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General motivations

The Spontaneous Symmetry Breaking is very important aspect
of our understanding of vacuum.

Therefore, it is important to understand how it works in curved
space-time.

The two most important applications are the induced gravity and
cosmological constant problem from one side

and the decoupling (Appelquist & Carazzone) theorem from
another one.
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Scalar field

The minimal action for a real scalar field is

S0 =

∫
d4x

√
−g
{

1
2

gµν ∂µφ∂νφ− Vmin(φ)

}
,

where Vmin(φ) = −1
2

m2φ2 − λ

4!
φ4

is a minimal potential term.

The possible nonminimal structure is

Snon−min =
1
2

∫
d4x

√
−g ξ φ2 R .

The new quantity ξ is called nonminimal parameter.

Since the non-minimal term does not have derivatives of the
scalar field, it should be included into the potential term, and
thus we arrive at the new definition of the classical potential.

V (φ) = − 1
2
(
m2 + ξR

)
φ2 +

f
4!
φ4 .
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In case of the multi-scalar theory the nonminimal term is∫
d4x

√
−g ξij φ

iφj R .

Further non-minimal structures involving scalar are indeed
possible, for example ∫

Rµν∂µφ∂νφ .

However, these structures include constants of inverse mass
dimension, therefore do not fit the principles declared above.

In fact, these terms are not necessary for the construction of
consistent quantum theory.
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Types of the counterterms:

• Minimal, e.g., m2φ2, (∇φ)2, iψ̄γµ∇µψ.

• Non-minimal in the scalar sector, Rφ2.

E.g., the quadratically divergent diagram

=⇒

in the λφ4 theory produces log. divergences corresponding to∫
d4√−gRφ2 counterterm.

• Vacuum terms Λ, R, R2, C2, etc.

Renormalization doesn’t depend on the choice of the metric!
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Along with the non-minimal term, covariance and locality admit
some terms which involve only metric. These terms are
conventionally called “vacuum action” and their general form is
the following

Svac = SEH + SHD

where SEH =
1

16πG

∫
d4x

√
−g {R + 2Λ } .

is the Einstein-Hilbert action with the CC

SHD includes higher derivative terms. The most useful form is

SHD =

∫
d4x

√
−g
{

a1C2 + a2E + a3�R + a4R2} ,
where C2(4) = R2

µναβ − 2R2
αβ + 1/3 R2

is the square of the Weyl tensor in n = 4,

E = RµναβRµναβ − 4 RαβRαβ + R2

is the integrand of the n=4 Gauss-Bonnet topological invariant.
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SSB in curved space at classical level
Classical action of scalar φ coupled to the Abelian gauge vector

S =

∫
d4x

√
−g
{
− 1

4
Fµν Fµν + gµν (∂µ − ieAµ)φ

∗ (∂ν + ieAµ)φ+

+µ2
0 φ

∗φ− λ(φ∗φ)2 + ξR φ∗φ
}
.

No much reason to consider non-Abelian theory, since for the
one-loop vacuum effects and the results are indeed the same.

The VEV for the scalar field is defined as

−�v + µ2
0 v + ξR v − 2λv3 = 0 . (1)

If the interaction is minimal ξ = 0, the SSB is simple, because
the vacuum solution of the last equation is constant

v2
0 =

µ2
0

2λ
. (2)

However, in the general case one can not neglect � in Eq. (1).
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Let us consider

v2
0 =

µ2
0

2λ
. (3)

as zero-order approximation and find the solution of the Eq. (2)
in the form of the power series in ξ

v(x) = v0 + v1(x) + v2(x) + ... .

For the first order term v1(x) we have

−�v1 + µ2v1 + ξR v0 − 6λv2
0 v1 = 0 ,

and the solution has the form

v1 =
ξ v0

�− µ2 + 6λv2
0

R =
ξ v0

� + 4λv2
0

R ,

In a similar way, we find

v2 =
ξ2 v0

�+ 4λv2
0

R
1

�+ 4λv2
0

R −
6λ ξ2 v3

0

�+ 4λv2
0

( 1
�+ 4λv2

0
R
)2
,

where the operator in each parenthesis acts only on the
curvature inside this parenthesis.
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Induced gravity action
Of course, one can continue the expansion of v to any desirable
order.

