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Single-cell bacterial genome and transcriptome assembly
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Algorithmic Biology Laboratory
Wayne State University

http://compbio.cs.wayne.edu
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Central dogma
DNA → RNA → Protein
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Motivation
Post-transcriptional regulation of gene expression
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Regulatory RNA
Repression example (Argaman and Altuvia, J. Mol. Biol. 2000)
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Regulatory RNA
Activation example (Repoila, Majdalani, and Gottesman, Mol. Microbiol. 2003)
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Background
RNA-RNA MFE structure prediction

◮ Avoid intramolecular base pairing
RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et
al. 2008)
No internal structure

◮ Concatenate input sequences as a single strand; no pseudoknots
PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006)
No kissing hairpins

◮ Predict binding sites
RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008)
Just one binding site not complete structure

◮ Concatenate input sequences; consider special pseudoknots
NUPACK (Dirks et al. 2003,2007)

Still no kissing hairpins!

9/76,



Background
RNA-RNA MFE structure prediction

◮ Avoid intramolecular base pairing
RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et
al. 2008)
No internal structure

◮ Concatenate input sequences as a single strand; no pseudoknots
PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006)
No kissing hairpins

◮ Predict binding sites
RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008)
Just one binding site not complete structure

◮ Concatenate input sequences; consider special pseudoknots
NUPACK (Dirks et al. 2003,2007)

Still no kissing hairpins!

9/76,



Background
RNA-RNA MFE structure prediction

◮ Avoid intramolecular base pairing
RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et
al. 2008)
No internal structure

◮ Concatenate input sequences as a single strand; no pseudoknots
PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006)
No kissing hairpins

◮ Predict binding sites
RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008)
Just one binding site not complete structure

◮ Concatenate input sequences; consider special pseudoknots
NUPACK (Dirks et al. 2003,2007)

Still no kissing hairpins!

9/76,



Background
RNA-RNA MFE structure prediction

◮ Avoid intramolecular base pairing
RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et
al. 2008)
No internal structure

◮ Concatenate input sequences as a single strand; no pseudoknots
PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006)
No kissing hairpins

◮ Predict binding sites
RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008)
Just one binding site not complete structure

◮ Concatenate input sequences; consider special pseudoknots
NUPACK (Dirks et al. 2003,2007)

Still no kissing hairpins!

9/76,



Background (continued)
RNA-RNA MFE structure prediction

Consider inter- and intramolecular base pairing
IRIS (Pervouchine 2004), inteRNA (Alkan et al. 2005), Grammatical Approach (Kato et al. 2009)
Voilà, now we are talking business.

The problem is NP-Hard (Alkan et al. 2005); no surprise as pseudoknots are NP-Hard. Exclude zigzags
and crossing interactions to lift the curse of complexity and obtain an exact O(n6)-time O(n4)-space DP
algorithm (albeit for simple base-pair counting).

First order zigzag. A general zigzag involves an arbitrary number of kissing hairpins.
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Ahhh...but MFE is often wrong!

Question: how about

1. computing base pairing probabilities,

2. sampling from the Boltzmann ensemble of interaction structures,
clustering, centroids, etc.,

3. and computing equilibrium concentrations and melting temperature for
RNA-RNA compounds?

Answer: the key enabling technology is the partition function. All of the
above can be computed from the partition function.
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Partition function

Q(T ) = ∑s∈S e−Gs/RT ,

S = All considered interaction structures,

p(s) ∝ e−Gs/RT ,

and Q is the normalizing factor. Also other thermodynamic quantities can be
derived from Q.
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Partition function hardness ≥ MFE hardness

Partition function

∑
s∈S

e−Gs/RT .

MFE secondary structure

argmins∈SGs.

Transform a partition function algorithm to an MFE algorithm by

e−Gs → Gs

×→+

∑ → min
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Turner energy model
Mathews et al. 1999
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Our extension of the Turner model
Chitsaz et al., Bioinformatics 25(12): i365-i373

Hybrid component: as if intramolecular, with penalties.
Kissing loop: like multibranch loop.
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Interaction partition function
How?

Divide and conquer using dynamic programming:

Q(T ) = ∑
s∈S

e−Gs/RT

= ∑
s=sa∪sb

e−(Gsa+Gsb )/RT

= [ ∑
sa∈Sa

e−Gsa/RT ][ ∑
sb∈Sb

e−Gsb/RT ]

= Qa(T )Qb(T ).
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Partition function for single strand (McCaskill 1990)

straight horizontal line: nucleotides indexed from 1 to n
solid arc: a base pair
dashed arc: can be base pair or not

white region: open to more recursions
blue region: finalized in the recursion, compute its energy contribution
green region: open to more recursions with multibranch loop energy
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Partition function for two strands

straight vertical line: intermolecular bond
solid: a base pair
dotted: not a base pair
dashed: either of those two

