Reduction of Lie-Jordan algebras

Fernando Falceto Depto. Física Teórica Universidad de Zaragoza

In collaboration with: L. Ferro, A. Ibort and G. Marmo

Jordan 1932. Considered the set of observables in Quantum Mechanics as an abelian, non-associative algebra.

- Jordan 1932. Considered the set of observables in Quantum Mechanics as an abelian, non-associative algebra.
- The Jordan algebra accounts for the spectral properties of the observable: measurement in QM.

- Jordan 1932. Considered the set of observables in Quantum Mechanics as an abelian, non-associative algebra.
- The Jordan algebra accounts for the spectral properties of the observable: measurement in QM.
- Symmetries and time evolution are encoded in the Lie algebra structure.

- Jordan 1932. Considered the set of observables in Quantum Mechanics as an abelian, non-associative algebra.
- The Jordan algebra accounts for the spectral properties of the observable: measurement in QM.
- Symmetries and time evolution are encoded in the Lie algebra structure.
- Altogether they form a Lie-Jordan algebra.

- Jordan 1932. Considered the set of observables in Quantum Mechanics as an abelian, non-associative algebra.
- The Jordan algebra accounts for the spectral properties of the observable: measurement in QM.
- Symmetries and time evolution are encoded in the Lie algebra structure.
- Altogether they form a Lie-Jordan algebra.
- It includes as a particular case the Poisson and C* algebras.

- Jordan 1932. Considered the set of observables in Quantum Mechanics as an abelian, non-associative algebra.
- The Jordan algebra accounts for the spectral properties of the observable: measurement in QM.
- Symmetries and time evolution are encoded in the Lie algebra structure.
- Altogether they form a Lie-Jordan algebra.
- It includes as a particular case the Poisson and C* algebras.
- We will study the reduction of classical and quantum systems emphasizing its common algebraic structure.

Lie-Jordan Algebras

Plan

- Lie-Jordan Algebras
- Poisson algebras
 - Reduction by symmetries
 - Dirac reduction
 - Symmetries+constraints. Marsden-Ratiu reduction
 - More general reductions.

Plan

- Lie-Jordan Algebras
- Poisson algebras
 - Reduction by symmetries
 - Dirac reduction
 - Symmetries+constraints. Marsden-Ratiu reduction
 - More general reductions.
- Reduction of Lie-Jordan-Banach algebras
 - Symmetries
 - T-procedure (constraints)
 - Symmetries + constraints
 - More general reductions?

Plan

- Lie-Jordan Algebras
- Poisson algebras
 - Reduction by symmetries
 - Dirac reduction
 - Symmetries+constraints. Marsden-Ratiu reduction
 - More general reductions.
- Reduction of Lie-Jordan-Banach algebras
 - Symmetries
 - T-procedure (constraints)
 - Symmetries + constraints
 - More general reductions?

F.F. M. Zambon. Lett. Math. Phys. 85 (2008). arXiv:0806.0638F.F. L. Ferro, A. Ibort and G. Marmo. arXiv:1202.3969

● (\mathcal{L} , \circ) real, abelian algebra with unit.

- (\mathcal{L} , \circ) real, abelian algebra with unit.
- **9** (\mathcal{L} , [,]) Lie algebra: antisymmetric, bilinear bracket s.t.

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

- (\mathcal{L} , \circ) real, abelian algebra with unit.
- (\mathcal{L} , [,]) Lie algebra: antisymmetric, bilinear bracket s.t. [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0
- Leibniz rule: $[a \circ b, c] = a \circ [b, c] + [a, c] \circ b$

- (\mathcal{L}, \circ) real, abelian algebra with unit.
- (\mathcal{L} , [,]) Lie algebra: antisymmetric, bilinear bracket s.t. [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0
- Leibniz rule: $[a \circ b, c] = a \circ [b, c] + [a, c] \circ b$
- ▲ Associator identity: $(a \circ b) \circ c a \circ (b \circ c) = \hbar^2[[a, c], b]$ for some $\hbar \in \mathbb{R}$

- (\mathcal{L}, \circ) real, abelian algebra with unit.
- (\mathcal{L} , [,]) Lie algebra: antisymmetric, bilinear bracket s.t. [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0
- Leibniz rule: $[a \circ b, c] = a \circ [b, c] + [a, c] \circ b$
- ▲ Associator identity: $(a \circ b) \circ c a \circ (b \circ c) = \hbar^2[[a, c], b]$ for some $\hbar \in \mathbb{R}$

ħ = 0
(*L*, ∘) is associative and (*L*, ∘, { , }) is a Poisson algebra.

Lie-Jordan and C^* **algebras**

Define a product in $\mathcal{L}^{\mathbb{C}}$ by

$$a \cdot b = a \circ b - i\hbar[a, b]$$

then $(\mathcal{L}^{\mathbb{C}}, \cdot)$ is a complex associative algebra with involution

$$(a+ib)^* = a-ib$$

Lie-Jordan and C^* **algebras**

Define a product in $\mathcal{L}^{\mathbb{C}}$ by

$$a \cdot b = a \circ b - i\hbar[a, b]$$

then $(\mathcal{L}^{\mathbb{C}}, \cdot)$ is a complex associative algebra with involution

$$(a+ib)^* = a-ib$$

Conversely, given a complex associative algebra (A, ·) with involution *, the selfadjoint elements

$$\mathcal{A}_{\mathrm{sa}} = \{ x \in \mathcal{A} | x^* = x \}$$

form a Lie-Jordan algebra ($A_{sa}, \circ, [,]$) with $\hbar \neq 0$,

$$a \circ b = \frac{1}{2}(a \cdot b + b \cdot a), \qquad [a, b] = \frac{i}{2\hbar}(a \cdot b - b \cdot a)$$

 $(C^{\infty}(M), \circ, \{,\})$

 $(C^{\infty}(M), \circ, \{,\})$ - \circ product of functions.

 $(C^{\infty}(M), \circ, \{,\})$

- o product of functions.
- { , } a Poisson bracket, i.e.

 $\{f,g\} = \Pi(f,g)$ with $\Pi \in \Gamma(\bigwedge^2 TM)$, $[\Pi,\Pi] = 0$

 $(C^{\infty}(M), \circ, \{,\})$

- o product of functions.
- { , } a Poisson bracket, i.e.

 $\{f,g\} = \Pi(f,g)$ with $\Pi \in \Gamma(\bigwedge^2 TM)$, $[\Pi,\Pi] = 0$

Reduction by symmetries

 $(C^{\infty}(M), \circ, \{,\})$

- o product of functions.
- { , } a Poisson bracket, i.e.

 $\{f,g\} = \Pi(f,g)$ with $\Pi \in \Gamma(\bigwedge^2 TM)$, $[\Pi,\Pi] = 0$

Reduction by symmetries

 $E \subset TM$ integrable distribution.

 $\mathcal{E} = \{f \in C^{\infty}(M) \text{ s.t. } Xf = 0, \forall X \in \Gamma(E)\}$ is a Jordan subalgebra.

 $(C^{\infty}(M), \circ, \{,\})$

- o product of functions.
- { , } a Poisson bracket, i.e.

 $\{f,g\} = \Pi(f,g)$ with $\Pi \in \Gamma(\bigwedge^2 TM)$, $[\Pi,\Pi] = 0$

Reduction by symmetries

 $E \subset TM$ integrable distribution.