If we replace the SSB solution v(x) back into the scalar action,
we arrive at the following induced low-energy action of vacuum:

Sind =

∫
d4x

√
−g
{

gµν ∂µv ∂νv + (µ2
0 + ξR) v2 − λ v4

}
. (3)

Making an expansion in the powers of the curvature tensor, in
the second order we obtain

Sind =

∫
d4x

√
−g
{
− v1�v1 + µ2 (v2

0 + 2v0v1 + 2v0v2 + v2
1 )

−λ (v4
0 + 4v3

0 v1 + 4v3
0 v2 + 6v2

0 v2
1 ) + ξR (v2

0 + 2v0v1)
}

+ O(R3) .

and, finally, to

Sind =

∫
d4x

√
−g
{
λv4

0 + ξRv2
0 + ξ2 v2

0 R
1

�+ 4λv2
0

R + ...
}
.
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Sind =

∫
d4x

√
−g
{
λv4

0 + ξRv2
0 + ξ2 v2

0 R
1

�+ 4λv2
0

R + ...
}
.

The first term here is the induced cosmological constant, which
is supposed to almost cancel with its vacuum counterpart.

The second term is an induced Einstein-Hilbert action, which
also has to be summed up with the corresponding vacuum term.

The observable cosmological constant is extremely small
compared to the magnitude of λv4

0 in the SM of particle physics.
We need a precise cancelation between the vacuum and induced
cosmological constants (Cosmological Constant Problem).

At the same time, for the Einstein-Hilbert term the vacuum
coefficient is the inverse Newton constant 1/16πG = M2

P/16π,
where MP ≈ 1019 GeV is a Planck mass.

Obviously, the induced contribution becomes relevant only at
the GUT scale.
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Sind =

∫
d4x

√
−g
{
λv4

0 + ξRv2
0 + ξ2 v2

0 R
1

�+ 4λv2
0

R + ...
}
.

The nonlocal term in the induced action of gravity was first
noticed in
Ed. Gorbar and I.Sh. JHEP (2004); hep-ph/0311190.

Of course, this term becomes relevant only for a very small
mass field, for otherwise

R
1

�+ 4λv2
0

R = R2 − R

(
�

4λv2
0

)
R + ... .

But, even if the mass is large, it is important to understand how
the renormalization in such a theory is performed because, due
to the uncontrolled divergences even for the weak curvature
values the higher derivative terms can pose a huge problem.
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Let us start from the simplest ξ = 0 minimal interaction case.

The effective action Γ[φ, gµν ] of the scalar field can be presented
as the perturbative expansion

Γ[φ, gµν ] = Scl [φ, gµν ] + ~ Γ̄(1)[φ, gµν ] + O(~2) .

At one-loop order we consider only the Γ̄(1)[φ,gµν ] term. Then
the effective equation for the VEV is

δScl

δφ
+ ~

δΓ̄(1)

δφ
= 0 .

This equation can be rewritten as

−�φ + µ2φ − 2λ(φ∗φ)φ + ~
δΓ̄(1)

δφ
= 0 .
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Let us present the scalar field as φ = v + ~ϕ , where v is the
solution of the classical equation δScl/δφ = 0 and ~ϕ is a
quantum correction. Then we find, in the first order in ~, the
following relation:

−�ϕ + µ2ϕ − 6λv2ϕ + ~
δΓ̄(1)[v , g]

δv
= 0 .

The expansion in ~ yields

Γ[φ, gµν ] = Scl [v + ~ϕ, gµν ] + ~ Γ̄(1)[v + ϕ, gµν ] + ...

= Scl [v , gµν ] + ~ϕ
δScl [v , g]

δv
+ ~ Γ̄(1)[v , gµν ] + O(~2) .

Taking into account the equation of motion δScl(v , g)/δv = 0, we
arrive at the useful formula

Γ[v + ~ϕ, gµν ] = Scl [v , gµν ] + ~ Γ̄(1)[v , gµν ] + O(~2) .

The last relation holds even for the non-minimal scalar field. It
shows that at the one-loop level one can derive the effective
action as a functional of the classical VEV.
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Consider the SSB in the Abelian theory with ξ = 0.