=I IaIb

iR

k2

k1

k2

k1jR

iSjS

QI
iR ,jR ,iS ,jS

=QiR ,jR QiS ,jS + ∑
iR≤k1<jR
iS<k2≤jS

QiR ,k1−1Qk2+1,jS QIb
k1 ,jR ,iS ,k2

+

∑
iR≤k1<jR
iS<k2≤jS

QiR ,k1−1Qk2+1,jS QIa
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QIb

=Ib Ih

= Ihh

Ih Ib Ih Ib

Ih Ia

= Ihb

jS iS

k1

k′1 k1 k′1 k1

k′1 k1iR jR

k2

k′2 k2 k′2 k2

k′2
k2

bz

bz

b: stands for bond
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QIa

a: stands for arc
s: stands for subsume
e: stands for equivalent

= I I IIs IeIa Is′

k2

k1 k1

k2 k2

k1

jS

iR

iS

jR
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QIs and QIe

= Ism IskIs

iR

jS

jR

iS

s: stands for subsume
k : stands for kissing-loop
m: stands for multi-loop

=Ie

gm

Ism Isk

gk

k2 k1 k2 k1

iR

iSjS

jR

e: stands for equivalent
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All tables

=
bz

bi j ji
k2k1
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All tables
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All tables
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All tables
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All tables
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All tables
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All tables
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All tables
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All tables
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Equilibrium concentrations
For two RNAs R and S

Assume five types of chemical compounds: R, S, RR, SS, RS.
Solve

KR =
QI

RR
Q2

R
= NRR

N2
R
,

KS =
QI

SS
Q2

S
= NSS

N2
S
,

KRS =
QI

RS
QRQS

= NRS
NRNS

,

NRS = N0
R −2NRR −NR = N0

S −2NSS −NS,

to obtain the equilibrium concentrations N. N0 are the initial concentrations of
single strands.
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Equilibrium concentration of OxyS with wild type fhlA
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Init. [OxyS] = 2nM, [fhlA] = 0 to 1000nM
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Equilibrium concentration of OxyS with fhlA mutants
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Melting temperature prediction
Comparison of piRNA results over three data sets

Set Size Length Avg error
piRNA RNAcofold UNAFold

I 9 short pairs 5-7nt 1.48◦C 9.35◦C 8.55◦C
II 12 pairs ∼ 20nt 4.86◦C 22.97◦C 9.12◦C
III 62 pairs 22−40nt 1.91◦C 14.34◦C 26.53◦C

Set Size Length Spearman rank correlation
piRNA RNAcofold UNAFold

I 9 short pairs 5-7nt 0.97 0.97 0.57
II 12 pairs ∼ 20nt 0.41 −0.03 0.1
III 62 pairs 22−40nt 0.3 −0.04 0.24
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Promised base pairing probabilities
P I and P Ia examples

P I
iR ,jR ,iS ,jS = ∑

1≤k1<iR
jS<k2≤LS

P Ia
k1,jR ,iS ,k2

(QIs
k1,iR ,jS ,k2

+QIs′
k1,iR ,jS ,k2

+QIe
k1,iR ,jS ,k2

)QI
iR ,jR ,iS ,jS

QIa
k1,jR ,iS ,k2

,

P Ia
iR ,jR ,iS ,jS = ∑

1≤k1≤iR
jS≤k2≤LS

P I
k1,jR ,iS ,k2

Qk1,iR−1QjS+1,k2 QIa
iR ,jR ,iS ,jS

QI
k1,jR ,iS ,k2

+

∑
1≤k1<iR

jS≤k2≤LS

P Ib
k1,jR ,iS ,k2

QIhh
k1,iR ,jS ,k2

QIa
iR ,jR ,iS ,jS

QIb
k1,jR ,iS ,k2

.

More on this part will be presented by Peter Stadler.
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Sampling from the Boltzmann ensemble

◮ Push I(1,n,1,m) onto the stack.
◮ Iterate until the stack is empty, i.e. reaching a leaf (structure) in the

recursions.
◮ In each iteration, sample 0 ≤ α ≤ 1 uniformly at random.
◮ Pop from the stack top(iR, jR, iS , jS).
◮ Pick a case of top according to α. For simplicity, we assume there is only

one case here, i.e.

Qtop = ∑
iR≤k1<jR
iS<k2≤jS

Q left
iR ,k1,k2,jS

Qright
k1+1,jR ,iS ,k2+1

◮ Find k∗
1 ,k

∗
2 such that

∑
iR≤k1<k∗1
iS<k2≤k∗2

· · · ≃α ∑
iR≤k1<jR
iS<k2≤jS

· · · .

