S

A

freeeeer ’m

BERKELEY LAB

David A. Strubbe?!
and the Octopus development team

Department of Physics, University of California, Berkeley, CA, USA
Materials Sciences Division, Lawrence Berkeley National Laboratory

TDDFT 2012, Benasque

LFilling in for Xavier Andrade (Harvard).

igeon(rt) = =Vion+Veg [o] (r,)on(r,1)
p(T,t) = Z‘P:(rat)son(rvt)

@ Solve the equations numerically.

igeon(rt) = =Vion+Veg [o] (r,)on(r,1)
p(T,t) = Z‘P:(rat)son(rvt)

@ Solve the equations numerically.
@ Represent functions and other objects.

igeon(rt) = =Vion+Veg [o] (r,)on(r,1)
p(T,t) = Z‘P:(rat)son(rvt)

@ Solve the equations numerically.
@ Represent functions and other objects.
@ Calculate derivatives and integrals.

@ The atomic potential is very strong
and “hard” (small spacing or high
plane-wave cutoff required).

@ The atomic potential is very strong
and “hard” (small spacing or high
plane-wave cutoff required).

@ Core electrons are almost independent
of the environment.

@ The atomic potential is very strong
and “hard” (small spacing or high
plane-wave cutoff required).

@ Core electrons are almost independent
of the environment.

@ Replace the potential and core electrons
by a pseudo-potential.

"Fpscude ’
. . . - ’
@ The atomic potential is very strong S

and “hard” (small spacing or high N, /

plane-wave cutoff required). %
@ Core electrons are almost independent

of the environment.

V~%,l,
@ Replace the potential and core electrons ‘
by a pseudo-potential. /

V = Vioc + Z |lm> (‘/l - ‘/IOC) <lm|

lm

@ Partial differential equation with infinite degrees of freedom.

@ Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.

@ Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.
@ Functions are represented by values on a set of points.

@ Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.

@ Functions are represented by values on a set of points.
@ Point distribution:

@ Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.

@ Functions are represented by values on a set of points.
@ Point distribution:
@ Uniformly spaced grid.

@ Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.
@ Functions are represented by values on a set of points.

@ Point distribution:

o Uniformly spaced grid.
@ Distance between points is constant: Spacing.

@ Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.

@ Functions are represented by values on a set of points.
@ Point distribution:

o Uniformly spaced grid.
o Distance between points is constant: Spacing.
@ Non-uniform grids also possible.

@ Partial differential equation with infinite degrees of freedom.
@ Reduce to a finite number.
)
o

Functions are represented by values on a set of points.
Point distribution:

o Uniformly spaced grid.
o Distance between points is constant: Spacing.
@ Non-uniform grids also possible.

Finite region of the space: Box

@ For finite systems, functions go to zero.

@ For finite systems, functions go to zero.
@ Force functions to go to zero on the border of the box.

@ For finite systems, functions go to zero.
@ Force functions to go to zero on the border of the box.
@ The box has to be large enough to contain the functions.

@ For finite systems, functions go to zero.

@ Force functions to go to zero on the border of the box.

@ The box has to be large enough to contain the functions.
@ Other BCs are possible: periodic, zero derivative, open.

@ Optimize the shape of the box to minimize the number of points
needed.

@ Optimize the shape of the box to minimize the number of points
needed.

@ Available box shapes:

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:
@ Minimum box: union of spheres around each atom.

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:

@ Minimum box: union of spheres around each atom.
@ Sphere.

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:

@ Minimum box: union of spheres around each atom.
o Sphere.
@ Cylinder.

@ Optimize the shape of the box to minimize the number of points
needed.
@ Available box shapes:

Minimum box: union of spheres around each atom.
Sphere.

Cylinder.

Parallelepiped.

¢ ¢ ©

@ Optimize the shape of the box to minimize the number of points
needed.

@ Available box shapes:

Minimum box: union of spheres around each atom.

Sphere.

Cylinder.

Parallelepiped.

Arbitrary (e.g. 2D image!)

©

© ¢ ¢ ¢

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,

sheets, and solids.
@ Representation used for calculating V.. [p] even with other bases.

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
@ Decrease the spacing (like increasing plane-wave cutoff).

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.

@ Representation used for calculating V. [p] even with other bases.

@ Can systematically improve discretization quality:

o Decrease the spacing (like increasing plane-wave cutoff).
@ Increase the box size (in finite directions).

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).
@ Orthogonal “basis set”.
@ Unbiased, independent of atomic positions (no Pulay forces).

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.

Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:

©

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.

Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:
@ Breaking of translational invariance: egg-box effect.

©

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.

Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:

o Breaking of translational invariance: egg-box effect.
@ Breaking of rotational invariance.