Let us define φ = v + h + iη. At one-loop we can keep the terms
of the second order in the quantum fields and disregard higher
order terms. In this way we arrive at the expression

S(2) =

∫
d4x

√
−g
{
(∂µh)2+(∂µη)

2−1
4

F 2
µν+2evAµ∇µη+e2v2AµAµ−4λv2h2

}
,

where (∂h)2 = gµν∂µh∂νh. Introduce the ’tHooft gauge fixing
condition, depending on an arbitrary parameter α

SGF = − 1
2α

∫
d4x

√
−g (∇µAµ − 2α ev η)2 .

The expression for the action with gauge fixing term is

S(2) + SGF =

∫
d4x

√
−g
{

− 1
4

F 2
µν − 1

2α
(∂µAµ)2 + e2v2AµAµ

+(∂µh)2 + (∂µη)
2 − 4λv2h2 − 2αe2v2η2

}
+ ... ,

where we kept second order in the quantum fields Aµ, h, η.
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The action of the Faddeev-Popov is

SGH =

∫
d4x

√
−g C̄

(
� + 2αe2v2 ) C .

After all,

Γ̄(1)[gµν ] =
i
2

Tr ln
[
δµν � −

(
1 − 1

α

)
∇µ∇ν − Rµ

ν + 2e2v2 δµν

]

+
i
2

Tr ln (�+ 4λv2 ) +
i
2

Tr ln (�+ 2α e2v2 )− i Tr ln (�+ 2αe2v2) .

For an arbitrary α the first term here is related to the functional
determinant of a non-minimal massive vector field.

For α = 0 there are massless modes, jeopardizing an expected
low-energy decoupling.

For all other values of α all the degrees of freedom are massive.

In the particular case α = 1 there are only well-known
contributions of the minimal massive vector and scalars.
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From the works

Ed. Gorbar & I.Sh. JHEP 03,06 (2003); hep-ph/0210388;
hep-ph/0303124.

we know that, at least higher derivative contributions of massive
modes in curved space suffer the low-energy decoupling.

The last means that the corresponding quantum corrections to
the classical higher derivative terms vanish in the IR limit.

According to our consideration, in the theories with SSB the
decoupling is guaranteed if we can prove the gauge-fixing
independence of the effective action.
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The difference between one-loop correction with an arbitrary
value of the gauge parameter α and the one with α = 1.

Γ̄(1)[φ,gµν ; α] − Γ̄(1)[φ, gµν ; 1].

One of the operators is

F̂(α) = Fν
µ(α) = δνµ � −

(
1 − 1

α

)
∇µ∇ν − Rν

µ + m2 δνµ ,

where we denoted m2 = 2e2v2. Consider the difference

−1
2

Tr ln F̂(α) +
1
2

Tr ln F̂(1)

= −1
2

Tr ln
[
δνµ −

(
1 − 1

α

)
∇µ∇ν 1

�+ m2 − R..

]
.

For an arbitrary vector field we can prove (not a simple task)(
∇µ 1

�+ m2 − R..
− 1

�+ m2 ∇µ
)

Aµ = 0 .
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Using this identity, one can rewrite the difference as an
expression involving only the scalar operators

−1
2

Tr
[
ln F̂(α) − ln F̂(1)

]
= −1

2
Tr ln

(
� + αm2

� + m2

)
. (2)

There is no gauge dependence in the contribution of the Higgs
scalar, for its mass MH does not depend on α.
The gauge dependence in the contribution of the Goldstone
scalar is exactly the same as the vector counterpart of (2)

1
2

Tr ln
(

� + 2α e2v2

� + 2 e2v2

)
= −1

2
Tr ln

(
� + αm2

� + m2

)
.

Finally, the difference between the two ghost operators
contributes as

Tr ln
(

� + αm2

� + m2

)
.

Hence, the overall gauge fixing dependence cancels out!
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MS-scheme renormalization in the non-minimal case

Consider first the one-loop case.

Perform the background shift of the scalar according to

φ = v + h + iη ,

where h and η are real scalar quantum fields (Higgs and
Goldstone).

