

Introduction to Octopus: a real-space (TD)DFT code

David A. Strubbe¹ and the Octopus development team

Department of Physics, University of California, Berkeley, CA, USA Materials Sciences Division, Lawrence Berkeley National Laboratory

TDDFT 2012, Benasque

¹Filling in for Xavier Andrade (Harvard).

Introduction

Time-dependent Kohn-Sham equation

$$i\frac{\partial}{\partial t}\varphi_n(\boldsymbol{r},t) = -\nabla^2\varphi_n + V_{\text{eff}}\left[\rho\right](\boldsymbol{r},t)\varphi_n(\boldsymbol{r},t)$$
$$\rho(\boldsymbol{r},t) = \sum_n \varphi_n^*(\boldsymbol{r},t)\varphi_n(\boldsymbol{r},t)$$

- Solve the equations numerically.
- Represent functions and other objects.
- Calculate derivatives and integrals.

Introduction

Time-dependent Kohn-Sham equation

$$i\frac{\partial}{\partial t}\varphi_n(\boldsymbol{r},t) = -\nabla^2\varphi_n + V_{\text{eff}}\left[\rho\right](\boldsymbol{r},t)\varphi_n(\boldsymbol{r},t)$$
$$\rho(\boldsymbol{r},t) = \sum_n \varphi_n^*(\boldsymbol{r},t)\varphi_n(\boldsymbol{r},t)$$

- Solve the equations numerically.
- Represent functions and other objects.
- Calculate derivatives and integrals.

Introduction

Time-dependent Kohn-Sham equation

$$i\frac{\partial}{\partial t}\varphi_n(\boldsymbol{r},t) = -\nabla^2\varphi_n + V_{\text{eff}}\left[\rho\right](\boldsymbol{r},t)\varphi_n(\boldsymbol{r},t)$$
$$\rho(\boldsymbol{r},t) = \sum_n \varphi_n^*(\boldsymbol{r},t)\varphi_n(\boldsymbol{r},t)$$

- Solve the equations numerically.
- Represent functions and other objects.
- Calculate derivatives and integrals.

- The atomic potential is very strong and "hard" (small spacing or high plane-wave cutoff required).
- Core electrons are almost independent of the environment.
- Replace the potential and core electrons by a pseudo-potential.

- The atomic potential is very strong and "hard" (small spacing or high plane-wave cutoff required).
- Core electrons are almost independent of the environment.
- Replace the potential and core electrons by a pseudo-potential.

- The atomic potential is very strong and "hard" (small spacing or high plane-wave cutoff required).
- Core electrons are almost independent of the environment.
- Replace the potential and core electrons by a pseudo-potential.

Norm-conserving pseudo-potentials in Kleinman-Bylander form

$$V = V_{\rm loc} + \sum_{lm} |lm\rangle \left(V_l - V_{\rm loc}\right) \langle lm|$$

- The atomic potential is very strong and "hard" (small spacing or high plane-wave cutoff required).
- Core electrons are almost independent of the environment.
- Replace the potential and core electrons by a pseudo-potential.



Norm-conserving pseudo-potentials in Kleinman-Bylander form

$$V = V_{\text{loc}} + \sum_{lm} |lm\rangle \left(V_l - V_{\text{loc}}\right) \langle lm|$$

- Partial differential equation with infinite degrees of freedom.
- Reduce to a finite number.
- Functions are represented by values on a set of points
- Point distribution:

Finite region of the space: Box

- Partial differential equation with infinite degrees of freedom.
- Reduce to a finite number.

