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Outline

• Bipartite entanglement and multipartite entanglement

• Construction of local Hamiltonians with highly 
multipartite entangled states in the spectrum

• Explicit examples for 3, 4 and 5 qubits

• The special case of GHZ states



Entanglement... warm-up

ρ = |ψ��ψ|
A A

We consider an ensemble of      two-level systems in the 
pure state

πA = TrA(ρ2
A) 1

2nA
≤ πA ≤ 1with bounds

_

and a partition in two subsystems A (with       elements) 
and  A (with       elements)   

_

ρA = TrĀ(ρ)and

_

The reduced density matrix of subsystem A is obtained by tracing on the 

degrees of freedom of A and used to evaluate the purity (bipartite 

entanglement between A and A)

_

separable states with 
respect to the bipartition

maximally entangled states with 
respect to the bipartition

reduced density matrix 
completely mixed

n

nĀ

nA

|ψ� = |φ�A ⊗ |χ�Ā



Bipartite systems    VS   Multipartite systems

Two subsystems A and B: 
evaluate entanglement 

between them
Many 

subsystems: ?!?!

Entanglement



From Bipartite to Multipartite Entanglement

What about MULTIPARTITE ENTANGLEMENT? 
The numbers needed to characterize the system scale 
exponentially with its size.

Statistical methods

•   The distribution of         characterizes  the entanglement of the system.

Seminal ideas from
Man’ko, Marmo, Sudarshan, Zaccaria: (J. Phys. A 02-03)
Parisi: complex systems

The quantity        completely defines the BIPARTITE ENTANGLEMENT 
(one number is sufficient). It depends on the bipartition.

πA

πA



Multipartite entanglement

π(n)
ME(|ψ�) = E[πA] =

�
n
nA

�−1 �

|A|=nA

πA

Define the Potential of Multipartite Entanglement 
as the average purity over balanced bipartitions

Minimization of this cost function 

States minimizing the  potential of multipartite entanglement:

Maximally Multipartite Entangled State (MMES)

(see Facchi, G.F., Parisi, Pascazio PRA 2008; Facchi, G.F., Marzolino, Parisi, Pascazio JPhysA 2009, JPhysA 2010)

A B

A’

B’

nA =
�n

2

�



Multipartite entanglement

If the lower bound is saturated, the MMES is “perfect” 

A B

A’

B’

Perfect MMES exist only for n=2, 3, 5, 6 
(Scott 2004)

nA =
�n

2

�1
2[n/2]

≤ π(n)
ME(|ψ�) ≤ 1

Maximally Multipartite Entangled State (MMES):

πME(|ϕ�) = π(n)
0

π(n)
0 = min{πME(|ψ�) | |ψ� ∈ HS , �ψ|ψ� = 1}



Entanglement generation

GHZ state (non-degenerate) 
excited state

Problem: generation of entangled states

Facchi, GF, Pascazio, Pepe, PRA (2010), PRL (2011)

1) Sequence of operations 
on an initial state

2) Eigenstate of a suitable Hamiltonian

Explicit construction of 
Hamiltonians with highly 

entangled states in the spectrum



General strategy for MMES

H(�,K) = �P + H
⊥(K)

P = |ϕ��ϕ| |ϕ�

H
⊥ PH

⊥P = 0

H
⊥ = 0

The problem of finding a Hamiltonian involving local (two-body and 
nearest-neighbor) interactions and on site external magnetic fields, one of 
whose eigenstates is a MMES, is non-trivial

Projection on MMES

Consider the n-body Hamiltonian

Hermitian operator depending 
on a set of parameters with

� < 0 |ϕ� nondegenerate ground 
state of the Hamiltonian

A simple observation:



Hnonloc(�̄, K̄) = 0

General strategy for MMES

H(�,K) = Hloc(�,K) + Hnonloc(�,K)

Separate local and non local parts of the Hamiltonian

Objective:

find a set of parameters such that

(so that MMES is a non degenerate 
eigenstate, possibly the ground 
state)



|G±1 � =
1√
2

(|000�± |111�) ,

|G±2 � =
1√
2

(|001�± |110�) ,

|G±3 � =
1√
2

(|010�± |101�) ,

|G±4 � =
1√
2

(|011�± |110�)

3 qubits

MMES are equivalent by local unitaries to Greenberger-Horne-Zeilinger 
(GHZ) states

σz|i� = (−1)i|i�



H =
4�

i=1

�
�
+
i P

+
i + �

−
i P

−
i

�
+ HM

P±i = |G±i ��G±i | with i = 1, 2, 3, 4

3 qubits

The most generic Hamiltonian is

HM Hermitian operator containing terms of the form

|G±i ��G±j | + H.c. with i �= j

Projections on the GHZ basis

�i Expectation value of the Hamiltonian on the GHZ basis



P±i = Qi ± Ci

3 qubits

Each projection can be decomposed in the form

product of two 
Pauli matrices

product of three 
Pauli matrices

Example: Q1 =
1
2

(|000��000| + |111��111|) ,

=
1
8

(1 + σz
1σz

2 + σz
2σz

3 + σz
1σz

3)

