 (2000) 1159. [math-ph/9812022]

F. F., L. Ferro, A. Ibort, G. Marmo. arXiv:1202.3969.

- Dirac states (the constrained submanifold):

D = {σ ∈ S(L) s.t. σ(c2) = 0 ∀ c ∈ C}

- The vanishing subalgebra:

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}

Plays the rôle of I but S is a closed Lie-Jordan subalgebra

- The normaliser (first class observables):
N = {a ∈ L s.t. [a,S] ⊂ S}

- N is closed Lie-Jordan subalgebra and S ⊂ N is its ideal.

- N /S inherits the reduced Lie-Jordan-Banach structure
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Reduction of LJB algebras

Quantum Marsden-Ratiu reduction.
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Reduction of LJB algebras

Quantum Marsden-Ratiu reduction.

- Constraints: C ⊂ L, D = {σ ∈ S(L) s.t. σ(c2) = 0 ∀ c ∈ C},
S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ C}
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- Constraints: C ⊂ L, D = {σ ∈ S(L) s.t. σ(c2) = 0 ∀ c ∈ C},
S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ C}

- Symmetries: D ⊂ Der
J
(L)
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S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ C}

- Symmetries: D ⊂ Der
J
(L)

- Reduced space: B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D} is a closed
subspace and B ∩ S is a closed LJ subalgebra.
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Reduction of LJB algebras

Quantum Marsden-Ratiu reduction.

- Constraints: C ⊂ L, D = {σ ∈ S(L) s.t. σ(c2) = 0 ∀ c ∈ C},
S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ C}

- Symmetries: D ⊂ Der
J
(L)

- Reduced space: B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D} is a closed
subspace and B ∩ S is a closed LJ subalgebra.

- Reduced LJB algebra:
If B is a LJ subalgebra and B ∩ S is its LJ ideal

B/(B ∩ S)

inherits the structure of a LJB algebra.
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Reduction of LJB algebras

Quantum Marsden-Ratiu reduction.

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}, D ⊂ Der
J
(L)

B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D}
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Reduction of LJB algebras

Quantum Marsden-Ratiu reduction.

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}, D ⊂ Der
J
(L)

B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D}

Examples:

Mathematical Structures in Quantum Systems and applications Benasque 2012. – p. 16



Reduction of LJB algebras

Quantum Marsden-Ratiu reduction.

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}, D ⊂ Der
J
(L)

B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D}

Examples:
- Reduction by symmetries: C = {0}
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Quantum Marsden-Ratiu reduction.

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}, D ⊂ Der
J
(L)

B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D}

Examples:
- Reduction by symmetries: C = {0}

- T-procedure: Any C and D = {[x, .], s.t. x ∈ S}
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Quantum Marsden-Ratiu reduction.

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}, D ⊂ Der
J
(L)

B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D}

Examples:
- Reduction by symmetries: C = {0}

- T-procedure: Any C and D = {[x, .], s.t. x ∈ S}

Observations:
- Call DB the space of Dirac states restricted to B, then

DB ∼ S(B/(B ∩ S))
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Reduction of LJB algebras

Quantum Marsden-Ratiu reduction.

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}, D ⊂ Der
J
(L)

B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D}

Examples:
- Reduction by symmetries: C = {0}

- T-procedure: Any C and D = {[x, .], s.t. x ∈ S}

Observations:
- Call DB the space of Dirac states restricted to B, then

DB ∼ S(B/(B ∩ S))

- Contrary to the classical case, B a LJ subalgebra does not
imply that B ∩ S is its LJ ideal.

Mathematical Structures in Quantum Systems and applications Benasque 2012. – p. 16



Reduction of LJB algebras

Quantum Marsden-Ratiu reduction.

S = {a ∈ L s.t. σ(a2) = 0 ∀ σ ∈ D}, D ⊂ Der
J
(L)

B = {a ∈ L s.t. δa ∈ S, ∀δ ∈ D}

Examples:
- Reduction by symmetries: C = {0}

- T-procedure: Any C and D = {[x, .], s.t. x ∈ S}

Observations:
- Call DB the space of Dirac states restricted to B, then

DB ∼ S(B/(B ∩ S))

- Contrary to the classical case, B a LJ subalgebra does not
imply that B ∩ S is its LJ ideal.

MORE GENERAL REDUCTIONS?
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Reduction of LJB algebras

Assume now B is not a LJ subalgebra but there is S s. t.

B ◦ B ⊂ B + S and [B,B] ⊂ B + S
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B ◦ (B ∩ S) ⊂ S and [B,B ∩ S] ⊂ S
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Reduction of LJB algebras

Assume now B is not a LJ subalgebra but there is S s. t.

