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igeon(rt) = =Vion+Veg [o] (r,)on(r,1)
p(T,t) = Z‘P:(rat)son(rvt)

@ Solve the equations numerically.
@ Represent functions and other objects.
@ Calculate derivatives and integrals.
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@ Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.
)
o

Functions are represented by values on a set of points.
Point distribution:

o Uniformly spaced grid.
o Distance between points is constant: Spacing.
@ Non-uniform grids also possible.

Finite region of the space: Box
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@ For finite systems, functions go to zero.

@ Force functions to go to zero on the border of the box.

@ The box has to be large enough to contain the functions.
@ Other BCs are possible: periodic, zero derivative, open.
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@ Optimize the shape of the box to minimize the number of points
needed.

@ Available box shapes:

Minimum box: union of spheres around each atom.

Sphere.

Cylinder.

Parallelepiped.

Arbitrary (e.g. 2D image!)
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@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.

Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:

o Breaking of translational invariance: egg-box effect.
@ Breaking of rotational invariance.
@ (Decreasing spacing helps both.)
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@ Derivative at a point: sum over neighboring points.

@ The coefficients ¢;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

V2 f(ngh, nygh) =3 C# F(ngh +ih, nyh + jh)
i g

@ Compare definition of derivative:

f(zo+h) — f(=o)
Ax

! .
xg) = lim
f( O) h—0
@ More points — more precision.
@ Semi-local operation.



Symmetric third-order in 2D.
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@ Sum over grid points.
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@ What we want to solve:

_v290n + Veg [p] () on = €non

@ We use a self-consistency scheme to treat non-linearity.
@ Solve for eigenstates at fixed Vg, then update p and V4.
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@ The non-local potential is applied in a small spherical grid around
the atoms.

@ The Hamiltonian becomes a finite-size matrix.
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@ Find the eigenvectors and eigenvalues of a matrix.
@ Very large matrix with lots of zero components (Sparse).

@ Use iterative solvers where only the action of the matrix is
required (various options available in the code).
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@ We minimize (using conjugate gradient or other method):

(Y[ H|¢)

W)= "t

@ Works for the first state.

@ For higher-energy states, it is necessary to orthogonalize against
the lower ones.
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@ Given an initial condition, solve the:

0
i = ~Ver+ Ve [o] (r. 1)k

@ Various numerical schemes of doing the time-propagation.
@ Many properties can be obtained.
@ Response to time-dependent fields: lasers.
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@ Start from the ground state, with a ‘kick.

V(r,t)=kd(t) = ek

@ Time-propagate and get the dipole d(¢) as a function of time.

1 .
Qg (w) = —; dt BZWtdj (t)

o) = TS o(w)
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DFT with many functionals (from 1ibxc),
Hartree-Fock, Hartree
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Two papers on the Octopus code:

@ A. Castro, H. Appel, Micael Oliveira, C.A. Rozzi, X. Andrade, F.
Lorenzen, M.A.L. Marques, E.K.U. Gross, and A. Rubio, “octopus:
a tool for the application of time-dependent density functional
theory,” Phys. Stat. Sol. B 243, 2465-2488 (2006).

@ M.A.L. Marques, Alberto Castro, George F. Bertsch, and Angel
Rubio, “octopus: a first-principles tool for excited electron-ion
dynamics,” Comput. Phys. Commun. 151, 60-78 (2003).



Pulpo a feira

The origin of the name Octopus. (Recipe available in code.)

D. A. Strubbe (UC Berkeley/LBNL) Introduction to Octopus TDDFT 2012, Benasque 20/26
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@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer,
Car-Parrinello).

@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.
@ Real-time quantum transport.
@ (Other experimental features.)

*http://www.tddft.org/programs/octopus
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@ Parallelization in domains:

o Each processor handles points in a region of space.

@ Points in the boundaries of each region must be copied to other
nodes.

o Integrals are performed locally and summed over all domains.

o Efficient and scalable scheme.

@ Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

o Parallelization in k-points/spin.

@ Parallelization in electron-hole pairs (for Casida linear response).
@ Combined parallelization.

@ Scales to thousands of processors.
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@ Octopus is free open-source software (GNU Public License v2).

o Free to use it.
@ Study the code and modify it.
@ Contribute back your changes.

@ New developers are welcome.



@ Joseba Alberdi (Universidad del Pais Vasco, San Sebastian)
@ Xavier Andrade (Harvard)

@ Heiko Appel (Fritz-Haber Institut)

@ Alberto Castro (BIFI, Zaragoza)

@ Miguel Marques (Université Lyon I)

@ Danilo Nitsche (Freie Universitat Berlin)

@ Fernando Nogueira (Universidade de Coimbra)

@ Micael Oliveira (Universidade de Coimbra)

@ Carlo Andrea Rozzi (Universita di Modena e Reggio Emilia)
@ Angel Rubio (UPV San Sebastian and FHI)

David Strubbe (University of California, Berkeley; LBNL)
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@ Optimizing grid parameters.

@ Visualization.

@ Time-propagation with a laser.

@ Optical spectrum from time-propagation.

“http://ww.tddft.org/programs/octopus/wiki/index.php/Tutorial



Ground-state calculation.

Optimizing grid parameters.

Visualization.

Time-propagation with a laser.

Optical spectrum from time-propagation.
Optical spectrum from a Casida calculation.
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Have fun!