- Partial differential equation with infinite degrees of freedom.
- Reduce to a finite number.
- Functions are represented by values on a set of points.
- Point distribution:

Finite region of the space: Box

- Partial differential equation with infinite degrees of freedom.
- Reduce to a finite number.
- Functions are represented by values on a set of points.
- Point distribution:
 - Uniformly spaced grid
 - Distance between points is constant: Spacing.
 - Non-uniform grids also possible.
- Finite region of the space: Box

- Partial differential equation with infinite degrees of freedom.
- Reduce to a finite number.
- Functions are represented by values on a set of points.
- Point distribution:
 - Uniformly spaced grid.
 - Distance between points is constant: Spacing.
 - Non-uniform grids also possible
- Finite region of the space: Box

- Partial differential equation with infinite degrees of freedom.
- Reduce to a finite number.
- Functions are represented by values on a set of points.
- Point distribution:
 - Uniformly spaced grid.
 - Distance between points is constant: Spacing.
 - Non-uniform grids also possible
- Finite region of the space: Box

- Partial differential equation with infinite degrees of freedom.
- Reduce to a finite number.
- Functions are represented by values on a set of points.
- Point distribution:
 - Uniformly spaced grid.
 - Distance between points is constant: Spacing.
 - Non-uniform grids also possible.
- Finite region of the space: Box

- Partial differential equation with infinite degrees of freedom.
- Reduce to a finite number.
- Functions are represented by values on a set of points.
- Point distribution:
 - Uniformly spaced grid.
 - Distance between points is constant: Spacing.
 - Non-uniform grids also possible.
- Finite region of the space: Box

- For finite systems, functions go to zero.
- Force functions to go to zero on the border of the box.
- The box has to be large enough to contain the functions.
- Other BCs are possible: periodic, zero derivative, open.

- For finite systems, functions go to zero.
- Force functions to go to zero on the border of the box.
- The box has to be large enough to contain the functions.
- Other BCs are possible: periodic, zero derivative, open.

- For finite systems, functions go to zero.
- Force functions to go to zero on the border of the box.
- The box has to be large enough to contain the functions.
- Other BCs are possible: periodic, zero derivative, open.

- For finite systems, functions go to zero.
- Force functions to go to zero on the border of the box.
- The box has to be large enough to contain the functions.
- Other BCs are possible: periodic, zero derivative, open.

- Optimize the shape of the box to minimize the number of points needed.
- Available box shapes:

- Optimize the shape of the box to minimize the number of points needed.
- Available box shapes:
 - Minimum box: union of spheres around each atom.
 - Sphere.
 - Cvlinder
 - Parallelepiped.
 - Arbitrary (e.g. 2D image!)

- Optimize the shape of the box to minimize the number of points needed.
- Available box shapes:
 - Minimum box: union of spheres around each atom.
 - Sphere
 - Cylinder.
 - Parallelepiped.
 - Arbitrary (e.g. 2D image!)

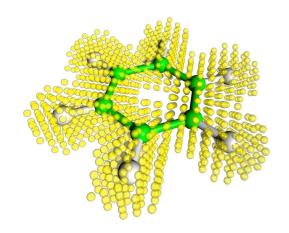
- Optimize the shape of the box to minimize the number of points needed.
- Available box shapes:
 - Minimum box: union of spheres around each atom.
 - Sphere.
 - Cylinder.
 - Parallelepiped.
 - Arbitrary (e.g. 2D image!)

- Optimize the shape of the box to minimize the number of points needed.
- Available box shapes:
 - Minimum box: union of spheres around each atom.
 - Sphere.
 - Cylinder.
 - Parallelepiped.
 - Arbitrary (e.g. 2D image!)

- Optimize the shape of the box to minimize the number of points needed.
- Available box shapes:
 - Minimum box: union of spheres around each atom.
 - Sphere.
 - Cylinder.
 - Parallelepiped.
 - Arbitrary (e.g. 2D image!)

- Optimize the shape of the box to minimize the number of points needed.
- Available box shapes:
 - Minimum box: union of spheres around each atom.
 - Sphere.
 - Cylinder.
 - Parallelepiped.
 - Arbitrary (e.g. 2D image!)