 $\mathcal{E} = \{f \in C^{\infty}(M) \text{ s.t. } Xf = 0, \ \forall X \in \Gamma(E)\}$ is a Jordan subalgebra.

If it is also a Lie subalgebra, i.e. $\{\mathcal{E}, \mathcal{E}\} \subset \mathcal{E}$

then \mathcal{E} inherits a Poisson algebra structure.

 $(C^{\infty}(M), \circ, \{,\})$

- o product of functions.
- { , } a Poisson bracket, i.e.

 $\{f,g\} = \Pi(f,g)$ with $\Pi \in \Gamma(\bigwedge^2 TM)$, $[\Pi,\Pi] = 0$

Reduction by symmetries

 $E \subset TM$ integrable distribution.

 $\mathcal{E} = \{f \in C^{\infty}(M) \text{ s.t. } Xf = 0, \forall X \in \Gamma(E)\}$ is a Jordan subalgebra.

If it is also a Lie subalgebra, i.e. $\{\mathcal{E}, \mathcal{E}\} \subset \mathcal{E}$

then \mathcal{E} inherits a Poisson algebra structure.

e.g. if E is the linear span of Hamiltonian vector fields.

Dirac reduction (constraints)

Dirac reduction (constraints) ($C^{\infty}(M)$, \circ , {, }). Constrained submanifold $N \subset M$

Dirac reduction (constraints) ($C^{\infty}(M)$, \circ , {, }). Constrained submanifold $N \subset M$ $\mathcal{I} = \{f \in C^{\infty}(M) \text{ s.t. } f|_N = 0\}$, Jordan ideal.

Dirac reduction (constraints) $(C^{\infty}(M), \circ, \{,\})$. Constrained submanifold $N \subset M$ $\mathcal{I} = \{f \in C^{\infty}(M) \text{ s.t. } f|_{N} = 0\}$, Jordan ideal. The normaliser $\mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t. } \{g, \mathcal{I}\} \subset \mathcal{I}\}$ is a Lie-Jordan subalgebra and $\mathcal{N} \cap \mathcal{I}$ is its ideal.

Dirac reduction (constraints)

($C^{\infty}(M)$, \circ , {, }). Constrained submanifold $N \subset M$

 $\mathcal{I} = \{ f \in C^{\infty}(M) \text{ s.t. } f|_N = 0 \}$, Jordan ideal.

The normaliser $\mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t. } \{g, \mathcal{I}\} \subset \mathcal{I}\}$ is a Lie-Jordan subalgebra and $\mathcal{N} \cap \mathcal{I}$ is its ideal.

 $\mathcal{N}/(\mathcal{N} \cap \mathcal{I})$ inherits a Lie-Jordan structure which is a Poisson algebra.

Dirac reduction (constraints)

($C^{\infty}(M)$, \circ , {, }). Constrained submanifold $N \subset M$

 $\mathcal{I} = \{ f \in C^{\infty}(M) \text{ s.t. } f|_N = 0 \}$, Jordan ideal.

The normaliser $\mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t. } \{g, \mathcal{I}\} \subset \mathcal{I}\}$ is a Lie-Jordan subalgebra and $\mathcal{N} \cap \mathcal{I}$ is its ideal.

 $\mathcal{N}/(\mathcal{N} \cap \mathcal{I})$ inherits a Lie-Jordan structure which is a Poisson algebra.

 $\mathcal{N}/(\mathcal{N}\cap\mathcal{I})\sim(\mathcal{N}+\mathcal{I})/\mathcal{I}$

Dirac bracket on (first class) functions restricted to N.

Dirac reduction (constraints)

($C^{\infty}(M)$, \circ , {, }). Constrained submanifold $N \subset M$

 $\mathcal{I} = \{ f \in C^{\infty}(M) \text{ s.t. } f|_N = 0 \}$, Jordan ideal.

The normaliser $\mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t. } \{g, \mathcal{I}\} \subset \mathcal{I}\}$ is a Lie-Jordan subalgebra and $\mathcal{N} \cap \mathcal{I}$ is its ideal.

 $\mathcal{N}/(\mathcal{N} \cap \mathcal{I})$ inherits a Lie-Jordan structure which is a Poisson algebra.

 $\mathcal{N}/(\mathcal{N}\cap\mathcal{I})\sim(\mathcal{N}+\mathcal{I})/\mathcal{I}$

Dirac bracket on (first class) functions restricted to N.

Reduction by symmetries and constraints can be combined

Marsden-Ratiu reduction (constraints + symmetries)

($C^{\infty}(M)$, \circ , $\{,\}$) Poisson algebra, $N \subset M$, \mathcal{I} Jordan ideal.

J. E. Marsden, T. Ratiu. Lett. Math. Phys. 11 (1986) 161.

Marsden-Ratiu reduction (constraints + symmetries) ($C^{\infty}(M)$, \circ , {, }) Poisson algebra, $N \subset M$, \mathcal{I} Jordan ideal. - $B \subset T_N M$.

J. E. Marsden, T. Ratiu. Lett. Math. Phys. 11 (1986) 161.

Marsden-Ratiu reduction (constraints + symmetries) ($C^{\infty}(M)$, \circ , {, }) Poisson algebra, $N \subset M$, \mathcal{I} Jordan ideal. - $B \subset T_N M$. $\mathcal{B} = \{f \in C^{\infty}(M) \text{ s.t. } Xf = 0 \ \forall X \in \Gamma(B)\}$

is a Jordan subalgebra and $\mathcal{B} \cap \mathcal{I}$ is a Jordan ideal.

J. E. Marsden, T. Ratiu. Lett. Math. Phys. 11 (1986) 161.

Marsden-Ratiu reduction (constraints + symmetries) ($C^{\infty}(M)$, \circ , {, }) Poisson algebra, $N \subset M$, \mathcal{I} Jordan ideal.

- $B \subset T_N M$. $\mathcal{B} = \{ f \in C^{\infty}(M) \text{ s.t. } Xf = 0 \ \forall X \in \Gamma(B) \}$

is a Jordan subalgebra and $\mathcal{B}\cap\mathcal{I}$ is a Jordan ideal.

- Assume \mathcal{B} is also a Lie subalgebra, i.e. $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B}$

J. E. Marsden, T. Ratiu. Lett. Math. Phys. 11 (1986) 161.

Marsden-Ratiu reduction (constraints + symmetries) ($C^{\infty}(M)$, \circ , {, }) Poisson algebra, $N \subset M$, \mathcal{I} Jordan ideal.

- $B \subset T_N M$. $\mathcal{B} = \{ f \in C^{\infty}(M) \text{ s.t. } Xf = 0 \ \forall X \in \Gamma(B) \}$

is a Jordan subalgebra and $\mathcal{B}\cap\mathcal{I}$ is a Jordan ideal.

- Assume $\mathcal B$ is also a Lie subalgebra, i.e. $\{\mathcal B,\mathcal B\}\subset \mathcal B$
- Then if $\mathcal{B}\cap\mathcal{I}$ is a Poisson ideal of $\mathcal{B},$

$\mathcal{B}/(\mathcal{B}\cap\mathcal{I})$

inherits a Poisson algebra structure.