We face a problem of deriving the divergences in the theory with
quantum fields Aµ, h, η, while the background fields include
metric and v , which, in turn, also depends on the metric.
The renormalization of the theory looks standard in terms of gµν

and v and very unusual in terms of metric alone.
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The part of the action which is bilinear in quantum fields

S(2) +SGF =

∫
d4x

√
−g
{ 1

2
Aµ�Aµ +

1
2

(
1−1

α

)
(∇µAµ)2 −AµAνRµν

+
1
2

M2
AA2 + (∂µh)2 + (∂µη)

2 − M2
Hh2 − M2

ηη
2 − 2αeη Aµ(∂µv)

}
,

where we introduced new notations

M2
A = 2e2v2 , M2

h = 6λv2−µ2
0−ξR , M2

η = 2e2v2+2λv2−µ2
0−ξR .

One can rewrite these in a more useful way. We introduce

ξK = 2λ
(
v2 − v2

0
)
= 2λv2 − µ2

0 .

In the lowest order in curvature we obtain

ξK =
2ξv2

0

�+ 4λv2
0

R + O(R2) .

At low-energies the derivatives of curvature are very small
compared to v2

0 . Then we can expand

1
�+ 4λv2

0
=

1
4λv2

0

(
1 − �

4λv2
0
+ ...

)
+ O(�R) .
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In the low-energy approximation we arrive at the representation

ξK = ξR +
higher derivative terms

v2
0

.

For the general case

(�v)
v

=
µ2

0 v + ξR v − 2λ v3

v
= ξR + 2λv2

0 − 2λv2 = ξR − ξK .

Now the elements of expansion may be written in the form

M2
A = m2 +

e2

λ
ξK , m2 = 2e2v2

0 ;

M2
h = m2

h − ξR + 3 ξK , m2
h = 4λv2

0 ;

M2
η = m2 − ξR +

(e2

λ
+ 1
)
ξK ,

where m and mh are the masses of the fields after SSB.
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Finally, the expression for the one-loop divergences is

Γ̄
(div)
1 = − 1

(4π)2(n − 4)

∫
d4x

√
−g
{ 1

2
(3m4 + m4

h) −
(
ξ − 1

6

)
m2

h R

−1
2

m2R +
(e2

λ
m2 + m2

h

)
· 3 ξK +

7
60

C2
µναβ − 8

45
E

+
(
ξ − 1

6

)2
R2 +

( 3e4

2λ2 + 5
) (
ξK
)2 −

[
4
(
ξ − 1

6

)
+

e2

2λ

]
R · ξK

}
,

The expression above differs from what is usually expected for
the divergencies of the quantum field theory.

Along with the usual local terms, there are many K - dependent
terms, non-local with respect to the background metric gµν .

One can prove that the same types of non-local counterterms,
Km2, KR, K2 are sufficient also in higher loops.
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⟨Tµν⟩ of vacuum in the theories with SSB

Let us remember that the effective action is not supposed to be
the “final product” of our work.

Such a “product” is the equation of motion for the metric, in
other words we need the ⟨Tµν⟩ of vacuum. Do we have some
surprises in this part?

By definition, the average of the dynamical EMT is

⟨Tµν(x)⟩ =
2√

−g(x)
δΓ

δgµν(x)
.

At the classical level

Svac = SEH + SHD , where

SEH = − 1
16πG

∫
d4x

√
−g (R + 2Λ ) and

SHD =

∫
d4x

√
−g
{

a1C2 + a2E + a3�R + a4R2} .
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As far as are interested in the low-energy effects, we concentrate
on the part of SEH and related quantum corrections.

At quantum level, the energy-momentum tensor (EMT) is

⟨Tµν⟩ = − 2√
−g

gµαgνβ

⟨
0
∣∣∣δS[g, ϕ̂]
δgαβ

∣∣∣0⟩ ,
where ϕ̂ is quantum field,

ϕ̂ ∼ uâ† + u∗â

and â |0⟩ = 0.

As far as gµα is classical external field, so we can take it out of
the symbol ⟨|..|⟩ freely.

Ilya Shapiro, SSB in curved space: renormalization and vacuum stress-tensor



In the functional representation the basic object is generating
functional of vertex function, or Effective Action, Γ = Γ[g, ϕ].
For the case of a scalar field

exp
{

i
~
Γ[g, ϕ]

}
=

∫
d ϕ̄ exp

{ i
~

(
S[g, ϕ̄+ ϕ]− δΓ[g, ϕ]

δϕ
ϕ̄
]}
.