©

@ Natural boundary conditions for different problems:
zero, one, two, or three periodic dimensions for molecules, wires,
sheets, and solids.
@ Representation used for calculating V. [p] even with other bases.
@ Can systematically improve discretization quality:
o Decrease the spacing (like increasing plane-wave cutoff).
o Increase the box size (in finite directions).

@ Orthogonal “basis set”.

Unbiased, independent of atomic positions (no Pulay forces).
@ Problems:

o Breaking of translational invariance: egg-box effect.
@ Breaking of rotational invariance.
@ (Decreasing spacing helps both.)

©

@ Derivative at a point: sum over neighboring points.

@ Derivative at a point: sum over neighboring points.
@ The coefficients ¢;; depend on the mesh and number of points
used: the stencil.

@ Derivative at a point: sum over neighboring points.

@ The coefficients ¢;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

V2 f(nah, nyh) =33 % F(neh + ih, nyh + jh)
(2

@ Derivative at a point: sum over neighboring points.

@ The coefficients ¢;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

V2 f(ngh, nygh) =3 C# F(ngh +ih, nyh + jh)
i g

@ Compare definition of derivative:

F(z0) = lim f(zo +h) — f(x0)

h—0 Ax

@ Derivative at a point: sum over neighboring points.

@ The coefficients ¢;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

V2 f(ngh, nygh) =3 C# F(ngh +ih, nyh + jh)
i
@ Compare definition of derivative:

fwo +h) — f(x0)

1 1
fao) = ilzlgtl) Az

@ More points — more precision.

@ Derivative at a point: sum over neighboring points.

@ The coefficients ¢;; depend on the mesh and number of points
used: the stencil.

@ General form for Laplacian:

V2 f(ngh, nygh) =3 C# F(ngh +ih, nyh + jh)
i g

@ Compare definition of derivative:

f(zo+h) — f(=o)
Ax

! .
xg) = lim
f(O) h—0
@ More points — more precision.
@ Semi-local operation.

Symmetric third-order in 2D.

[H@p)dedy =12 s(in.in)

ij

[H@p)dedy =12 s(in.in)
ij

@ Sum over grid points.

@ What we want to solve:

@ What we want to solve:

_v2‘Pn + Veg [p] () on = €non

@ What we want to solve:

_v290n + Veg [p] () on = €non

@ We use a self-consistency scheme to treat non-linearity.

@ What we want to solve:

_v290n + Veg [p] () on = €non

@ We use a self-consistency scheme to treat non-linearity.
@ Solve for eigenstates at fixed Vg, then update p and V4.

@ For the Laplacian (kinetic energy) we use finite differences.

@ For the Laplacian (kinetic energy) we use finite differences.
@ The local part of the potential can be applied directly.

@ For the Laplacian (kinetic energy) we use finite differences.
@ The local part of the potential can be applied directly.

@ The non-local potential is applied in a small spherical grid around
the atoms.

@ For the Laplacian (kinetic energy) we use finite differences.
@ The local part of the potential can be applied directly.

@ The non-local potential is applied in a small spherical grid around
the atoms.

@ The Hamiltonian becomes a finite-size matrix.

@ Find the eigenvectors and eigenvalues of a matrix.

@ Find the eigenvectors and eigenvalues of a matrix.
@ Very large matrix with lots of zero components (Sparse).

@ Find the eigenvectors and eigenvalues of a matrix.
@ Very large matrix with lots of zero components (Sparse).

@ Use iterative solvers where only the action of the matrix is
required (various options available in the code).

@ We minimize (using conjugate gradient or other method):

@ We minimize (using conjugate gradient or other method):

@ We minimize (using conjugate gradient or other method):

(Y[H|¢)

W)= "t

@ Works for the first state.

@ We minimize (using conjugate gradient or other method):

(Y[H|¢)

W)= "t

@ Works for the first state.

@ For higher-energy states, it is necessary to orthogonalize against
the lower ones.

@ Given an initial condition, solve the:

@ Given an initial condition, solve the:

0
i = ~V20; + Vit [0 (r, O

@ Given an initial condition, solve the:

0
i = ~V20; + Vit [0 (r, O

@ Various numerical schemes of doing the time-propagation.

@ Given an initial condition, solve the:

0
i = ~V20; + Vit [0 (r, O

@ Various numerical schemes of doing the time-propagation.
@ Many properties can be obtained.

@ Given an initial condition, solve the:

0
i = ~Ver+ Ve [o] (r. 1)k

@ Various numerical schemes of doing the time-propagation.
@ Many properties can be obtained.
@ Response to time-dependent fields: lasers.

@ Start from the ground state, with a ‘kick.