J. E. Marsden, T. Ratiu. Lett. Math. Phys. 11 (1986) 161.

J. Grabowski, G. Landi, G. Marmo, G. Vilasi. Forts. Phys 42 (1994) 393.

Marsden-Ratiu reduction (constraints + symmetries) ($C^{\infty}(M)$, \circ , {, }) Poisson algebra, $N \subset M$, \mathcal{I} Jordan ideal.

- $B \subset T_N M$. $\mathcal{B} = \{ f \in C^{\infty}(M) \text{ s.t. } Xf = 0 \ \forall X \in \Gamma(B) \}$

is a Jordan subalgebra and $\mathcal{B}\cap\mathcal{I}$ is a Jordan ideal.

- Assume $\mathcal B$ is also a Lie subalgebra, i.e. $\{\mathcal B,\mathcal B\}\subset \mathcal B$
- Then if $\mathcal{B}\cap\mathcal{I}$ is a Poisson ideal of $\mathcal{B},$

$\mathcal{B}/(\mathcal{B}\cap\mathcal{I})$

inherits a Poisson algebra structure.

BUT \mathcal{B} a Lie subalgebra is a rather strong condition...

- J. E. Marsden, T. Ratiu. Lett. Math. Phys. 11 (1986) 161.
- J. Grabowski, G. Landi, G. Marmo, G. Vilasi. Forts. Phys 42 (1994) 393.

Marsden-Ratiu reduction.

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

 $\textbf{-}\{\mathcal{B},\mathcal{B}\}\subset\mathcal{B}\Rightarrow$

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

 $\textbf{-}\{\mathcal{B},\mathcal{B}\}\subset\mathcal{B}\Rightarrow$

a) $\mathcal{B} \subset \mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t.} \{\mathcal{I}, g\} \subset \mathcal{I}\}.$

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

 $\textbf{-}\{\mathcal{B},\mathcal{B}\}\subset\mathcal{B}\Rightarrow$

a) $\mathcal{B} \subset \mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t.} \{\mathcal{I}, g\} \subset \mathcal{I}\}.$

Proof:

Assume $\{f, g\} \notin \mathcal{I}, f \in \mathcal{I}, g \in \mathcal{B}$

i. e. $\{f, g\}(p) \neq 0, p \in N$

 $f^{2} \in \mathcal{B} \Rightarrow f\{f,g\} \in \mathcal{B} \Rightarrow f \in \mathcal{B} \cap \mathcal{I}$ $hf \in \mathcal{B} \forall h \in C^{\infty}(M) \Rightarrow h\{f,g\} + f\{h,g\} \in \mathcal{B} \Rightarrow h \in \mathcal{B}$

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

 $\textbf{-}\{\mathcal{B},\mathcal{B}\}\subset\mathcal{B}\Rightarrow$

a) $\mathcal{B} \subset \mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t.} \{\mathcal{I}, g\} \subset \mathcal{I}\}.$

b) $\mathcal{B} \cap \mathcal{I}$ is Poisson ideal of \mathcal{B} .

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

 $\textbf{-}\{\mathcal{B},\mathcal{B}\}\subset\mathcal{B}\Rightarrow$

a) $\mathcal{B} \subset \mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t.} \{\mathcal{I}, g\} \subset \mathcal{I}\}.$

b) $\mathcal{B} \cap \mathcal{I}$ is Poisson ideal of \mathcal{B} .

c) $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ always inherits a Poisson bracket.

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

 $\textbf{-}\{\mathcal{B},\mathcal{B}\}\subset\mathcal{B}\Rightarrow$

a) $\mathcal{B} \subset \mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t.} \{\mathcal{I}, g\} \subset \mathcal{I}\}.$

b) $\mathcal{B} \cap \mathcal{I}$ is Poisson ideal of \mathcal{B} .

c) $\mathcal{B}/(\mathcal{B}\cap\mathcal{I})$ always inherits a Poisson bracket.

d) If $B \cap TN = B' \cap TN \Leftrightarrow \mathcal{B} + \mathcal{I} = \mathcal{B}' + \mathcal{I}$ $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ $\mathcal{B}'/(\mathcal{B}' \cap \mathcal{I})$

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

 $\textbf{-}\{\mathcal{B},\mathcal{B}\}\subset\mathcal{B}\Rightarrow$

a) $\mathcal{B} \subset \mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t.} \{\mathcal{I}, g\} \subset \mathcal{I}\}.$

b) $\mathcal{B} \cap \mathcal{I}$ is Poisson ideal of \mathcal{B} .

c) $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ always inherits a Poisson bracket.

d) If $B \cap TN = B' \cap TN \Leftrightarrow \mathcal{B} + \mathcal{I} = \mathcal{B}' + \mathcal{I}$

 $\mathcal{B}/(\mathcal{B}\cap\mathcal{I})\sim (\mathcal{B}+\mathcal{I})/\mathcal{I}\sim \mathcal{B}'/(\mathcal{B}'\cap\mathcal{I})$

the Poisson brackets coincide.

Marsden-Ratiu reduction.

One can show that if $\mathcal{B} \neq C^{\infty}(M)$, i.e. $0 \neq B \subset T_N M$.

 $\textbf{-}\{\mathcal{B},\mathcal{B}\}\subset\mathcal{B}\Rightarrow$

a) $\mathcal{B} \subset \mathcal{N} = \{g \in C^{\infty}(M) \text{ s.t.} \{\mathcal{I}, g\} \subset \mathcal{I}\}.$

b) $\mathcal{B} \cap \mathcal{I}$ is Poisson ideal of \mathcal{B} .

c) $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ always inherits a Poisson bracket.

d) If $B \cap TN = B' \cap TN \Leftrightarrow \mathcal{B} + \mathcal{I} = \mathcal{B}' + \mathcal{I}$

 $\mathcal{B}/(\mathcal{B}\cap\mathcal{I})\sim(\mathcal{B}+\mathcal{I})/\mathcal{I}\sim\mathcal{B}'/(\mathcal{B}'\cap\mathcal{I})$

the Poisson brackets coincide.

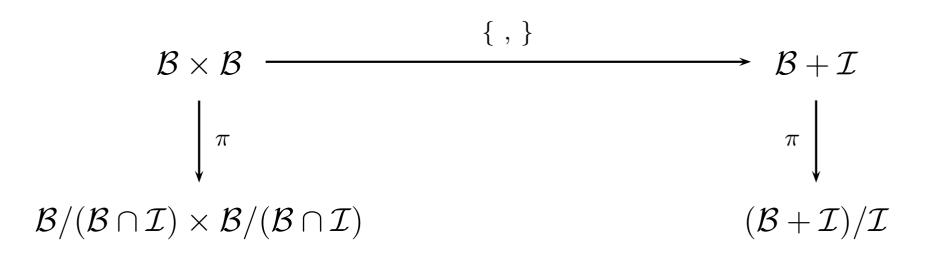
Summarising: MR reduction is nothing but a successive application of constraints and symmetries.!!

- The data: \mathcal{L} a Poisson algebra
 - $\mathcal{B} \subset \mathcal{L}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.

