Fast detection of conserved complementary motifs using gapped-seed associative arrays

Dmitri D. Pervouchine

Roderic Guigó (Center for Genomic Regulation, Spain) Andrei Mironov & Mikhail Gelfand (Moscow State University, Russia)

- RNA structure prediction appears to be a completely different business at different scales of RNA sequence length
- $\bullet\,$ short RNAs, \leq 200nts, thermodynamic model works fine
- long RNAs, kilobases and megabases
 - The requirement of nested RNA structure is the major limitation
 - Only a small corner of the search space is explored
 - $O(n^k)$, $k \ge 3$ is irrelevant as soon as the model is incomplete

Talk outline

• A novel ultra-fast method for detecting conserved complementary motifs

- ▶ Dictionary (*n*-mer → where it occurs)
- Complementarity and conservation = intersection of dictionaries
- Exhaustive transcriptome-wide search in linear time
- Does not require multiple sequence alignment as an input
- No limit on the distance between complementary motifs
- In application to RNA (intra-molecular) secondary structure
 - RNA structures associated with alternative splicing
 - in fruit flies¹
 - in placental mammals²
 - in nematodes
 - (morning session)
- In application to RNA-RNA interaction prediction
 - non-coding RNAs as possible trans-regulators of pre-mRNA splicing
 - Iong non-coding RNAs (IncRNAs) and snoRNAs
 - non-coding segments of protein-coding genes
 - (evening session)

¹Raker et al, NAR 37(14):4533-44, 2009

²Pervouchine *et al*, RNA 18(1):1-15, 2012

Intermolecular RNA (binary) Interaction Search

• Intermolecular RNA Interaction Search = IRIS¹

- intra- and inter-molecular structure simultaneously
- thermodynamic model, dynamic programming, $O(n^3m^3)$
- no loop models for RNA structure with pseudoknots
- IRIS + binary search = IRBIS (Snow Leopard)
 - No dynamic programming
 - Conservation is a powerful and restrictive filter
 - Nearly exact matches, internal loops 2×2
- Workflow
 - Genomic annotation (reference genome)
 - Transcriptome segmentation (by exon boundaries)
 - Boundaries projected to other genomes (blastZ)
 - Orthologous segments
 - Binary gapped-seed search
 - Candidate selection
 - Extension, alignment, and visualization
- http://genome.crg.es/~dmitri/irbis.html
- soon at https://github.com/pervouchine/irbis/

¹D. Pervouchine, Genome Informatics 15(2), 2004

Part I. Gallery Part II. Algorithm Part III. Results

Gallery: Mutually exclusive splicing in Dscam gene

- 12 exons in Exon 4 cluster
- 37 exons in Exon 6 cluster
- 27 exons in Exon 9 cluster
- $12 \times 37 \times 27 \simeq 12,000$ alternative transcripts
- One and only one exon from each cluster is included

- Mutually exclusive base-pairing \implies mutually exclusive exon choice (May *et al* 2011, Graveley 2005)
- These base-pairings span over 10-15 Kb!

Gallery: splicing and polyadenylation in NMNAT gene

VA Raker, AA Mironov, MS Gelfand, DD Pervouchine, NAR 2009

RNA structure affects **both** splicing and polyadenylation

Gallery: Splicing factor 1 (SF1)

200

Pervouchine et al, RNA 2012

• 296 bp

- Intron between exon 9 and 10 contains premature stop codon
- ESTs from breast and uterine adenocarcinoma cell lines support distal acceptor