In the one-loop approximation

Γ(1)[ϕ, gµν ] = S[ϕ, gµν ] + ~Γ̄(1)[ϕ, gµν ] .

Then the one-loop EMT of the vacuum is

⟨Tµν(x)⟩(1) = Tµν(x) + T̄ (1)
µν (x) ,

where Tµν = − 2√
−g

gµα gνβ
δS
δgαβ

∣∣∣
ϕ→ϕ0

.

and T̄ (1)
µν = − 2 ~√

−g
gµα gνβ

δΓ̄(1)

δgαβ

∣∣∣
ϕ→ϕ0

.

In both cases ϕ0 is the solution of the equations of motion.
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If we deal with purely classical theory, then one has to replace
value ϕ0 = ϕ0c . At the one-loop level we have

δS[g, ϕ0]

δϕ
+ ~

δΓ̄(1)[g, ϕ0]

δϕ
= 0 ,

This equation can be solved by iterations in ~.

ϕ0 = ϕ0c + ~ϕ1 ,

where ϕ0c is the classical solution.

In the first order in ~ we meet the equation

δ2S[g, ϕ0c]

δϕδϕ
ϕ1 +

δΓ̄(1)[g, ϕ0c]

δϕ
= 0 ,

and obtain the solution in the form

ϕ1 = −

(
δ2S[g, ϕ0c]

δϕ δϕ

)−1
δ Γ̄(1)[g, ϕ0c]

δϕ
.
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So, at one-loop order we have

ϕ0 = ϕ0c − ~

(
δ2S[g, ϕ0c]

δϕ δϕ

)−1
δ Γ̄(1)[g, ϕ0c]

δϕ
.

One has to replace this formula into the expression for EMT,

⟨Tµν⟩ = − 2√
−g

gµαgνβ
δ

δgαβ

{
S[g, ϕ0] + ~ Γ̄(1)[g, ϕ0]

}
.

In this way we arrive at the general expression for the EMT in the
scalar theory with SSB:

⟨Tµν⟩ = − 2√
−g

gµα gνβ

{
δ S[g, ϕ0c]

δgαβ
+ ~

δ Γ̄(1)[g, ϕ0c]

δgαβ

− ~
δ2S[g, ϕ0c]

δgαβδϕ

(
δ2S[g, ϕ0c]

δϕ δϕ

)−1
δ Γ̄(1)[g, ϕ0c ]

δϕ

}
.

The first two terms are pretty well known.

The last term is qualitatively new one. It is there because we
deal with an interacting theory with SSB.
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M. Asorey, P.M. Lavrov, B.J. Ribeiro, I.Sh., Phys.Rev. D85 (2012)
104001; arXive: 1202.4235.

Looking at the expression

⟨Tµν⟩ = − 2√
−g

gµα gνβ

{
δ S[g, ϕ0c]

δgαβ
+ ~

δ Γ̄(1)[g, ϕ0c]

δgαβ

− ~
δ2S[g, ϕ0c]

δgαβδϕ

(
δ2S[g, ϕ0c]

δϕ δϕ

)−1
δ Γ̄(1)[g, ϕ0c]

δϕ

}

= ⟨Tµν(ϕ0c)⟩v + ⟨Tµν(ϕ0c)⟩i .

the two following questions are in order:

• Is there a relation between the two quantum contributions?
• Does the new quantum term violate the conservation law?

∇µ⟨Tµ
ν ⟩ = 0
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The last question is especially important for the low-energy
physics. The reason is as follows:

Low energies for the gravitational field means metric close to the
flat one.

Then it is appropriate to perform the curvature expansion.
Up to the first order in such a expansion we have only local
expressions in the Effective Action.