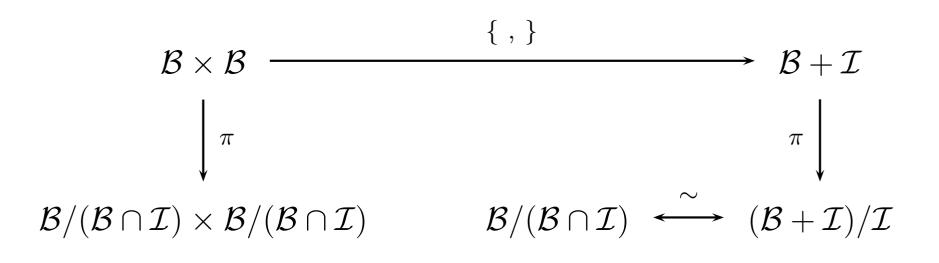
- The data: \mathcal{L} a Poisson algebra
 - $\mathcal{B} \subset \mathcal{L}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.

• The problem: induce in $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ a Poisson algebra.

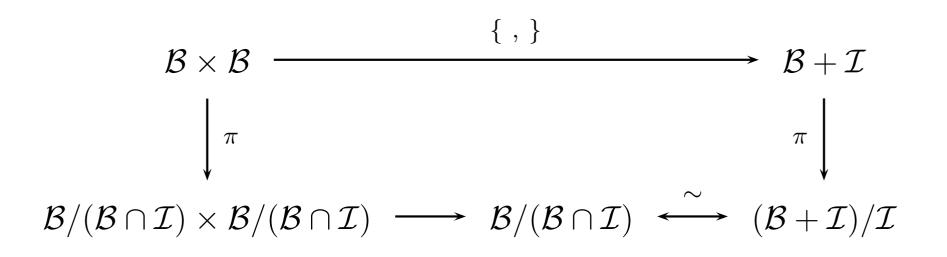
- **•** The data: \mathcal{L} a Poisson algebra
 - $\mathcal{B} \subset \mathcal{L}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.
- The problem: induce in $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ a Poisson algebra.
- The idea: If $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I}$



- The data: \mathcal{L} a Poisson algebra
 - $\mathcal{B} \subset \mathcal{L}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.
- The problem: induce in $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ a Poisson algebra.
- The idea: If $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I}$



- The data: \mathcal{L} a Poisson algebra
 - $\mathcal{B} \subset \mathcal{L}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.
- The problem: induce in $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ a Poisson algebra.
- The idea: If $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I}$ and $\{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}$



- **•** The data: \mathcal{L} a Poisson algebra
 - $\mathcal{B} \subset \mathcal{L}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.
- The problem: induce in $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ a Poisson algebra.
- The idea: If $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I}$ and $\{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}$.
- The flaw: Jacobi identity is not guaranteed.

- The data: \mathcal{L} a Poisson algebra
 - $\mathcal{B} \subset \mathcal{L}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.
- The problem: induce in $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ a Poisson algebra.
- The idea: If $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I}$ and $\{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}$.
- The flaw: Jacobi identity is not guaranteed.
- A solution: introduce Jordan subalgebras \mathcal{B}_{-} and \mathcal{B}_{+}

- The data: \mathcal{L} a Poisson algebra
 - $\mathcal{B} \subset \mathcal{L}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.
- ▶ The problem: induce in $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ a Poisson algebra.
- The idea: If $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I}$ and $\{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}$.
- The flaw: Jacobi identity is not guaranteed.
- ▶ A solution: introduce Jordan subalgebras \mathcal{B}_{-} and \mathcal{B}_{+} .
 - s. t. $\mathcal{B}_{-} \subset \mathcal{B} \subset \mathcal{B}_{+}, \qquad \mathcal{B}_{\pm} + \mathcal{I} = \mathcal{B} + \mathcal{I}.$

- **•** The data: \mathcal{L} a Poisson algebra
 - $\boldsymbol{\mathcal{B}} \subset \boldsymbol{\mathcal{L}}$ a multiplicative subalgebra
 - $\mathcal{I} \subset \mathcal{L}$ a multiplicative ideal.
- ▶ The problem: induce in $\mathcal{B}/(\mathcal{B} \cap \mathcal{I})$ a Poisson algebra.
- The idea: If $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I}$ and $\{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}$.
- The flaw: Jacobi identity is not guaranteed.
- A solution: introduce Jordan subalgebras \mathcal{B}_{-} and \mathcal{B}_{+} s. t. $\mathcal{B}_{-} \subset \mathcal{B} \subset \mathcal{B}_{+}, \quad \mathcal{B}_{\pm} + \mathcal{I} = \mathcal{B} + \mathcal{I}.$ Then, we can show: $\{\mathcal{B}_{-}, \mathcal{B}_{-}\} \subset \mathcal{B}_{+}, \quad \{\mathcal{B}_{-}, \mathcal{B}_{+} \cap \mathcal{I}\} \subset \mathcal{I} \Rightarrow Jacobi identity.$

Example:

Example:
$$M = \mathbb{R}^3 \times \mathbb{R}^3$$
, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$

- **Example:** $M = \mathbb{R}^3 \times \mathbb{R}^3$, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$
- $N = \{(0, 0, x_3, \mathbf{y})\}, \qquad \lambda : N \to \mathbb{R}$
- $B = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} \lambda \partial_{y_1}\} \subset T_N M$, $B \oplus TN = T_N M$
- $-\mathcal{B} = \{ f \in C^{\infty}(M), \text{ s.t. } Xf|_N = 0, \forall X \in \Gamma(B) \}$

- **Example:** $M = \mathbb{R}^3 \times \mathbb{R}^3$, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$
- $N = \{(0, 0, x_3, \mathbf{y})\}, \qquad \lambda : N \to \mathbb{R}$
- $B = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} \lambda \partial_{y_1}\} \subset T_N M$, $B \oplus TN = T_N M$
- $\mathcal{B} = \{ f \in C^{\infty}(M), \text{ s.t. } Xf|_N = 0, \forall X \in \Gamma(B) \}$

Then: $\mathcal{B} + \mathcal{I} = C^{\infty}(M)$ and $\{C^{\infty}(M), \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}$

- **Example:** $M = \mathbb{R}^3 \times \mathbb{R}^3$, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$
- $N = \{(0, 0, x_3, \mathbf{y})\}, \qquad \lambda : N \to \mathbb{R}$
- $B = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} \lambda \partial_{y_1}\} \subset T_N M$, $B \oplus TN = T_N M$
- $\mathcal{B} = \{ f \in C^{\infty}(M), \text{ s.t. } Xf|_N = 0, \forall X \in \Gamma(B) \}$

Therefore: $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I} \text{ and } \{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}.$

- **Example:** $M = \mathbb{R}^3 \times \mathbb{R}^3$, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$
- $N = \{(0, 0, x_3, \mathbf{y})\}, \qquad \lambda : N \to \mathbb{R}$
- $B = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} \lambda \partial_{y_1}\} \subset T_N M, \qquad B \oplus TN = T_N M$
- $\mathcal{B} = \{ f \in C^{\infty}(M), \text{ s.t. } Xf|_N = 0, \forall X \in \Gamma(B) \}$

Therefore: $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I} \text{ and } \{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}.$

Induced bivector field on N: $\Pi_N = \frac{\partial}{\partial_{x_3}} \wedge \frac{\partial}{\partial_{y_3}} + \lambda \frac{\partial}{\partial_{y_1}} \wedge \frac{\partial}{\partial_{y_2}}$

