Supersymmetric twisting of carbon nanotubes

Vit Jakubsky,
Nuclear Physics Institute, ReZ near Prague

Benasque, 12.7. 2012



Carbon nanotubes: small cyllinders rolled up from graphene
sheet.

What happens if we twist radially the nanotube?

How will be affected observable quantities (e.g. local density
of states)?

Will there appear bound states?

Can we construct exactly solvable models to answer these
questions?
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Dirac electrons in graphene

> tight-binding model
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» dispersion relation via tight-binding model (vectors a; related to the
geometry of the crystal)

—F < CA > , h(k) -1 4 eikal + eikag
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E = :tfy\/3+2coska1+2cosk.a2+2cosk(a2—a1)

> six points where E = 0, two of them
inequivalent, called Dirac points

> in the vicinity of E = 0, dispersion
relation is linear E ~ |k|

> tight-binding hamiltonian reduces to
the first order operator for E ~ 0

h=i0xon + i6y01

massless Dirac hamiltonian



Carbon nanotubes

» specified by the circumference vector (chiral vector) Cy, it determines
its electronic properties

» quantization of momenta associated with the compactified coordinate

h=io10x + kyUQ



Deformations as (pseudo-)magnetic field
[Kane, Mele], [Vozmediano]

Displacement vector

d= (dx(XvY)7 dy(X7y))

Strain tensor

Sx = Oxdx, Sy, = 0yd,,
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Oxdy, + 0y dy
Sy == T 5 d=(0,x), sx =5, =0, 5 =1
Radially twisted nanotube - 1D Dirac Hamiltonian with vector potential

h=io20x + Al(X)O'l

A1(x) corresponds to the displacement d = (0, [ A1(x)dx) of the
nanotube

The nanotube with the twist corresponding to d, ~ x. In the
untwisted nanotube, the black line would be straight (horizontal).



» Primary objective: solvable models of twisted carbon nanotubes
» Secondary objective:

> local density of states (LDOS), the quantity measurable in STM
» Bound-state energies in depedence on the twist

Spectral tunneling microscopy (STM): tunneling current is a function of
the position of the tip, voltage and LDOS

Control voltages for piezotube

Tunneling Distance control
current amplifier  and scanning unit

Piezoelectric tube
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Darboux transformation L for Dirac Hamiltonians [Samsonov]
Analogy of Witten's construction for 1D Dirac Hamiltonian
Initial solvable Hamiltonian h = iop0y + (A1 + m)oy
Transformation L is defined via two eigenvectors uy (o) of h,
h“1(2) = )\1(2) uy(2), )\1(2) €R, Lu1(2) =0

We fix >\1 = —>\2, u = (U117 U2]_)T, up = o3l
l _ 2 2
L=10,— (In 1) 0 ) >’ h:I'(IQaX—<A1+m_)\1M 01.
0 (In up2) ui1loy
Then y
hL = Lh

» h and h are spectrally almost identical (assuming regular DT)
» possible difference: h can have to two additional bound states with
energy E = +)\;
Eigenstates of h corresponding to A« # 4,

be = aii
VO = A1) (A = X2)

hox = Mcdr.




Green's function and LDQOS for the twisted nanotubes
Green's function for the initial system

(h=X)G(x,y;\) =d(x—y), AeC.

L a)EW) T = y) +E)Ay) TOly — x)
i) = W(ir.60) ’
where hiy = Ay, hEy = A for any A € C. Wronskian
W(wa f) = i"L/J(X)TO'2£(X)7 aXW(w)\ag)\) ~: 0

Green's function for the new Hamiltonian h

Ex,y:\) = DA)ENY) TO(x — y) + Ex(x)Da(y) TO(y — x)

W (i, €))
where \ 75 :i:)\]_ and fN'IlZ)\ = )\1%\, ;15)\ = )\5,\,
v Lapy, P L&y
AR ey vy e v MR vy e vy

Note: Wronskian satisfies W(1), &) = W(1, €)



Green'’s function part Il
The action of L on the eigenstates 1 of h can be simplified

. Ly

5 A — UGIAU-Y(x)
(A= A)(A =)

A=A = X))

=L\, X))y, L(Ax)=—iop

where A = diag(A1, A2).
Green's function G(x,y;A) is then

G(x,y;A) = LN X)G(x, y; VLT (A, y).

It can be computed by purely algebraic means from G(x, y; \)!
LDOS for carbon nanotubes

p(x,A) = ! lim Im Tr G(x, x; \).

T ImA—0.

It can be written as

O P (E()\,X)TE(/\,X) G(x,x;/\)).

T Ima—04



The trace of G(x,x; \) is

2)\§g0(u1u1)2
()\2 = )\%)(det U/[)2

Tr(@(x,x;)\)) = go+

2)\%UIUI — UTO' uy — iUTO' u
(02— 22)(det U)2 \ 31173t — &1y o )

where gj = Tr(o;G(x,x; X)) for j =0,..,3, oo = 1.
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Double-kink model

Initial (free-particle) and the new Hamiltonians
h=ioody + moy, h=icody+ (m — ktanh kx + ktanh(kx + a))os.

The kernel of L consists of u1, up = o3u1, huyz) = £A1uy(2)

m = (\/LE cosh kx, \/Lﬁ cosh(kx + a))T

wherea:%logﬂ—;ﬁ, k=/m2—X 0<X <m.

h has two bound states vi1 and v,

k k
vy = g(sechkx,sech(kara))T7 Vo = 0o3v; = %_(sechkx, —sech(kx+a)) .

The LDOS can be rewritten again in terms of LDOS of the free system p
and the probability density of the bound states

kviv
p(x, A) = p(x, A) <1 - ﬁ) )



Interpretation of the model

External constant magnetic flux AMG = m parallel with the axis of
the nanotube

The twisting part of the potential

AT = —ktanh kx + k tanh(kx + a) — asymptotically vanishing
twist localized mainly at the origin
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Figure: The nanotube associated with the Hamiltonian h and the twist

corresponding to d, ~ In % The constant part of the magnetic

field in h can be attributed to the external magnetic field or to the
semi-conducting character of the nanotube.



Bound states in dependence on the asymptotic twist

» deformation
cosh(kx + a)’ k= /m2_ 22

d. ~
v~ cosh kx
» asymptotic twist in dependence on the bound states
m—\/m?— )2
dd =] lim d, — lim d,|=2|a] =—1In .
X—>00 X—>—00 m+ /m2 _ A%

Energies in dependence on the asymptotic twist

&d

1
— e?2
A= i2m1+e&,




Summary and Outlook

» the formulas for @(x,y, A) hold for quite general class of seed
Hamiltonians

> the operator h = ig20x + A101 appears in the context of
» (1+1)dimensional Nambu-Jona-Lasinio (chiral Gross-Neveu)
model
» in the analysis of inhomogeneous superconductors
» in describtion of vortex in the extreme type-ll superconductors
» describes fermions coupled to solitons in the linear molecules
(polyacetylene)
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