Morever, the conservation law

∇µ⟨Tµ
ν ⟩ = 0

is fixing the EMT to be

⟨Tµν⟩ = C1 gµν + C2 Gµν ,

where

C1 = k4Ω
4+k2Ω

2+kL ln(Ω/µ0)+kfin and C2 = l2Ω2+lL ln(Ω/µ0)+lfin

with k4, k2, kL, kfin and l2, lL, lfin being numerical constants.
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The identity corresponding to diffeomorphism invariance is∫
d4x

√
−g

{
2√
−g

δΓ[g, ϕ]
δgµν

∇µξν +
1√
−g

δΓ[g, ϕ]
δϕ

ξµ∇µϕ

}
= 0 .

One can take into account that
δΓ[g, ϕ0]

δϕ
= 0 and arrive at ∇µ⟨Tµ

ν ⟩ = 0 .

At zero order in ~ we obviously have

δS[g, ϕ0c]

δϕ
= 0 and ∇µTµν

∣∣
ϕ0c

= 0 .

Next, at the first order in ~ the solution is ϕ0 = ϕ0c + ~ϕ1.
One should expect that neither one of the two quantum terms
separately satisfy the conservation law and only for their sum
this equation must be valid,

∇µ⟨Tµν(ϕ0c)⟩v + ∇µ⟨Tµν(ϕ0c)⟩i = 0 .
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Practical calculation: Classical Part

Keeping only terms linear in curvature tensors, we arrive at

Tµν(ϕ0c) = ξv2
0

(
Rµν − 1

2
Rgµν

)
−
λv4

0

12
gµν .

This is the induced contribution to the Einstein equations, which
can be written as( 1

8πGvac
+

1
8πGind

)(
Rµν − 1

2
Rgµν

)
−
(
ρvac
Λ + ρind

Λ

)
gµν = T matter

µν .

where
1

8πGind
= −ξv2

0 and ρind
Λ = −

λv4
0

12
.

Gvac and ρvac
Λ are the vacuum Newton constant and the

cosmological constant density - independent parameters.

Gind and ρind
Λ are induced quantities which depend on the

details of the quantum theory of matter fields.
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The induced and vacuum cosmological constant densities are,
at least, 55 orders of magnitude greater than their sum

ρobs
Λ = ρvac

Λ + ρind
Λ .

This gives rise to the cosmological constant problem.

On the contrary, the relative magnitude of Gind ,

Gind

Gvac
= −

8πξv2
0

M2
P

,

is small for the SM case when v2
0 ≈ 105GeV 2. Even if the value

of ξ corresponds to the Higgs inflation, ξ ≈ 40000, the Planck
suppression is strong due to the M2

P ≈ 1038GeV 2 and hence the
induced contribution is irrelevant.

The situation can be quite different in GUT’s,

v2
0 ≈ 1032GeV 2 , then it can be even

Gi

Gv
≈ 1 .

.
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Practical calculation: Quantum Part

Quantum calculations are not too easy and have been actually
performed only in O(~) and O(R) approximations.

Because of the O(R) approximation we need only zero order in
the derivative expansion,

Γ̄(1)(g, ϕ) =
∫

d4x
√
−g
{

− V̄eff (ϕ) +
1
2

Z (ϕ)(∇ϕ)2 + ...
}
,

so we need just

Γ̄(1)(g, ϕ) ≈
∫

d4x
√
−g
{

− V̄eff (ϕ)
}
.

The reason is that

∇µϕ0c = ∇µv0 +∇µv1 = ∇µv1 =
ξv0

2m2 ∇µR + O(∇3R) .
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The renormalized effective potential is

V̄ ren
eff (gµν , φ) = V ren

0 + V ren
1 R

=
1

2(4π)2

[1
2
(
V ′′ − m2)2 −

(
ξ − 1

6

)
R
(
V ′′ − m2)] ln

(V ′′ − m2

µ2

)
.

where V = V (φ) = λφ4/4.

The divergent part of the non-renormalized effective potential is

V̄ div
eff (gµν , φ) = V div

0 + V div
1 R, where

V̄ div
0 =

1
32π2

{
Ω2V ′′ − 1

2
(
V ′′ − m2)2 ln

Ω2

m2

}
,

and V̄ div
1 =

1
32π2

(
ξ − 1

6

){
− Ω2 +

(
V ′′ − m2) ln

Ω2

m2

}
,
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It proves useful to introduce a notation for the one-loop
contributions to the equations of motion for a scalar field,

ε̄(1) = ε̄
(1)
div + ε̄

(1)
fin =

1√
−g

δΓ̄(1)

δϕ

∣∣∣
ϕ0c

= −
∂V̄ (1)

eff

∂ϕ

∣∣∣
ϕ0c

.