C1 =
1
2

(|000��111| + |111��000|)

=
1
8

(σx
1σx

2σx
3 − σx

1σy
2σy

3 − σy
1σx

2σy
3 − σy

1σy
2σx

3 )



H =
4�

i=1

�
�
+
i + �

−
i

�
Qi +

4�

i=1

�
�
+
i − �

−
i

�
Ci + HM

�+i = �−i ∀i

3 qubits

The Hamiltonian takes the form:

does not contain 
product of three 
Pauli matrices

Cubic terms can be 
eliminated imposing 

CiCj = 0 ∀i �= j

Orthogonality holds:



3 qubits

�G+
i |H2|G+

i � = �G−i |H2|G−i � H2 =
�

i,j,α,β

C
αβ
ij σ

α
i σ

β
j

We obtain:

GHZ states can never be nondegenerate ground states of this Hamiltonian

with

|G+
1 � ground state of this Hamiltonian

eigenstate

Suppose

|G−1 � not an eigenstate|G−1 �

degeneracy |G+
1 � not the ground state

E0 < �G−1 |H2|G−1 � < Emax



H2 =
�

i<j

(Jx
ijσ

x
i σ

x
j + J

y
ijσ

y
i σ

y
j + J

z
ijσ

z
i σ

z
j )

+
�

i �=j

(Kijσ
x
i σ

y
j + Xijσ

x
i σ

z
j + Yijσ

y
i σ

z
j )

+
�

i

(hx
i σ

x
i + h

y
i σ

y
i + h

z
i σ

z
i )

|G+
1 � excited state?

The most general 
two-body Hamiltonian

3�

i=1

hz
i = 0

�

j �=i

Xij = 0 for i = 1, 2, 3,

�

j �=i

Yij = 0 for i = 1, 2, 3,

hx
1 = Jy

23 − Jx
23 , hx

2 = Jy
13 − Jx

13,

hx
3 = Jy

12 − Jx
12 , hy

1 = K23 + K32,

hy
2 = K13 + K13 , hy

3 = K12 + K21

YES if

3 qubits



HJk = J

3�

i=1

σ
z
i σ

z
i+1 + k

3�

i=1

�
σ

x
i σ

x
i+1 − σ

x
i

�

J �= 0, k �= 0, J �= −k

2

In order to check if  there is no degeneracy we use a simplified version

3 qubits

with periodic boundary conditions

|G+
1 � corresponds to the eigenvalue (nondegenerate) 3J

for the set of parameters



�1.0

�0.5
0.0

0.5
1.0

J

�1.0
�0.5

0.0
0.5

1.0

k

0.6

0.8

1.0

ΠME��GS��

3 qubits

|G+
1 � is the first nondegenerate excited state if

J < 0, k < 0

J < −k/2, k > 0

the GS has

E0 = −(J + 2k), πME = 2/3

πME ≤ 0.556



πA

A B

A’

B’

A’’

Is it possible in general to 
have for all bipartitions

if NO FRUSTRATION

πA = 1/2nA?

n = 4

min{πA} =
1
4

+πA��

min{π(4)
ME} =

1
3
(πA + πA� + πA�� ) =

1
3
�= 1

4

+πA�πA

+πA�

min{1
2
(πA + πA�)} =

1
4

πA

(and saturate the lower bound)

4 qubits



ζ(4) = {1, 1, 1, 1, 1, 1,−1,−1, 1,−1, 1,−1,−1, 1, 1,−1}

H =
16�

i=1

�iMi
4 + HM

4 qubits

Consider 

The generic Hamiltonian is 

projection on

H e r m i t i a n o p e r a t o r 
containing terms of the form

|M i
4�

does not contain product of three 
and four Pauli matricesMi

4

|M i
4��M

j
4 | + H.c. with i �= j

�i Expectation value of the Hamiltonian on the basis states

πME = 1/4|M1
4 � =

1
4

15�

k=0

ζ(4)
k |k�



4 qubits

M1
4 =

1
16

�
I + σz

1σx
4 + σz

2σx
3 + σx

1σz
2σz

4 + σx
1σx

3σz
4

+ σy
1σz

2σy
4 + σy

1σx
3σy

4 + σx
2σz

1σz
3 + σx

2σz
3σx

4

+ σy
2σy

3σz
1 + σy

2σy
3σx

4 + σx
1σx

2σy
3σy

4 − σx
1σy

2σz
3σy

4

+ σy
1σy

2σz
3σz

4 − σy
1σx

2σy
3σz

4 + σz
1σz

2σx
3σz

4

�

Example:

A difficult analysis...



From an analysis similar to the three qubits cas one can see that MMES can 
never be nondegenerate ground states for local Hamiltonian!