Example: benzene molecule in minimal box



- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- ullet Representation used for calculating $V_{
 m xc}\left[
 ho
 ight]$ even with other bases
- Can systematically improve discretization quality:

- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- ullet Representation used for calculating $V_{
 m xc}\left[
 ho
 ight]$ even with other bases.
- Can systematically improve discretization quality:

- Orthogonal "basis set"
- Unbiased, independent of atomic positions (no Pulay forces)
- Problems:

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces)
- Problems:

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:
 - Breaking of translational invariance: egg-box effect.
 - Breaking of rotational invariance
 - (Decreasing spacing helps both.)

Real-space grid characteristics

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:
 - Breaking of translational invariance: egg-box effect.
 - Breaking of rotational invariance
 - (Decreasing spacing helps both.)

Real-space grid characteristics

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:
 - Breaking of translational invariance: egg-box effect.
 - Breaking of rotational invariance.
 - (Decreasing spacing helps both.)

Real-space grid characteristics

- Natural boundary conditions for different problems: zero, one, two, or three periodic dimensions for molecules, wires, sheets, and solids.
- Representation used for calculating $V_{\rm xc}\left[\rho\right]$ even with other bases.
- Can systematically improve discretization quality:
 - Decrease the spacing (like increasing plane-wave cutoff).
 - Increase the box size (in finite directions).
- Orthogonal "basis set".
- Unbiased, independent of atomic positions (no Pulay forces).
- Problems:
 - Breaking of translational invariance: egg-box effect.
 - Breaking of rotational invariance.
 - (Decreasing spacing helps both.)

- Derivative at a point: sum over neighboring points.
- The coefficients c_{ij} depend on the mesh and number of points used: *the stencil*.
- General form for Laplacian:

$$\nabla^2 f(n_x h, n_y h) = \sum_{i=1}^n \sum_{j=1}^n \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta x}$$

- More points \rightarrow more precision.
- Semi-local operation.

- Derivative at a point: sum over neighboring points.
- The coefficients c_{ij} depend on the mesh and number of points used: *the stencil*.
- General form for Laplacian:

$$\nabla^2 f(n_x h, n_y h) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta x}$$

- More points \rightarrow more precision.
- Semi-local operation.

- Derivative at a point: sum over neighboring points.
- The coefficients c_{ij} depend on the mesh and number of points used: *the stencil*.
- General form for Laplacian:

$$\nabla^2 f(n_x h, n_y h) = \sum_{i=1}^n \sum_{j=1}^n \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta x}$$

- More points → more precision.
- Semi-local operation.

- Derivative at a point: sum over neighboring points.
- The coefficients c_{ij} depend on the mesh and number of points used: *the stencil*.
- General form for Laplacian:

$$\nabla^2 f(n_x h, n_y h) = \sum_{i=1}^n \sum_{j=1}^n \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta x}$$

- More points → more precision.
- Semi-local operation.

- Derivative at a point: sum over neighboring points.
- The coefficients c_{ij} depend on the mesh and number of points used: *the stencil*.
- General form for Laplacian:

$$\nabla^2 f(n_x h, n_y h) = \sum_{i=1}^n \sum_{j=1}^n \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta x}$$

- More points → more precision.
- Semi-local operation.

- Derivative at a point: sum over neighboring points.
- The coefficients c_{ij} depend on the mesh and number of points used: *the stencil*.
- General form for Laplacian:

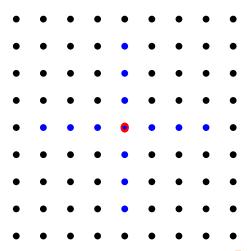
$$\nabla^2 f(n_x h, n_y h) = \sum_{i=1}^n \sum_{j=1}^n \frac{c_{ij}}{h} f(n_x h + ih, n_y h + jh)$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{\Delta x}$$

- More points → more precision.
- Semi-local operation.

Example of stencil for Laplacian

Symmetric third-order in 2D.