After adding the corresponding counterterm, we meet ε̄
(1)
ren.

Let us now remember that V̄eff = V0(ϕ) + V1(ϕ)R and
ϕ0c = v0 + v1,

Then,

ε̄(1) = −
∂V̄ (1)

0

∂ϕ

∣∣∣
ϕ0c

− R
∂V̄ (1)

1
∂ϕ

∣∣∣
ϕ0c

= −
∂V̄ (1)

0

∂ϕ

∣∣∣
v0

−
∂2V̄ (1)

0

∂ϕ2

∣∣∣
v0

v1 − R
∂V̄ (1)

1
∂ϕ

∣∣∣
v0

= ε̄
(1)
0 + ε̄

(1)
1 .
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The calculation of “vacuum” quantum part is easy

⟨T̄µν⟩v = − 2 ~√
−g

gµα gνβ
δ Γ̄(1)[g, ϕ0c ]

δgαβ

= −2 ~V1(v0)
(

Rµν − 1
2

Rgµν

)
+ ~V0(v0) gµν + ~ v1 gµν

∂V̄ (1)
0

∂ϕ

∣∣∣
v0

= −2 ~V1(v0)Gµν + ~V0(v0)gµν − ~ ξ v0

2m2 R ε̄
(1)
0 gµν .

This formula confirms what we have anticipated above, namely:

• The first two terms are quantum contributions to the Einstein
tensor and cosmological constant part.

• However, the last term is odd: it violates conservation law
and can not be derived from the action principle.
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“Induced” quantum part is more involved.

First we rewrite ⟨T̄µν⟩i in a more useful form,
∫

y ≡
∫

d4y
√

−g(y)

⟨Tµν(x)⟩i = 2~ gµα(x) gνβ(x)
∫

y

∫
z

(
1√
−g

δ2S[g, ϕ0c]

δgαβ(x)δϕ(y)

)

×

(
1√

−g(y)
δ2S[g, ϕ0c]

δϕ(y) δϕ(z)

)−1

×

(
1√

−g(z)
δ Γ̄(1)[g, ϕ0c ]

δϕ(z)

)
.

The metric-dependent quantities are always understood through
the normal coordinate expansions, e.g.,

gµν = ηµν − 1
3

Rµανβ yαyβ + ... ,

∇µ∇ν = ∂µ∂ν +
2
3

Rλ
(µν) τ yτ∂λ + ... .
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The next step is to rewrite the expressions in a more useful form,

1√
−g

δ2S
δϕ(y)δgµν(x)

= ξϕ
(
∇µ∇ν − gµν�

)
+ (2ξ − 1)(∇µϕ)∇ν

+
(1

2
− 2ξ

)
gµν(∇λϕ)∇λ + ξ

(
∇µ∇νϕ− gµν�ϕ

)
− ξϕ

(
Rµν − 1

2
R gµν

)
+

1
2

m2ϕ gµν − λ

6
ϕ3gµν

=
(
ξv0 +

ξ2v0

2m2 R
) (
∂µ∂ν − ηµν∂

2) − ξv0 Rµν

+
1
3
ξv0

[
2
(
Rλ

(µν) τ+ηµνRλ
τ

)
yτ∂λ+Rµανβ yαyβ∂2+ηµνRρ

αβ
σ yαyβ ∂ρ∂σ

)]
.
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The second factor is(
1√
−g

δS2[g, ϕ0c]

δϕ δϕ

)−1

y,z

= G(y , z; ϕ0c) ,

This is the propagator of the scalar excitations near the point of
the minima,(

1
[−g(y)]1/4 [−g(z)]1/4 × δS2[g, ϕ0c]

δϕ(y) δϕ(z)

)−1

= Ḡ(y , z; ϕ0c) .