HJk = J(σx
4σ

z
1 + σ

x
3σ

z
2)

+ k
�
σ

x
1σ

z
4 + σ

x
2σ

z
3 + σ

x
2σ

z
1 + σ

x
1σ

z
2 −

4�

i=1

σ
z
i

�

General conditions for non degeneracy are difficult to obtain. We consider

4 qubits



4 qubits

corresponds to the eigenvalue (nondegenerate)

for the set of parameters

2J|M1
4 �

J �= 0, k �= 0, J �= ±
�

3
2
k, J �= ±

√
3k

We have numerically generated a large sample of sets of parameters and 
analyzed the position of the MMES in the spectrum.

On the average, the MMES is inte center of the energetic band (in the best 
case is the second excited level)



5 qubits

Consider 

The generic Hamiltonian is 

projection on

H e r m i t i a n o p e r a t o r 
containing terms of the form

does not contain product of three 
and four Pauli matrices

�i Expectation value of the Hamiltonian on the basis states

ζ(5) = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1, 1, 1,−1,−1, 1,−1, 1,−1,

−1, 1,−1, 1,−1,−1, 1, 1}

πME = 1/4

H =
32�

i=1

�iMi
5 + HM

Mi
5

|M1
5 � =

1
4
√

2

31�

k=0

ζ(5)
k |k�

|M i
5�

|M i
5��M

j
5 | + H.c. with i �= j



5 qubits

Also in this case is it non possible to have a MMES as nondegenerate 
ground state for a local Hamiltonian (same expectation value of the 
Hamiltonian if only two-body interaction terms are present)

It is possible to find local Hamiltonians witha MMES as a nondegenerate 
excited state (but the expressions are very complicated).

Numerical analysis based on analytical results show that MMES are placed 
in the center of the spectrum. Apparently it is not possible to reach low-
lying excited states (not better than the 14th level). 



|Gn
±� =

1√
2

�
|0�⊗n ± |1�⊗n

�
σz|i� = (−1)i|i�

GHZ states

H = E0|Gn
+��Gn

+|, E0 < 0

Hamiltonian with n-body interactions with GHZ as a nondegenerate 
ground state

In the case of m-body interactions (m<n) it is not possible to have 
GHZ as non degenerate ground state

|Gn
+� |Gn

−�
They share the same m-body reduced density matrices 
and, thus, the same expectation values of m-body 
interaction terms



GHZ states

H
(m) =

�

j1<j2<···<jm

�

α1,...,αm

J
α1...αm
j1...jm

σ
α1
j1

. . . σ
αm
jm

αi = 0, x, y, z σ0
i ≡ 1i

Hamiltonian with m-body interactions (m < n)

Is it possible to have a GHZ as nondegenerate excited state for an 
Hamiltonian with m-body interaction terms (m<n)?

It is possible to show that if the Hamiltonian contains terms that couple 
less than

the GHZ state      and any equivalent state by 
local unitaries cannot be a nondegenerate 
eigenstate

m∗
n = [(n + 1)/2] |Gn

+�



H0 = −
n�

j=1

σ
z
j σ

z
j+1 (with σn+1 ≡ σ1)

GHZ states

Consider

GHZ states                   are degenerate eigenstates 
with energy

E(k) = −n + 4k, with k = 1, 2, . . . , 2[n/2] ∆E = −4

Excited states are grouped in degenerate multiplets with energy 

E0 = −n

If interaction terms involve a sufficient number of bodies, degeneration 
can be avoided!

|Gn
+� |Gn

−�



H(λ) = H0 + λH1

H1 = σ
x
1σ

x
2 . . . σ

x
[n/2] − σ

x
[n/2]+1 . . . σ

x
n

In order to lift the degeneracy we consider the Hamiltonian 

GHZ states

two string of of spin flipping matrices acting on one half of the system

It is not possible to reduce the number of addenda nor to reduce the 
range of the couplings. 

We are interested in determining the position of the eigenstate  

|Gn
+� =

1√
2

�
|0�⊗n + |1�⊗n

�



GHZ states

It is easy to check that

H(λ)|Gn
+� = −n|Gn

+�

The twofold degenerate the ground state is split in two energy levels by 
the perturbation!

The state           is left unchanged by the presence of the perturbation (is 
an excited state); the lower one represents the nondegenerate ground 
state for the Hamiltonian

|Gn
+�

H(λ) = H0 + λH1

energy of the ground state: E0 = −n− 2(
�

1 + λ2 − 1)



GHZ

0.5 1.0 1.5 2.0 2.5 3.0 Λ

"3

"1

0

1

2

3

4
E# n

λ �= ±2k and λ �= ±2
�

k(k + 1)

It is possible to see that        is nondegenerate if |Gn
+�

k = 1, 2, . . . , 2[n/2]

λ = 2 λ = 2
√

2



Conclusions

•We constructed local Hamiltonians with highly 
multipartite entangled states in the spectrum

• We have found necessary and sufficient conditions for 
encoding GHZ states into the nondegenerate 
eigenstate of an Hamiltonian

•General conditions for MMES?

•Experimental feasibility?