Integration

Trapezoidal rule

$$\int f(x,y) dx dy = h^2 \sum_{ij} f(ih, jh)$$

Sum over grid points.

Integration

Trapezoidal rule

$$\int f(x,y) dx dy = h^2 \sum_{ij} f(ih, jh)$$

Sum over grid points.

What we want to solve:

$$-\nabla^{2}\varphi_{n} + V_{\text{eff}}\left[\rho\right](\boldsymbol{r})\varphi_{n} = \epsilon_{n}\varphi_{n}$$

- We use a self-consistency scheme to treat non-linearity.
- ullet Solve for eigenstates at fixed $V_{
 m eff}$, then update ho and $V_{
 m eff}$.

What we want to solve:

$$-\nabla^{2}\varphi_{n} + V_{\text{eff}}\left[\rho\right](\boldsymbol{r})\varphi_{n} = \epsilon_{n}\varphi_{n}$$

- We use a self-consistency scheme to treat non-linearity.
- Solve for eigenstates at fixed $V_{\rm eff}$, then update ρ and $V_{\rm eff}$.

What we want to solve:

$$-\nabla^{2}\varphi_{n} + V_{\text{eff}}\left[\rho\right](\boldsymbol{r})\varphi_{n} = \epsilon_{n}\varphi_{n}$$

- We use a self-consistency scheme to treat non-linearity.
- Solve for eigenstates at fixed $V_{\rm eff}$, then update ρ and $V_{\rm eff}$.

What we want to solve:

$$-\nabla^{2}\varphi_{n} + V_{\text{eff}}\left[\rho\right](\boldsymbol{r})\varphi_{n} = \epsilon_{n}\varphi_{n}$$

- We use a self-consistency scheme to treat non-linearity.
- ullet Solve for eigenstates at fixed $V_{\rm eff}$, then update ho and $V_{\rm eff}$.

- For the Laplacian (kinetic energy) we use finite differences.
- The local part of the potential can be applied directly.
- The non-local potential is applied in a small spherical grid around the atoms.
- The Hamiltonian becomes a finite-size matrix.

- For the Laplacian (kinetic energy) we use finite differences.
- The local part of the potential can be applied directly.
- The non-local potential is applied in a small spherical grid around the atoms.
- The Hamiltonian becomes a finite-size matrix.

- For the Laplacian (kinetic energy) we use finite differences.
- The local part of the potential can be applied directly.
- The non-local potential is applied in a small spherical grid around the atoms.
- The Hamiltonian becomes a finite-size matrix.

- For the Laplacian (kinetic energy) we use finite differences.
- The local part of the potential can be applied directly.
- The non-local potential is applied in a small spherical grid around the atoms.
- The Hamiltonian becomes a finite-size matrix.

The eigenproblem

- Find the eigenvectors and eigenvalues of a matrix.
- Very large matrix with lots of zero components (Sparse).
- Use iterative solvers where only the action of the matrix is required (various options available in the code).

The eigenproblem

- Find the eigenvectors and eigenvalues of a matrix.
- Very large matrix with lots of zero components (Sparse).
- Use iterative solvers where only the action of the matrix is required (various options available in the code).

The eigenproblem

- Find the eigenvectors and eigenvalues of a matrix.
- Very large matrix with lots of zero components (Sparse).
- Use iterative solvers where only the action of the matrix is required (various options available in the code).

• We minimize (using conjugate gradient or other method):

$$\epsilon(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

- Works for the first state.
- For higher-energy states, it is necessary to orthogonalize against the lower ones.

• We minimize (using conjugate gradient or other method):

$$\epsilon(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

- Works for the first state.
- For higher-energy states, it is necessary to orthogonalize against the lower ones.

• We minimize (using conjugate gradient or other method):

$$\epsilon(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

- Works for the first state.
- For higher-energy states, it is necessary to orthogonalize against the lower ones.