Using ϕoc = v0 + v1 we arrive at

1√
−g

δ2S
δϕ δϕ

= −�+ 2m2 + ξ
(

1 − 6m2

�+ 2m2

)
R

The Euclidean version of the second factor is

Ḡ(z − y) =

∫
d4k
(2π)4 eik(z−y)

[
1

k2 + 2m2 −
(

2ξ − 1
6

) R
(k2 + 2m2)2

]
.
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The third factor is the effective equation of motion. One can
write it as a sum of classical and quantum parts,

ε = ε̄(0) + ~ε̄(1) , where ε̄(1) = ε̄
(1)
0 + ε̄

(1)
1

In the flat-space limit we have

⟨Tµν(x)⟩0
i = 2~ ξv0

∫
d4z d4y δ4(x − y)

(
∂µ∂ν − ηµν∂

2)
y

×
∫

d4k
(2π)4

eik(y−z)

k2 + 2m2 ε̄
(1)
0 (z),

= 2~ξ v0 ε̄
(1)
0

∫
d4k δ4(k)

kµkν − k2ηµν
k2 + 2m2 eikx = 0 .

Thus, the contribution of the new term to the induced
cosmological constant is zero.

Ilya Shapiro, SSB in curved space: renormalization and vacuum stress-tensor



The last step is to perform the curved - space calculation in the
O(R) approximation.

⟨Tµν(x)⟩1
i = 2~ ε̄(1)0

∫
d4yd4z

∫
d4k
(2π)4

5∑
i=1

O(i)
µν(y)δ

4(x−y)
eik(y−z)

k2 + 2m2 ,

where
O(1)

µν = − ξv0 Rµν ,

O(2)
µν =

ξ2v0

2m2 R (∂µ∂ν − ηµν∂
2) ,

O(3)
µν =

2
3
ξv0

[
Rλ

(µν)τ + ηµνRλ
τ

]
yτ∂λ ,

O(4)
µν =

1
3
ξv0 Rµανβ yαyβ ∂2 ,

O(5)
µν =

1
3
ξv0 ηµν R ρσ

α β yαyβ∂ρ∂σ .
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After certain (not small) algebra we come to the result

⟨Tµν⟩1
i =

~ ξv0

m2 ε̄
(1)
0

(
− Rµν + Rηµν

)
.

Obviously, this expression is different from Gµν and therefore it
violates covariance and conservation law.

However, if we sum up with the previous result for ⟨Tµν⟩1
v we

arrive at the expression which agrees with our expectations,

⟨Tµν⟩1 = ⟨Tµν⟩1
i + ⟨T̄µν⟩1

v

= −2 ~V1(v0)Gµν + ~V0(v0) gµν − ~ ξ v0

m2

(
Rµν − 1

2
Rgµν

)
ε̄
(1)
0 ,

= − ~
[
2 V1(v0) +

ξ v0

m2 ε̄
(1)
0

]
Gµν + ~V0(v0) gµν .
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Now we can use

V ren
0 (v0) =

1
(4π)2 m4 ln

(2m2

µ2

)
and

V ren
1 (v0) = − m2

(4π)2 ln
(2m2

µ2

)
,

to obtain

⟨Tµν⟩ren =
~m4

(4π)2 ln
(2m2

µ2

)
gµν −

m2

(4π)2

[
2(1+3ξ) ln

(2m2

µ2

)
+3ξ

]
Gµν

For the divergent part we meet ⟨Tµν⟩div =

=
~m2

32π2

[
3Ω2−2m2 a

(Ω2

m2

)]
gµν+

~
16π2

(
4ξ−1

6

){
Ω2 −2m2 ln

Ω2

m2

}
Gµν
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Conclusions

• The SSB is highly non-trivial issue in curved space-time,
leading to classical and quantum non-localities in the induced
action of gravity.

• The renormalization can be performed in a consistent way
even in the broken phase, however it becomes more complex.

• There is a qualitatively new contribution to the vacuum stress
tensor, even after we have the Effective Action of vacuum.

• Finally, the conservation law still controls well the quantum
terms and we meet only usual vacuum terms, in the linear in
curvature approximation.
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V div
0 (v0) =

m2

32π2

[
3Ω2 − 2m2 ln

(Ω2

m2

)]
.

V div
1 (v0) =

1
32π2

(
ξ − 1

6

) [
− Ω2 + 2m2 ln

(Ω2

m2

)]
.
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