Gallery: human splicing factor SRSF7

Pervouchine et al, RNA 2012

Fast detection of conserved RNA struc

D. Pervouchine (CRG, MSU)

Part I. Gallery Part II. Algorithm Part III. Results

Complementarity: no gapsgapped seeds

Sequence B

ATACGAGTCTGATCATT ATACGAGTCT TACGAGTCTG ACCACTCTCA	TACGGTCTTA	TACCGGTCTTATAC	TACCTCGATGCAGAAAT TACCTCGATG >> CAT ACCTCGATGC >> GC	CGTCGAGACT CGAGGTA ATCGAGGT	CGTATCATTCGAGC	
HOUNGTOTON		-		UCHICUNUU	_	
n-mer	position		<i>n</i> -mer	position		
ACCGGICIIA	28		AATGATACGA	26		
ACGAGICIGA	2		ACGAGICICG	20		
ACGGICITAT	18		ACGATITCIG	10		
AGICIGATCA	5		AGICICGACG	1/		
ATACCGGTCT	26		ATACGAGTCT	22		
ATACGAGTCT	0		ATGATACGAG	25		
ATCATTIACG	11		ATTICIGCAT	7		
ATTTACGGTC	14	ATACGAGTCT	CATCGAGGTA	0	TACCTCGATG >> <u>CATCG</u>	AGGTA
CATTTACGGT	13		CGAATGATAC	28		
CCGGTCTTAT	29		CGACGATITC	12		
CGAGTCTGAT	3		CGAGTCTCGA	19		
CGGTCTTATA	19, 30		CGATTTCTGC	9		
CTGATCATTT	8		CTCGAATGAT	30		
CTTATACCGG	23		CTCGACGATT	14		
GAGTCTGATC	4		CTGCATCGAG	3		
GATCATTTAC	10		GAATGATACG	27	_	
ATACGAGT			CAT	CGAGG		
ATAC AGTC			CAT	C AGGT		
ATAC GTCT			CAT	C GGTA		
TACGAGTCTG			ACCTCGATGC >> GC	ATCGAGGT		
TACGAGTC			GC	ATCGAG		
TACG GTCT			GC	AT GAGG		
TACG TCTG			GC	AT AGGT		
ACGAGTCTGA			CCTCGATGCA >> T	GCATCGAGG		
ACGAGTCT			Т	GCATCGA		
ACGA TCTG			Т	GCA CGAG		
ACGA CTGA			Т	GCA GAGG		
<i>n</i> -mer	position:gap		n-mer c	osition:gap	-	
D. Pervouchine	(CRG, MS	U) Fast detection of	conserved RNA structure		Benasque 2012	11 / 21

Align vs. Fold: a non-commutative diagram

• $n = 8, 4^8 = 65535$ words, dictionary size = 8,837,747

- Min number of complementary pairs = 1,191,817,686 (best case)
- For 16 mammals, at least 4 bytes per pair = 342.1 Gb of RAM

D. Pervouchine (CRG, MSU)

Fast detection of conserved RNA structure

Intersection: dropping non-conserved n-mers

snecies 1	1	2	3	4	5	6	m
species 2							
species 3	i —						
species k					—		

<i>n</i> -mer		segment_id:position:gap	
AAAAAAA Species 1		1:100:0, 2:100:1, 7:200:1,	blue = pointed at
	Species 2	2:150:1, 4:200:0, 7:100:2	red = min element
			gray = discarded
	Species k	2:500:0, 7:300:1, 8:400:1	green = retained
AAAAAAAC			

• $i_1: p_1: g_1 \leq i_2: p_2: g_2 \iff i_1 < i_2 \text{ or } i_1 = i_2 \& p_1 < p_2 \text{ or } i_1 = i_2 \& p_1 = p_2 \& g_1 \leq g_2$

• $i_1: p_1: g_1 \simeq i_2: p_2: g_2 \iff i_1 = i_2 \& |p_1 - p_2| < M$

for each n-mer do

```
initialize pointers r_1 = r_2 = \cdots = r_k = 0;

while x = \min\{x_{r_1}, x_{r_2}, \dots, x_{r_k} | \le \} is defined do

compute c = the number of j such that x \simeq x_{r_j};

keep x_{r_1}, x_{r_2}, \dots, x_{r_k} if c > threshold;

end
```

end

* seed pattern: 4-2-4; at most 1 GT and at least 2 GC base pairs per seed; sum of weights \geq 75%;