- **Example:** $M = \mathbb{R}^3 \times \mathbb{R}^3$, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$
- $N = \{(0, 0, x_3, \mathbf{y})\}, \qquad \lambda : N \to \mathbb{R}$
- $B = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} \lambda \partial_{y_1}\} \subset T_N M$, $B \oplus TN = T_N M$
- $\mathcal{B} = \{ f \in C^{\infty}(M), \text{ s.t. } Xf|_N = 0, \forall X \in \Gamma(B) \}$

Therefore: $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I} \text{ and } \{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}.$

Induced bivector field on N: $\Pi_N = \frac{\partial}{\partial_{x_3}} \wedge \frac{\partial}{\partial_{y_3}} + \lambda \frac{\partial}{\partial_{y_1}} \wedge \frac{\partial}{\partial_{y_2}}$ That is Poisson if and only if: $\partial_{x_3} \lambda = \partial_{y_3} \lambda = 0$

- **Example:** $M = \mathbb{R}^3 \times \mathbb{R}^3$, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$
- $N = \{(0, 0, x_3, \mathbf{y})\}, \qquad \lambda : N \to \mathbb{R}$
- $B = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} \lambda \partial_{y_1}\} \subset T_N M$, $B \oplus TN = T_N M$
- $-\mathcal{B} = \{ f \in C^{\infty}(M), \text{ s.t. } Xf|_N = 0, \forall X \in \Gamma(B) \}$

Therefore: $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I} \text{ and } \{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}.$

Induced bivector field on N: $\Pi_N = \frac{\partial}{\partial_{x_3}} \wedge \frac{\partial}{\partial_{y_3}} + \lambda \frac{\partial}{\partial_{y_1}} \wedge \frac{\partial}{\partial_{y_2}}$ That is Poisson if and only if: $\partial_{x_3} \lambda = \partial_{y_3} \lambda = 0$

Take:
$$E = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} - \lambda \partial_{y_1}\} \subset TM, \quad \mathcal{B}_- = \mathcal{E} \subset \mathcal{B} = \mathcal{B}_+.$$

 $\mathcal{E} = \{f \in C^{\infty}(M) \text{ s.t. } Xf = 0, \forall X \in \Gamma(E)\}$

- **Example:** $M = \mathbb{R}^3 \times \mathbb{R}^3$, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$
- $N = \{(0, 0, x_3, \mathbf{y})\}, \qquad \lambda : N \to \mathbb{R}$
- $B = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} \lambda \partial_{y_1}\} \subset T_N M$, $B \oplus TN = T_N M$
- $-\mathcal{B} = \{ f \in C^{\infty}(M), \text{ s.t. } Xf|_N = 0, \forall X \in \Gamma(B) \}$

Therefore: $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I} \text{ and } \{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}.$

Induced bivector field on N: $\Pi_N = \frac{\partial}{\partial_{x_3}} \wedge \frac{\partial}{\partial_{y_3}} + \lambda \frac{\partial}{\partial_{y_1}} \wedge \frac{\partial}{\partial_{y_2}}$ That is Poisson if and only if: $\partial_{x_3} \lambda = \partial_{y_3} \lambda = 0$

Take: $E = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} - \lambda \partial_{y_1}\} \subset TM$, $\mathcal{B}_- = \mathcal{E} \subset \mathcal{B} = \mathcal{B}_+$. Then $\{\mathcal{B}_-, \mathcal{B}_+ \cap \mathcal{I}\} \subset \mathcal{I}$

- **Example:** $M = \mathbb{R}^3 \times \mathbb{R}^3$, $\Pi = \sum_{i=1}^3 \frac{\partial}{\partial_{x_i}} \wedge \frac{\partial}{\partial_{y_i}}$
- $N = \{(0, 0, x_3, \mathbf{y})\}, \qquad \lambda : N \to \mathbb{R}$
- $B = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} \lambda \partial_{y_1}\} \subset T_N M, \qquad B \oplus TN = T_N M$
- $\mathcal{B} = \{ f \in C^{\infty}(M), \text{ s.t. } Xf|_N = 0, \forall X \in \Gamma(B) \}$

Therefore: $\{\mathcal{B}, \mathcal{B}\} \subset \mathcal{B} + \mathcal{I} \text{ and } \{\mathcal{B}, \mathcal{B} \cap \mathcal{I}\} \subset \mathcal{I}.$

Induced bivector field on N: $\Pi_N = \frac{\partial}{\partial_{x_3}} \wedge \frac{\partial}{\partial_{y_3}} + \lambda \frac{\partial}{\partial_{y_1}} \wedge \frac{\partial}{\partial_{y_2}}$ That is Poisson if and only if: $\partial_{x_3} \lambda = \partial_{y_3} \lambda = 0$

Take: $E = \operatorname{span}\{\partial_{x_1}, \partial_{x_2} - \lambda \partial_{y_1}\} \subset TM$, $\mathcal{B}_- = \mathcal{E} \subset \mathcal{B} = \mathcal{B}_+$. Then $\{\mathcal{B}_-, \mathcal{B}_+ \cap \mathcal{I}\} \subset \mathcal{I}$ but $\{\mathcal{B}_-, \mathcal{B}_-\} \subset \mathcal{B}_+$ if and only if $\partial_{x_3}\lambda = \partial_{y_3}\lambda = 0$

 $(\mathcal{L},\circ,[\ ,\],\parallel\parallel), \qquad \hbar\neq 0$

$(\mathcal{L},\circ,[\ ,\],\parallel\parallel), \qquad \hbar\neq 0$

- $\| a \circ b \| \le \| a \| \| b \| \| [a, b] \| \le \hbar^{-1} \| a \| \| b \|$
- $|| a^2 || = || a ||^2$ $|| a^2 + b^2 || \le || a^2 ||$

$(\mathcal{L},\circ,[\ ,\],\parallel\parallel), \qquad \hbar\neq 0$

- $\| a \circ b \| \le \| a \| \| b \| \| [a, b] \| \le \hbar^{-1} \| a \| \| b \|$
- $|| a^2 || = || a ||^2$ $|| a^2 + b^2 || \le || a^2 ||$

States

A state is a positive, normalised functional in \mathcal{L} , i.e. $\sigma: \mathcal{L} \to \mathbb{R}, \, \sigma(a^2) \ge 0$ and $\parallel \sigma \parallel = \sigma(1) = 1$

$(\mathcal{L},\circ,[\ ,\],\parallel\parallel), \qquad \hbar\neq 0$

- $\| a \circ b \| \le \| a \| \| b \| \| [a, b] \| \le \hbar^{-1} \| a \| \| b \|$
- $|| a^2 || = || a ||^2$ $|| a^2 + b^2 || \le || a^2 ||$

States

A state is a positive, normalised functional in \mathcal{L} , i.e. $\sigma: \mathcal{L} \to \mathbb{R}, \, \sigma(a^2) \ge 0$ and $\parallel \sigma \parallel = \sigma(1) = 1$

The space of states $\mathfrak{S}(\mathcal{L})$ form a w. compact, convex set. Pure states are at its boundary.