B ◦ B ⊂ B + S and [B,B] ⊂ B + S

B ◦ (B ∩ S) ⊂ S and [B,B ∩ S] ⊂ S

Then B/(B + S) ∼ (B + S)/S inherits ◦ and [ , ] operations
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If B− ⊂ B ⊂ B+, with B± + S = B + S, s. t.
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Reduction of LJB algebras

Assume now B is not a LJ subalgebra but there is S s. t.

B ◦ B ⊂ B + S and [B,B] ⊂ B + S

B ◦ (B ∩ S) ⊂ S and [B,B ∩ S] ⊂ S

Then B/(B + S) ∼ (B + S)/S inherits ◦ and [ , ] operations

If B− ⊂ B ⊂ B+, with B± + S = B + S, s. t.
B− ◦ B− ⊂ B+ B− ◦ (B+ ∩ S) ⊂ S

[B−,B−] ⊂ B+ [B−, (B+ ∩ S)] ⊂ S

Jacobi, Leibniz and associator identities are fulfilled
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Reduction of LJB algebras

Assume now B is not a LJ subalgebra but there is S s. t.

B ◦ B ⊂ B + S and [B,B] ⊂ B + S

B ◦ (B ∩ S) ⊂ S and [B,B ∩ S] ⊂ S

Then B/(B + S) ∼ (B + S)/S inherits ◦ and [ , ] operations

If B− ⊂ B ⊂ B+, with B± + S = B + S, s. t.
B− ◦ B− ⊂ B+ B− ◦ (B+ ∩ S) ⊂ S

[B−,B−] ⊂ B+ [B−, (B+ ∩ S)] ⊂ S

Jacobi, Leibniz and associator identities are fulfilled
Proof: [[a+ S, b+ S], c+ S] = [([a−, b−])−, c−] + S

but [a−, b−]− ([a−, b−])− ∈ B+ ∩ S.
Therefore [[a+ S, b+ S], c+ S] = [[a−, b−], c−] + S.
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Reduction of LJB algebras

Banach structure.
We have solved the algebraic part, but we still have to
induce a norm in the reduced space.
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induce a norm in the reduced space.

We have two ways of doing it, in principle:

‖ [a] ‖1= inf
b∈B∩S

‖ a+ b ‖ or ‖ [a] ‖2= inf
b∈S

‖ a+ b ‖

Note that ‖ [a] ‖1≥‖ [a] ‖2
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Note that ‖ [a] ‖1≥‖ [a] ‖2

In order to have a LJB algebra we should have the equality
of norms.
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‖ a+ b ‖ or ‖ [a] ‖2= inf
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‖ a+ b ‖

Note that ‖ [a] ‖1≥‖ [a] ‖2

In order to have a LJB algebra we should have the equality
of norms.

It holds when B is a LJ subalgebra and S is a LJ ideal.
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Reduction of LJB algebras

Banach structure.
We have solved the algebraic part, but we still have to
induce a norm in the reduced space.

We have two ways of doing it, in principle:

‖ [a] ‖1= inf
b∈B∩S

‖ a+ b ‖ or ‖ [a] ‖2= inf
b∈S

‖ a+ b ‖

Note that ‖ [a] ‖1≥‖ [a] ‖2

In order to have a LJB algebra we should have the equality
of norms.

It holds when B is a LJ subalgebra and S is a LJ ideal.

MORE WORK IS NEEDED

Mathematical Structures in Quantum Systems and applications Benasque 2012. – p. 18


	Why Lie-Jordan Algebras?
	Why Lie-Jordan Algebras?
	Why Lie-Jordan Algebras?
	Why Lie-Jordan Algebras?
	Why Lie-Jordan Algebras?
	Why Lie-Jordan Algebras?

	Plan
	Plan
	Plan
	Plan

	Lie-Jordan Algebra $cal L$
	Lie-Jordan Algebra $cal L$
	Lie-Jordan Algebra $cal L$
	Lie-Jordan Algebra $cal L$
	Lie-Jordan Algebra $cal L$

	Lie-Jordan and $C^*$ algebras
	Lie-Jordan and $C^*$ algebras

	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras

	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras

	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras

	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras
	Poisson algebras

	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras

	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras
	Reduction of Poisson algebras

	Lie-Jordan-Banach algebras
	Lie-Jordan-Banach algebras
	Lie-Jordan-Banach algebras
	Lie-Jordan-Banach algebras
	Lie-Jordan-Banach algebras

	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras

	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras

	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras

	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras

	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras

	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras
	Reduction of LJB algebras