• We minimize (using conjugate gradient or other method):

$$\epsilon(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

- Works for the first state.
- For higher-energy states, it is necessary to orthogonalize against the lower ones.

• Given an initial condition, solve the:

$$irac{\partial arphi_{k}}{\partial t}=-
abla^{2}arphi_{k}+V_{ ext{eff}}\left[
ho
ight](oldsymbol{r},t)arphi_{k}$$

- Various numerical schemes of doing the time-propagation.
- Many properties can be obtained.
- Response to time-dependent fields: lasers.

Given an initial condition, solve the:

$$i\frac{\partial\varphi_{k}}{\partial t} = -\nabla^{2}\varphi_{k} + V_{\text{eff}}\left[\rho\right](\boldsymbol{r},t)\varphi_{k}$$

- Various numerical schemes of doing the time-propagation.
- Many properties can be obtained.
- Response to time-dependent fields: lasers.

Given an initial condition, solve the:

$$i\frac{\partial\varphi_{k}}{\partial t} = -\nabla^{2}\varphi_{k} + V_{\text{eff}}\left[\rho\right](\boldsymbol{r},t)\varphi_{k}$$

- Various numerical schemes of doing the time-propagation.
- Many properties can be obtained.
- Response to time-dependent fields: lasers.

• Given an initial condition, solve the:

$$i\frac{\partial\varphi_{k}}{\partial t} = -\nabla^{2}\varphi_{k} + V_{\text{eff}}\left[\rho\right](\boldsymbol{r},t)\varphi_{k}$$

- Various numerical schemes of doing the time-propagation.
- Many properties can be obtained.
- Response to time-dependent fields: lasers.

• Given an initial condition, solve the:

$$i\frac{\partial\varphi_{k}}{\partial t} = -\nabla^{2}\varphi_{k} + V_{\text{eff}}\left[\rho\right](\boldsymbol{r},t)\varphi_{k}$$

- Various numerical schemes of doing the time-propagation.
- Many properties can be obtained.
- Response to time-dependent fields: lasers.

• Start from the ground state, with a 'kick.'

Time-dependent potential

$$V(\mathbf{r},t) = \kappa \delta(t) \quad \Rightarrow \quad \psi \to \psi e^{i\mathbf{k}\cdot\mathbf{r}}$$

Time-propagate and get the dipole d(t) as a function of time.

Start from the ground state, with a 'kick.'

Time-dependent potential

$$V(\mathbf{r},t) = \kappa \delta(t) \quad \Rightarrow \quad \psi \to \psi e^{i\mathbf{k}\cdot\mathbf{r}}$$

ullet Time-propagate and get the dipole $oldsymbol{d}(t)$ as a function of time.

• Start from the ground state, with a 'kick.'

Time-dependent potential

$$V(\mathbf{r},t) = \kappa \delta(t) \quad \Rightarrow \quad \psi \to \psi e^{i\mathbf{k}\cdot\mathbf{r}}$$

ullet Time-propagate and get the dipole $oldsymbol{d}(t)$ as a function of time.

Polarizability tensor

$$\alpha_{ij}(\omega) = -\frac{1}{\kappa_i} \int dt \, e^{i\omega t} d_j(t)$$

Absorption cross section

$$\sigma(\omega) = \frac{4\pi\omega}{c} \Im\left[\alpha(\omega)\right]$$

Start from the ground state, with a 'kick.'

Time-dependent potential

$$V(\mathbf{r},t) = \kappa \delta(t) \quad \Rightarrow \quad \psi \to \psi e^{i\mathbf{k}\cdot\mathbf{r}}$$

• Time-propagate and get the dipole d(t) as a function of time.

Polarizability tensor

$$\alpha_{ij}(\omega) = -\frac{1}{\kappa_i} \int dt \, e^{i\omega t} d_j(t)$$

Absorption cross section

$$\sigma(\omega) = \frac{4\pi\omega}{c} \Im\left[\alpha(\omega)\right]$$

Absorption spectra from time-propagation

Start from the ground state, with a 'kick.'