$(\mathcal{L},\circ,[\ ,\],\parallel\parallel), \qquad \hbar\neq 0$

- $\| a \circ b \| \le \| a \| \| b \| \| [a, b] \| \le \hbar^{-1} \| a \| \| b \|$
- $|| a^2 || = || a ||^2$ $|| a^2 + b^2 || \le || a^2 ||$

States

A state is a positive, normalised functional in \mathcal{L} , i.e. $\sigma : \mathcal{L} \to \mathbb{R}, \, \sigma(a^2) \ge 0 \text{ and } \parallel \sigma \parallel = \sigma(1) = 1$

The space of states $\mathfrak{S}(\mathcal{L})$ form a w. compact, convex set. Pure states are at its boundary.

Some properties, $\sigma \in \mathfrak{S}(\mathcal{L})$:

- $\sigma(a \circ b)^2 \leq \sigma(a^2)\sigma(b^2)$
- $\sigma([a,b])^2 \leq \hbar^{-2} \sigma(a^2) \sigma(b^2)$

Reduction by symmetries

Reduction by symmetries

Consider the space of Jordan derivations

 $Der_{J}(\mathcal{L}) = \{ \delta \in B(\mathcal{L}) \text{ s.t. } \delta(a \circ b) = a \circ \delta b + (\delta a) \circ b \}$ Example: $\delta_{x} = [x, .], x \in \mathcal{L}$

Reduction by symmetries

Consider the space of Jordan derivations

$$Der_J(\mathcal{L}) = \{ \delta \in B(\mathcal{L}) \text{ s.t. } \delta(a \circ b) = a \circ \delta b + (\delta a) \circ b \}$$

Example: $\delta_x = [x, .], x \in \mathcal{L}$

For $D \subset Der_J(\mathcal{L})$ let $\mathcal{F}_D = \{a \in \mathcal{L} \text{ s.t. } \delta a = 0 \ \forall \ \delta \in D\}$

 \mathcal{F}_D is a closed Jordan subalgebra

Reduction by symmetries

Consider the space of Jordan derivations

$$Der_J(\mathcal{L}) = \{ \delta \in B(\mathcal{L}) \text{ s.t. } \delta(a \circ b) = a \circ \delta b + (\delta a) \circ b \}$$

Example: $\delta_x = [x, .], x \in \mathcal{L}$

For $D \subset Der_J(\mathcal{L})$ let $\mathcal{F}_D = \{a \in \mathcal{L} \text{ s.t. } \delta a = 0 \ \forall \ \delta \in D\}$

 \mathcal{F}_D is a closed Jordan subalgebra

If δ is also a Lie derivation for any $\delta \in D$ then \mathcal{F}_D is also a LJB subalgebra.

Reduction by symmetries

Consider the space of Jordan derivations

$$Der_J(\mathcal{L}) = \{ \delta \in B(\mathcal{L}) \text{ s.t. } \delta(a \circ b) = a \circ \delta b + (\delta a) \circ b \}$$

Example: $\delta_x = [x, .], x \in \mathcal{L}$

For $D \subset Der_J(\mathcal{L})$ let $\mathcal{F}_D = \{a \in \mathcal{L} \text{ s.t. } \delta a = 0 \ \forall \ \delta \in D\}$

 \mathcal{F}_D is a closed Jordan subalgebra

If δ is also a Lie derivation for any $\delta \in D$ then \mathcal{F}_D is also a LJB subalgebra.

Example:

Take $D_{\mathcal{X}} = \{ [x, .] | x \in \mathcal{X} \subset \mathcal{L} \}$ then $\mathcal{F}_{D_{\mathcal{X}}}$ is a LJB subalgebra.

Reduction by constraints (T-procedure): $C \subset L$

Reduction by constraints (T-procedure): $C \subset L$ - Dirac states (the constrained submanifold):

$$\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \forall c \in \mathcal{C} \}$$

Reduction by constraints (T-procedure): $\mathcal{C} \subset \mathcal{L}$

- Dirac states (the constrained submanifold):

$$\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \forall c \in \mathcal{C} \}$$

- The vanishing subalgebra:

$$\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}$$

Plays the rôle of \mathcal{I} but \mathcal{S} is a closed Lie-Jordan subalgebra

Reduction by constraints (T-procedure): $\mathcal{C} \subset \mathcal{L}$

- Dirac states (the constrained submanifold):

$$\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \ \forall \ c \in \mathcal{C} \}$$

- The vanishing subalgebra:

$$\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}$$

Plays the rôle of \mathcal{I} but \mathcal{S} is a closed Lie-Jordan subalgebra

- The normaliser (first class observables):

 $\mathcal{N} = \{ a \in \mathcal{L} \text{ s.t. } [a, \mathcal{S}] \subset \mathcal{S} \}$

Reduction by constraints (T-procedure): $C \subset \mathcal{L}$

- Dirac states (the constrained submanifold):

$$\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \ \forall \ c \in \mathcal{C} \}$$

- The vanishing subalgebra:

$$\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}$$

Plays the rôle of \mathcal{I} but \mathcal{S} is a closed Lie-Jordan subalgebra

- The normaliser (first class observables):

 $\mathcal{N} = \{ a \in \mathcal{L} \text{ s.t. } [a, \mathcal{S}] \subset \mathcal{S} \}$

- \mathcal{N} is closed Lie-Jordan subalgebra and $\mathcal{S} \subset \mathcal{N}$ is its ideal.

Reduction by constraints (T-procedure): $\mathcal{C} \subset \mathcal{L}$

- Dirac states (the constrained submanifold):

$$\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \ \forall \ c \in \mathcal{C} \}$$

- The vanishing subalgebra:

$$\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}$$

Plays the rôle of \mathcal{I} but \mathcal{S} is a closed Lie-Jordan subalgebra

- The normaliser (first class observables):

$$\mathcal{N} = \{ a \in \mathcal{L} \text{ s.t. } [a, \mathcal{S}] \subset \mathcal{S} \}$$

- \mathcal{N} is closed Lie-Jordan subalgebra and $\mathcal{S} \subset \mathcal{N}$ is its ideal. Proof: $(a \circ b)^2 - \hbar^2 [a, b]^2 = a \circ (b \circ (a \circ b)) - \hbar^2 a \circ [b, [a, b]]$ $a \in \mathcal{S}, b \in \mathcal{N}, \sigma \in \mathfrak{D} \Rightarrow \sigma((a \circ b)^2) - \hbar^2 \sigma([a, b]^2) = 0$

Reduction by constraints (T-procedure): $C \subset L$

- Dirac states (the constrained submanifold):

$$\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \forall c \in \mathcal{C} \}$$

- The vanishing subalgebra:

$$\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}$$

Plays the rôle of \mathcal{I} but \mathcal{S} is a closed Lie-Jordan subalgebra

- The normaliser (first class observables):

 $\mathcal{N} = \{ a \in \mathcal{L} \text{ s.t. } [a, \mathcal{S}] \subset \mathcal{S} \}$

- $\mathcal N$ is closed Lie-Jordan subalgebra and $\mathcal S\subset \mathcal N$ is its ideal.
- \mathcal{N}/\mathcal{S} inherits the reduced Lie-Jordan-Banach structure

Quantum Marsden-Ratiu reduction.

Quantum Marsden-Ratiu reduction.