◮ Push left(iR,k∗
1 ,k

∗
2 , jS) and right(k1 + 1, jR, iS ,k2 + 1) onto the stack.
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◮ Push I(1,n,1,m) onto the stack.
◮ Iterate until the stack is empty, i.e. reaching a leaf (structure) in the

recursions.
◮ In each iteration, sample 0 ≤ α ≤ 1 uniformly at random.
◮ Pop from the stack top(iR, jR, iS , jS).
◮ Pick a case of top according to α. For simplicity, we assume there is only

one case here, i.e.
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Fast Ponty-style sampling of the Boltzmann ensemble

·

·

·

k1

k2

iR
iS

iS + 1

iS + 2

jS

· · · jRiR + 1 iR + 2

k1

k2

· · ·
[

iR+jR

2

]

jR − 1iR + 1jRiR
iS

jS

[

iS+jS

2

]

·

·

·

jS − 1

iS + 1

Naïve traversal of indices Balanced traversal of indices
O(n4) O(n2 logn)
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Time and space complexity of piRNA

◮ O(n4m2 +n2m4) time.

◮ O(n2m2) space.

◮ about 100 tables in the dynamic programming.

◮ takes about 1 day on 64 CPUs with 150GB RAM for two 110nt RNAs
(OxyS-fhlA).

Therefore, a fast heuristic is on demand for high-throughput applications,
possibly as a filtering step.
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Binding sites prediction
biRNA : a fast algorithm to predict simultaneous binding sites of two nucleic acids

Pros

◮ Predicts multiple simultaneous binding sites.

◮ Computes a more accurate local energy of binding.

◮ Considers zigzags and crossing interactions.

◮ Maintains tractability for existing cases in the literature.

Cons

◮ Approximates the intramolecular site accessibility energy.

◮ Its running time grows exponentially with the maximum number of
simultaneous binding sites.
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biRNA

Steps of the algorithm for R and S

1. For all short subsequences W , compute Pu(W ), the prob. of being
unpaired (Mückstein et al. 2008).

2. Obtain V , a short list of candidate sites.

3. For all pairs W1,W2, compute Pu(W1,W2), the joint pairwise prob. of
being simultaneously unpaired.

4. Build tree-structured Markov Random Fields (MRF) T = (V ,E) to
approximate the distribution of being simultaneously unpaired (Chow and
Liu 1968).

5. Compute QI
W RW S , the interaction partition functions restricted to

subsequences W R and W S using piRNA.

6. Compute a matching between T R and T S that minimizes the binding
energy or equivalently maximizes the binding probability.
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biRNA
Binding energy minimization

Exhaustive search to find matching
M = {(W R

1 ,W S
1 ),(W

R
2 ,W S

2 ), . . . ,(W
R
k ,W S

k )} that minimizes

∆G(M) = EDR
u (M)+EDS

u (M)+∆GRS
b (M),

in which

EDR
u (M) =−RT log PR∗

u (W R
1 ,W R

2 , . . . ,W R
k )

EDS
u (M) =−RT log PS∗

u (W S
1 ,W

S
2 , . . . ,W

S
k )

∆GRS
b (M) =−RT ∑

1≤i≤k

log(QI
W R

i W S
i
−QW R

i
QW S

i
).

R is the universal gas constant and T is temperature.
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Experimental results
Multi-sites

Pair Binding Site(s) biRNA RNAup
Literature Site(s) Site

OxyS-fhlA [22,30] [95,87] (23,30) (94,87) - -
[98,104] [45,39] (96,104) (48,39) (96,104) (48,39)

CopA-CopT [22,33] [70,59] (22,31) (70,61) - -
[48,56] [44,36] (49,57) (43,35) (49,67) (43,24)
[62,67] [29,24] (58,67) (33,24) - -
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Experimental results
Uni-sites

Pair
GcvB gltI
GcvB argT
GcvB dppA
GcvB livJ
GcvB livK
GcvB oppA
GcvB STM4351
MicA lamB
MicA ompA
DsrA rpoS
RprA rpoS
IstR tisA
MicC ompC
MicF ompF
RyhB sdhD
RyhB sodB
SgrS ptsG

IncRNA54 repZ

Lengths: 71-253 nt

Running time: 10 min - 1 hour on 8 dual core CPUs and 20GB of RAM
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Summary

◮ We presented piRNA an O(n4m2 +n2m4)-time O(n2m2)-space
complexity algorithm for interaction partition function, base-pair
probabilities, minimum free energy secondary structure, equilibrium
concentrations, melting temperature, and some other derivatives of the
partition function.

◮ piRNA outperforms all other alternatives and is available at
http://compbio.cs.wayne.edu/chitsaz/.

◮ We presented biRNA , a fast RNA-RNA binding sites prediction algorithm.

◮ biRNA ’s tree-structured MRF approximation is accurate enough for
predicting binding sites and may be used in other applications.
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Future work

◮ RNA design for positive and negative interactions.

◮ Better interaction energy model, which requires more data.

◮ Incorporation of non-canonical base pairs.
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Thanks for your attention!
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Hybrid component

Example

stem
1

bulge

stem
2

internal

stem
3

R

S

β1 ∗σ

Ghybrid = β1 +σ(Gstem1 +Gbulge +Gstem2 +Ginternal +Gstem3).
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Kissing loop

Example

R

S

β2 β2

β3

β3

Gkissing = 4β2 +2β3.
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