Time-dependent potential

$$V(\mathbf{r},t) = \kappa \delta(t) \quad \Rightarrow \quad \psi \to \psi e^{i\mathbf{k}\cdot\mathbf{r}}$$

• Time-propagate and get the dipole d(t) as a function of time.

Polarizability tensor

$$\alpha_{ij}(\omega) = -\frac{1}{\kappa_i} \int dt \, e^{i\omega t} d_j(t)$$

Absorption cross section

$$\sigma(\omega) = \frac{4\pi\omega}{c} \Im\left[\alpha(\omega)\right]$$

- Fortran 95 and C (+ some Perl utilities).
- Focused on finite systems (periodic systems possible too).
- Norm-conserving pseudopotentials.
- Real-space grid representation.
- Current version is 4.0.
- DFT with many functionals (from libxc).
 Hartree-Fock, Hartree

²http://www.tddft.org/programs/octopus

- Fortran 95 and C (+ some Perl utilities).
- Focused on finite systems (periodic systems possible too).
- Norm-conserving pseudopotentials.
- Real-space grid representation.
- Current version is 4.0.
- DFT with many functionals (from libxc), Hartree-Fock, Hartree

²http://www.tddft.org/programs/octopus

- Fortran 95 and C (+ some Perl utilities).
- Focused on finite systems (periodic systems possible too).
- Norm-conserving pseudopotentials.
- Real-space grid representation.
- Current version is 4.0.
- DFT with many functionals (from libxc)
 Hartree-Fock, Hartree

²http://www.tddft.org/programs/octopus

- Fortran 95 and C (+ some Perl utilities).
- Focused on finite systems (periodic systems possible too).
- Norm-conserving pseudopotentials.
- Real-space grid representation.
- Current version is 4.0.
- DFT with many functionals (from libxc)
 Hartree-Fock, Hartree

²http://www.tddft.org/programs/octopus

- Fortran 95 and C (+ some Perl utilities).
- Focused on finite systems (periodic systems possible too).
- Norm-conserving pseudopotentials.
- Real-space grid representation.
- Current version is 4.0.
- DFT with many functionals (from libxc)
 Hartree-Fock, Hartree

²http://www.tddft.org/programs/octopus

- Fortran 95 and C (+ some Perl utilities).
- Focused on finite systems (periodic systems possible too).
- Norm-conserving pseudopotentials.
- Real-space grid representation.
- Current version is 4.0.
- DFT with many functionals (from libxc), Hartree-Fock, Hartree

²http://www.tddft.org/programs/octopus

References

Two papers on the Octopus code:

- A. Castro, H. Appel, Micael Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, and A. Rubio, "octopus: a tool for the application of time-dependent density functional theory," *Phys. Stat. Sol. B* 243, 2465-2488 (2006).
- M.A.L. Marques, Alberto Castro, George F. Bertsch, and Angel Rubio, "octopus: a first-principles tool for excited electron-ion dynamics," Comput. Phys. Commun. 151, 60-78 (2003).

Pulpo a feira

The origin of the name Octopus. (Recipe available in code.)

- Ground-state DFT.
- Time-propagation
- Molecular dynamics (Ehrenfest, Born-Oppenheimer Car-Parrinello).
- Casida linear response.
- Sternheimer linear response for electromagnetic response, phonons, Van der Waals coefficients.
- Optimal control theory.
- Real-time quantum transport.
- (Other experimental features.)

- Ground-state DFT.
- Time-propagation.
- Molecular dynamics (Ehrenfest, Born-Oppenheimer Car-Parrinello).
- Casida linear response.
- Sternheimer linear response for electromagnetic response, phonons, Van der Waals coefficients.
- Optimal control theory.
- Real-time quantum transport.
- (Other experimental features.)