- Constraints: $\mathcal{C} \subset \mathcal{L}$, $\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \ \forall \ c \in \mathcal{C} \},\$ $\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \ \forall \ \sigma \in \mathfrak{C} \}$

Quantum Marsden-Ratiu reduction.

- Constraints: $\mathcal{C} \subset \mathcal{L}$, $\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \ \forall \ c \in \mathcal{C} \},\$ $\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \ \forall \ \sigma \in \mathfrak{C} \}$
- Symmetries: $D \subset \operatorname{Der}_J(\mathcal{L})$

Quantum Marsden-Ratiu reduction.

- Constraints: $\mathcal{C} \subset \mathcal{L}$, $\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \forall c \in \mathcal{C} \},\$ $\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{C} \}$
- Symmetries: $D \subset \operatorname{Der}_{J}(\mathcal{L})$
- Reduced space: $\mathcal{B} = \{a \in \mathcal{L} \text{ s.t. } \delta a \in \mathcal{S}, \forall \delta \in D\}$ is a closed subspace and $\mathcal{B} \cap \mathcal{S}$ is a closed LJ subalgebra.

Quantum Marsden-Ratiu reduction.

- Constraints: $\mathcal{C} \subset \mathcal{L}$, $\mathfrak{D} = \{ \sigma \in \mathfrak{S}(\mathcal{L}) \text{ s.t. } \sigma(c^2) = 0 \forall c \in \mathcal{C} \},\$
- $\mathcal{S} = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{C} \}$
- Symmetries: $D \subset \operatorname{Der}_{J}(\mathcal{L})$
- Reduced space: $\mathcal{B} = \{a \in \mathcal{L} \text{ s.t. } \delta a \in \mathcal{S}, \forall \delta \in D\}$ is a closed subspace and $\mathcal{B} \cap \mathcal{S}$ is a closed LJ subalgebra.
- Reduced LJB algebra:

If \mathcal{B} is a LJ subalgebra and $\mathcal{B} \cap \mathcal{S}$ is its LJ ideal

 $\mathcal{B}/(\mathcal{B}\cap\mathcal{S})$

inherits the structure of a LJB algebra.

Quantum Marsden-Ratiu reduction.

$$S = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}, D \subset \text{Der}_J(\mathcal{L}) \\ B = \{ a \in \mathcal{L} \text{ s.t. } \delta a \in S, \forall \delta \in D \}$$

Quantum Marsden-Ratiu reduction.

$$S = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}, D \subset \text{Der}_J(\mathcal{L})$$
$$B = \{ a \in \mathcal{L} \text{ s.t. } \delta a \in S, \forall \delta \in D \}$$

Examples:

Quantum Marsden-Ratiu reduction.

$$S = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}, D \subset \text{Der}_J(\mathcal{L})$$
$$B = \{ a \in \mathcal{L} \text{ s.t. } \delta a \in S, \forall \delta \in D \}$$

Examples:

- Reduction by symmetries: $C = \{0\}$

Quantum Marsden-Ratiu reduction.

$$S = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}, D \subset \text{Der}_J(\mathcal{L}) \\ B = \{ a \in \mathcal{L} \text{ s.t. } \delta a \in S, \forall \delta \in D \}$$

Examples:

- Reduction by symmetries: $C = \{0\}$
- T-procedure: Any \mathcal{C} and $D = \{[x, .], \text{ s.t. } x \in \mathcal{S}\}$

Quantum Marsden-Ratiu reduction.

$$S = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}, D \subset \text{Der}_J(\mathcal{L}) \\ B = \{ a \in \mathcal{L} \text{ s.t. } \delta a \in S, \forall \delta \in D \}$$

Examples:

- Reduction by symmetries: $C = \{0\}$
- T-procedure: Any \mathcal{C} and $D = \{[x, .], \text{ s.t. } x \in \mathcal{S}\}$

Observations:

Quantum Marsden-Ratiu reduction.

$$S = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}, D \subset \text{Der}_J(\mathcal{L})$$
$$B = \{ a \in \mathcal{L} \text{ s.t. } \delta a \in S, \forall \delta \in D \}$$

Examples:

- Reduction by symmetries: $C = \{0\}$
- T-procedure: Any \mathcal{C} and $D = \{[x, .], \text{ s.t. } x \in \mathcal{S}\}$

Observations:

- Call $\mathfrak{D}_{\mathcal{B}}$ the space of Dirac states restricted to \mathcal{B} , then $\mathfrak{D}_{\mathcal{B}} \sim \mathfrak{S}(\mathcal{B}/(\mathcal{B} \cap \mathcal{S}))$

Quantum Marsden-Ratiu reduction.

$$S = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}, D \subset \text{Der}_J(\mathcal{L}) \\ B = \{ a \in \mathcal{L} \text{ s.t. } \delta a \in S, \forall \delta \in D \}$$

Examples:

- Reduction by symmetries: $C = \{0\}$
- T-procedure: Any \mathcal{C} and $D = \{[x, .], \text{ s.t. } x \in \mathcal{S}\}$

Observations:

- Call $\mathfrak{D}_{\mathcal{B}}$ the space of Dirac states restricted to \mathcal{B} , then $\mathfrak{D}_{\mathcal{B}} \sim \mathfrak{S}(\mathcal{B}/(\mathcal{B} \cap \mathcal{S}))$

- Contrary to the classical case, \mathcal{B} a LJ subalgebra does not imply that $\mathcal{B} \cap \mathcal{S}$ is its LJ ideal.

Quantum Marsden-Ratiu reduction.

$$S = \{ a \in \mathcal{L} \text{ s.t. } \sigma(a^2) = 0 \forall \sigma \in \mathfrak{D} \}, D \subset \text{Der}_J(\mathcal{L}) \\ B = \{ a \in \mathcal{L} \text{ s.t. } \delta a \in S, \forall \delta \in D \}$$

Examples:

- Reduction by symmetries: $C = \{0\}$
- T-procedure: Any \mathcal{C} and $D = \{[x, .], \text{ s.t. } x \in \mathcal{S}\}$

Observations:

- Call $\mathfrak{D}_{\mathcal{B}}$ the space of Dirac states restricted to \mathcal{B} , then $\mathfrak{D}_{\mathcal{B}} \sim \mathfrak{S}(\mathcal{B}/(\mathcal{B} \cap \mathcal{S}))$
- Contrary to the classical case, \mathcal{B} a LJ subalgebra does not imply that $\mathcal{B} \cap \mathcal{S}$ is its LJ ideal.

MORE GENERAL REDUCTIONS?

Assume now \mathcal{B} is not a LJ subalgebra but there is \mathcal{S} s. t. $\mathcal{B} \circ \mathcal{B} \subset \mathcal{B} + \mathcal{S}$ and $[\mathcal{B}, \mathcal{B}] \subset \mathcal{B} + \mathcal{S}$

Assume now \mathcal{B} is not a LJ subalgebra but there is \mathcal{S} s. t.

- $\mathcal{B} \circ \mathcal{B} \subset \mathcal{B} + \mathcal{S}$ and $[\mathcal{B}, \mathcal{B}] \subset \mathcal{B} + \mathcal{S}$
- $\mathcal{B} \circ (\mathcal{B} \cap \mathcal{S}) \subset \mathcal{S}$ and $[\mathcal{B}, \mathcal{B} \cap \mathcal{S}] \subset \mathcal{S}$

Assume now \mathcal{B} is not a LJ subalgebra but there is \mathcal{S} s. t.