* (id, pos, gap) \simeq (id', pos', gap') \iff id=id' & |pos-pos'| < M

** induced by Cartesian product

One more thing: binary relationship $\mathcal{R} \subseteq A \times B$

Constrain the Cartesian product by a binary relationship $\mathcal{R} \subseteq A \times B$

A = B = segments of protein-coding genes

- $x \mathcal{R} y$ iff x = y: local RNA structure
- xRy iff x and y belong to the same gene: long-range RNA structure within one gene (not necessarily at annotated splicing events)
- Raker et al, NAR 2009: $x \mathcal{R} y$ only if the intron $x \rightarrow y$ is annotated
- Pervouchine et al, RNA 2012: $x \mathcal{R} y$ if x and y belong to the same gene
- The input to the pipeline: (A, B, \mathcal{R})
- A = B = windows around splice sites: RNA structures around splice sites
- A = miRNAs, B = 3'-UTRs, $\mathcal{R} = A \times B$: miRNA targets
- A = snoRNAs, B = windows around splice sites: snoRNA splicing targets
- A = IncRNA segments vs. B = windows around splice sites... (today at 6pm)

Part I. Gallery Part II. Algorithm Part III. Results

Statistical control

- Look at introns; length reduced to 1000 nts
- Estimate False Positive Rate (FPR)
- Blocking by GC content and/or sequence conservation rate

False positive rate

Repeats	Arrangement	Search	Control	Control	Control	
				GC	GC+Cons	
	trans-DD	161	42.5±7.1 (26%±4%)	50.1±7.8 (31%±5%)	72.4±7.5 (45%±5%)	
Not masked	trans-AA	132	57.0±8.2 (43%±6%)	47.7±7.4 (36%±6%)	60.9±7.1 (46%±5%)	
	DA	211	60.1±4.2 (28%±2%)	61.6±4.3 (29%±2%)	76.0±4.1 (36%±2%)	
	AD	212	62.6±4.1 (30%±2%)	58.1±4.0 (27%±2%)	80.5±4.7 (38%±2%)	
	trans-DD	114	34.2±4.4 (30%±4%)	36.0±4.2 (32%±4%)	27.6±3.5 (24%±3%)	
Masked	trans-AA	108	43.1±4.6 (40%±4%)	42.2±4.5 (39%±4%)	$43.5 \pm 4.1 (40\% \pm 4\%)$	
	DA	167	47.4±3.1 (28%±2%)	43.8±3.2 (26%±2%)	$50.6\pm3.0(30\%\pm2\%)$	
	AD	174	44.7±3.3 (26%±2%)	47.0±3.2 (27%±2%)	42.9±2.9 (25%±2%)	

It is not unlikely to find a pair of conserved complementary *n*-mers next to splice sites of mammalian genes

Summary

- IRBIS: a conceptually novel (and computationally realistic) framework for predicting conserved RNA structures and RNA-RNA interactions on genome-wide scale
- Hash table (dictionary) is a natural instrument for simultaneously detecting motif conservation and complementarity
- Implemented as a C++ library
- The set of genes/introns with complementary boxes differs from simple random samples of the same size in many important ways
- Even with FPR as high as 50%, there is a strong statistical evidence for many stable long-range RNA structures to be conserved and functionally important

Acknowledgments

Centre de Regulació Genòmica

Roderic Guigó Alessandra Breschi Rory Johnson Angelika Merkel Andrea Tanzer Sarah Djebali Maik Röder Julien Lagarde Cedric Notredame Giovanni Bussotti Veronica Raker Juan Valcárcel

Moscow State University

Katya Khrameeva Marina Pichugina Ilya Kurochkin Anya Gerasimova Petr Rubtsov Andrei Mironov Mikhail Gelfand

Oleksii Nikolaienko Inessa Skripkina Alla Ryndich

Thank you for your attention

(continued for RNA-RNA interactions)