- Ground-state DFT.
- Time-propagation.
- Molecular dynamics (Ehrenfest, Born-Oppenheimer, Car-Parrinello).
- Casida linear response.
- Sternheimer linear response for electromagnetic response, phonons, Van der Waals coefficients.
- Optimal control theory.
- Real-time quantum transport.
- (Other experimental features.)

- Ground-state DFT.
- Time-propagation.
- Molecular dynamics (Ehrenfest, Born-Oppenheimer, Car-Parrinello).
- Casida linear response.
- Sternheimer linear response for electromagnetic response, phonons, Van der Waals coefficients.
- Optimal control theory.
- Real-time quantum transport.
- (Other experimental features.)

- Ground-state DFT.
- Time-propagation.
- Molecular dynamics (Ehrenfest, Born-Oppenheimer, Car-Parrinello).
- Casida linear response.
- Sternheimer linear response for electromagnetic response, phonons, Van der Waals coefficients.
- Optimal control theory.
- Real-time quantum transport.
- (Other experimental features.)

- Ground-state DFT.
- Time-propagation.
- Molecular dynamics (Ehrenfest, Born-Oppenheimer, Car-Parrinello).
- Casida linear response.
- Sternheimer linear response for electromagnetic response, phonons, Van der Waals coefficients.
- Optimal control theory.
- Real-time quantum transport
- (Other experimental features.)

³http://www.tddft.org/programs/octopus

- Ground-state DFT.
- Time-propagation.
- Molecular dynamics (Ehrenfest, Born-Oppenheimer, Car-Parrinello).
- Casida linear response.
- Sternheimer linear response for electromagnetic response, phonons, Van der Waals coefficients.
- Optimal control theory.
- Real-time quantum transport.
- (Other experimental features.)

- Ground-state DFT.
- Time-propagation.
- Molecular dynamics (Ehrenfest, Born-Oppenheimer, Car-Parrinello).
- Casida linear response.
- Sternheimer linear response for electromagnetic response, phonons, Van der Waals coefficients.
- Optimal control theory.
- Real-time quantum transport.
- (Other experimental features.)

³http://www.tddft.org/programs/octopus

Parallelization in domains:

- Each processor handles points in a region of space
- Points in the boundaries of each region must be copied to other nodes.
- Integrals are performed locally and summed over all domains.
- Efficient and scalable scheme
- Parallelization in states:

- Parallelization in k-points/spin
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors.

Parallelization in domains:

- Each processor handles points in a region of space.
- Points in the boundaries of each region must be copied to other nodes.
- Integrals are performed locally and summed over all domains.
- Efficient and scalable scheme.
- Parallelization in states:

- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors.

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains
 - Efficient and scalable scheme.
- Parallelization in states:

- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors.

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:

- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors.

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states

- Parallelization in k-points/spin
- Parallelization in electron-hole pairs (for Casida linear response)
- Combined parallelization.
- Scales to thousands of processors.

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:
 - Each processor handles a group of states
 - Efficient scheme for time-propagation.
 - Also applicable for the ground state.
- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:
 - Each processor handles a group of states.
 - Efficient scheme for time-propagation.
 - Also applicable for the ground state.
- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:
 - Each processor handles a group of states.
 - Efficient scheme for time-propagation.
 - Also applicable for the ground state.
- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response)
- Combined parallelization.
- Scales to thousands of processors

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:
 - Each processor handles a group of states.
 - Efficient scheme for time-propagation.
 - Also applicable for the ground state.
- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response)
- Combined parallelization.
- Scales to thousands of processors

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:
 - Each processor handles a group of states.
 - Efficient scheme for time-propagation.
 - Also applicable for the ground state.
- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response)
- Combined parallelization.
- Scales to thousands of processors

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:
 - Each processor handles a group of states.
 - Efficient scheme for time-propagation.
 - Also applicable for the ground state.
- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors.

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:
 - Each processor handles a group of states.
 - Efficient scheme for time-propagation.
 - Also applicable for the ground state.
- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors.