- $\mathcal{B} \circ \mathcal{B} \subset \mathcal{B} + \mathcal{S}$ and $[\mathcal{B}, \mathcal{B}] \subset \mathcal{B} + \mathcal{S}$
- $\mathcal{B} \circ (\mathcal{B} \cap \mathcal{S}) \subset \mathcal{S}$ and $[\mathcal{B}, \mathcal{B} \cap \mathcal{S}] \subset \mathcal{S}$

Then $\mathcal{B}/(\mathcal{B}+\mathcal{S})\sim (\mathcal{B}+\mathcal{S})/\mathcal{S}$ inherits \circ and [~,~] operations

Assume now \mathcal{B} is not a LJ subalgebra but there is \mathcal{S} s. t.

- $\mathcal{B} \circ \mathcal{B} \subset \mathcal{B} + \mathcal{S}$ and $[\mathcal{B}, \mathcal{B}] \subset \mathcal{B} + \mathcal{S}$
- $\mathcal{B} \circ (\mathcal{B} \cap \mathcal{S}) \subset \mathcal{S}$ and $[\mathcal{B}, \mathcal{B} \cap \mathcal{S}] \subset \mathcal{S}$

Then $\mathcal{B}/(\mathcal{B}+\mathcal{S})\sim (\mathcal{B}+\mathcal{S})/\mathcal{S}$ inherits \circ and [,] operations

If $\mathcal{B}_{-} \subset \mathcal{B} \subset \mathcal{B}_{+}$, with $\mathcal{B}_{\pm} + \mathcal{S} = \mathcal{B} + \mathcal{S}$, s. t.

Assume now \mathcal{B} is not a LJ subalgebra but there is \mathcal{S} s. t.

- $\mathcal{B} \circ \mathcal{B} \subset \mathcal{B} + \mathcal{S}$ and $[\mathcal{B}, \mathcal{B}] \subset \mathcal{B} + \mathcal{S}$
- $\mathcal{B} \circ (\mathcal{B} \cap \mathcal{S}) \subset \mathcal{S}$ and $[\mathcal{B}, \mathcal{B} \cap \mathcal{S}] \subset \mathcal{S}$

Then $\mathcal{B}/(\mathcal{B}+\mathcal{S})\sim (\mathcal{B}+\mathcal{S})/\mathcal{S}$ inherits \circ and [,] operations

- If $\mathcal{B}_{-} \subset \mathcal{B} \subset \mathcal{B}_{+}$, with $\mathcal{B}_{\pm} + \mathcal{S} = \mathcal{B} + \mathcal{S}$, s. t.
 - $\mathcal{B}_{-} \circ \mathcal{B}_{-} \subset \mathcal{B}_{+} \quad \mathcal{B}_{-} \circ (\mathcal{B}_{+} \cap \mathcal{S}) \subset \mathcal{S}$
 - $[\mathcal{B}_{-},\mathcal{B}_{-}] \subset \mathcal{B}_{+} \quad [\mathcal{B}_{-},(\mathcal{B}_{+} \cap \mathcal{S})] \subset \mathcal{S}$

Jacobi, Leibniz and associator identities are fulfilled

Assume now \mathcal{B} is not a LJ subalgebra but there is \mathcal{S} s. t.

- $\mathcal{B} \circ \mathcal{B} \subset \mathcal{B} + \mathcal{S}$ and $[\mathcal{B}, \mathcal{B}] \subset \mathcal{B} + \mathcal{S}$
- $\mathcal{B} \circ (\mathcal{B} \cap \mathcal{S}) \subset \mathcal{S}$ and $[\mathcal{B}, \mathcal{B} \cap \mathcal{S}] \subset \mathcal{S}$

Then $\mathcal{B}/(\mathcal{B}+\mathcal{S})\sim (\mathcal{B}+\mathcal{S})/\mathcal{S}$ inherits \circ and [,] operations

- If $\mathcal{B}_{-} \subset \mathcal{B} \subset \mathcal{B}_{+}$, with $\mathcal{B}_{\pm} + \mathcal{S} = \mathcal{B} + \mathcal{S}$, s. t. $\mathcal{B}_{-} \circ \mathcal{B}_{-} \subset \mathcal{B}_{+}$ $\mathcal{B}_{-} \circ (\mathcal{B}_{+} \cap \mathcal{S}) \subset \mathcal{S}$
 - $[\mathcal{B}_{-},\mathcal{B}_{-}] \subset \mathcal{B}_{+} \quad [\mathcal{B}_{-},(\mathcal{B}_{+} \cap \mathcal{S})] \subset \mathcal{S}$

Jacobi, Leibniz and associator identities are fulfilled Proof: $[[a + S, b + S], c + S] = [([a_-, b_-])_-, c_-] + S$ but $[a_-, b_-] - ([a_-, b_-])_- \in \mathcal{B}_+ \cap S$. Therefore $[[a + S, b + S], c + S] = [[a_-, b_-], c_-] + S$.

Banach structure.

We have solved the algebraic part, but we still have to induce a norm in the reduced space.

Banach structure.

We have solved the algebraic part, but we still have to induce a norm in the reduced space.

We have two ways of doing it, in principle:

$$\| [a] \|_1 = \inf_{b \in \mathcal{B} \cap \mathcal{S}} \| a + b \| \quad \text{or} \quad \| [a] \|_2 = \inf_{b \in \mathcal{S}} \| a + b \|$$

Note that $|| [a] ||_1 \ge || [a] ||_2$

Banach structure.

We have solved the algebraic part, but we still have to induce a norm in the reduced space.

We have two ways of doing it, in principle:

$$\| [a] \|_1 = \inf_{b \in \mathcal{B} \cap \mathcal{S}} \| a + b \| \quad \text{or} \quad \| [a] \|_2 = \inf_{b \in \mathcal{S}} \| a + b \|$$

Note that $|| [a] ||_1 \ge || [a] ||_2$

In order to have a LJB algebra we should have the equality of norms.

Banach structure.

We have solved the algebraic part, but we still have to induce a norm in the reduced space.

We have two ways of doing it, in principle:

$$\| [a] \|_1 = \inf_{b \in \mathcal{B} \cap \mathcal{S}} \| a + b \| \quad \text{or} \quad \| [a] \|_2 = \inf_{b \in \mathcal{S}} \| a + b \|$$

Note that $|| [a] ||_1 \ge || [a] ||_2$

In order to have a LJB algebra we should have the equality of norms.

It holds when \mathcal{B} is a LJ subalgebra and \mathcal{S} is a LJ ideal.

Banach structure.

We have solved the algebraic part, but we still have to induce a norm in the reduced space.

We have two ways of doing it, in principle:

$$\| [a] \|_1 = \inf_{b \in \mathcal{B} \cap \mathcal{S}} \| a + b \| \quad \text{or} \quad \| [a] \|_2 = \inf_{b \in \mathcal{S}} \| a + b \|$$

Note that $|| [a] ||_1 \ge || [a] ||_2$

In order to have a LJB algebra we should have the equality of norms.

It holds when \mathcal{B} is a LJ subalgebra and \mathcal{S} is a LJ ideal.

MORE WORK IS NEEDED