- Parallelization in domains:
 - Each processor handles points in a region of space.
 - Points in the boundaries of each region must be copied to other nodes.
 - Integrals are performed locally and summed over all domains.
 - Efficient and scalable scheme.
- Parallelization in states:
 - Each processor handles a group of states.
 - Efficient scheme for time-propagation.
 - Also applicable for the ground state.
- Parallelization in k-points/spin.
- Parallelization in electron-hole pairs (for Casida linear response).
- Combined parallelization.
- Scales to thousands of processors.

- Octopus is free open-source software (GNU Public License v2).
 - Free to use it.
 - Study the code and modify it.
 - Contribute back your changes
- New developers are welcome.

- Octopus is free open-source software (GNU Public License v2).
 - Free to use it.
 - Study the code and modify it
 - Contribute back your changes
- New developers are welcome.

- Octopus is free open-source software (GNU Public License v2).
 - Free to use it.
 - Study the code and modify it.
 - Contribute back your changes.
- New developers are welcome.

- Octopus is free open-source software (GNU Public License v2).
 - Free to use it.
 - Study the code and modify it.
 - Contribute back your changes.
- New developers are welcome.

- Octopus is free open-source software (GNU Public License v2).
 - Free to use it.
 - Study the code and modify it.
 - Contribute back your changes.
- New developers are welcome.

Octopus developers

- Joseba Alberdi (Universidad del País Vasco, San Sebastián)
- Xavier Andrade (Harvard)
- Heiko Appel (Fritz-Haber Institut)
- Alberto Castro (BIFI, Zaragoza)
- Miguel Marques (Université Lyon I)
- Danilo Nitsche (Freie Universität Berlin)
- Fernando Nogueira (Universidade de Coimbra)
- Micael Oliveira (Universidade de Coimbra)
- Carlo Andrea Rozzi (Università di Modena e Reggio Emilia)
- Angel Rubio (UPV San Sebastián and FHI)
- David Strubbe (University of California, Berkeley; LBNL)

Other contributors: Fulvio Berardi, Umberto de Giovannini, Roberto Olivares, Pablo García Risueño, Arto Sakko, José Rui de Sousa

- Ground-state calculation.
- Optimizing grid parameters.
- Visualization.
- Time-propagation with a laser.
- Optical spectrum from time-propagation.
- Optical spectrum from a Casida calculation.

⁴http://www.tddft.org/programs/octopus/wiki/index.php/Tutorial

- Ground-state calculation.
- Optimizing grid parameters.
- Visualization.
- Time-propagation with a laser.
- Optical spectrum from time-propagation.
- Optical spectrum from a Casida calculation.

⁴http://www.tddft.org/programs/octopus/wiki/index.php/Tutorial

- Ground-state calculation.
- Optimizing grid parameters.
- Visualization.
- Time-propagation with a laser.
- Optical spectrum from time-propagation.
- Optical spectrum from a Casida calculation.

⁴http://www.tddft.org/programs/octopus/wiki/index.php/Tutorial

- Ground-state calculation.
- Optimizing grid parameters.
- Visualization.
- Time-propagation with a laser.
- Optical spectrum from time-propagation.
- Optical spectrum from a Casida calculation.

⁴http://www.tddft.org/programs/octopus/wiki/index.php/Tutorial

- Ground-state calculation.
- Optimizing grid parameters.
- Visualization.
- Time-propagation with a laser.
- Optical spectrum from time-propagation.
- Optical spectrum from a Casida calculation.

⁴http://www.tddft.org/programs/octopus/wiki/index.php/Tutorial

- Ground-state calculation.
- Optimizing grid parameters.
- Visualization.
- Time-propagation with a laser.
- Optical spectrum from time-propagation.
- Optical spectrum from a Casida calculation.

⁴http://www.tddft.org/programs/octopus/wiki/index.php/Tutorial

Have fun!