@ Start from the ground state, with a ‘kick.

V(r,t)=kd(t) = ek

@ Start from the ground state, with a ‘kick.

V(r,t)=kd(t) = ek

@ Time-propagate and get the dipole d(¢) as a function of time.

@ Start from the ground state, with a ‘kick.

V(r,t)=kd(t) = ek

@ Time-propagate and get the dipole d(¢) as a function of time.

@ Start from the ground state, with a ‘kick.

V(r,t)=kd(t) = ek

@ Time-propagate and get the dipole d(¢) as a function of time.

1 .
Qg (w) = —; dt BZWtdj (t)

o) = TS o(w)

@ Fortran 95 and C (+ some Perl utilities).

http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).
@ Focused on finite systems (periodic systems possible too).

http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).
@ Focused on finite systems (periodic systems possible too).
@ Norm-conserving pseudopotentials.

http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).

@ Focused on finite systems (periodic systems possible too).
@ Norm-conserving pseudopotentials.

@ Real-space grid representation.

http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).

@ Focused on finite systems (periodic systems possible too).
@ Norm-conserving pseudopotentials.

@ Real-space grid representation.

@ Current version is 4.0.

http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Fortran 95 and C (+ some Perl utilities).

@ Focused on finite systems (periodic systems possible too).
@ Norm-conserving pseudopotentials.

@ Real-space grid representation.

@ Current version is 4.0.

°

DFT with many functionals (from 1ibxc),
Hartree-Fock, Hartree

http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

Two papers on the Octopus code:

@ A. Castro, H. Appel, Micael Oliveira, C.A. Rozzi, X. Andrade, F.
Lorenzen, M.A.L. Marques, E.K.U. Gross, and A. Rubio, “octopus:
a tool for the application of time-dependent density functional
theory,” Phys. Stat. Sol. B 243, 2465-2488 (2006).

@ M.A.L. Marques, Alberto Castro, George F. Bertsch, and Angel
Rubio, “octopus: a first-principles tool for excited electron-ion
dynamics,” Comput. Phys. Commun. 151, 60-78 (2003).

Pulpo a feira

The origin of the name Octopus. (Recipe available in code.)

D. A. Strubbe (UC Berkeley/LBNL) Introduction to Octopus TDDFT 2012, Benasque 20/26

@ Ground-state DFT.

*http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.

*http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer,
Car-Parrinello).

*http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer,
Car-Parrinello).

@ Casida linear response.

*http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer,
Car-Parrinello).

@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

*http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.
@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer,
Car-Parrinello).

@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.

*http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer,
Car-Parrinello).

@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.
@ Real-time quantum transport.

*http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Ground-state DFT.

@ Time-propagation.

@ Molecular dynamics (Ehrenfest, Born-Oppenheimer,
Car-Parrinello).

@ Casida linear response.

@ Sternheimer linear response for electromagnetic response,
phonons, Van der Waals coefficients.

@ Optimal control theory.
@ Real-time quantum transport.
@ (Other experimental features.)

*http://www.tddft.org/programs/octopus

http://www.tddft.org/programs/octopus

@ Parallelization in domains:

@ Parallelization in domains:
@ Each processor handles points in a region of space.

@ Parallelization in domains:

o Each processor handles points in a region of space.
@ Points in the boundaries of each region must be copied to other
nodes.

@ Parallelization in domains:
o Each processor handles points in a region of space.
@ Points in the boundaries of each region must be copied to other
nodes.
@ Integrals are performed locally and summed over all domains.

@ Parallelization in domains:

o Each processor handles points in a region of space.

@ Points in the boundaries of each region must be copied to other
nodes.

o Integrals are performed locally and summed over all domains.

e Efficient and scalable scheme.

@ Parallelization in domains:
o Each processor handles points in a region of space.
@ Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

@ Parallelization in states:

@ Parallelization in domains:
o Each processor handles points in a region of space.
@ Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

@ Parallelization in states:
@ Each processor handles a group of states.

@ Parallelization in domains:
o Each processor handles points in a region of space.
@ Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

@ Parallelization in states:

o Each processor handles a group of states.
e Efficient scheme for time-propagation.

@ Parallelization in domains:
o Each processor handles points in a region of space.
@ Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

@ Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
@ Also applicable for the ground state.

@ Parallelization in domains:
o Each processor handles points in a region of space.
@ Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.

@ Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

@ Parallelization in k-points/spin.

@ Parallelization in domains:

o Each processor handles points in a region of space.

@ Points in the boundaries of each region must be copied to other
nodes.

o Integrals are performed locally and summed over all domains.

o Efficient and scalable scheme.

@ Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

o Parallelization in k-points/spin.
@ Parallelization in electron-hole pairs (for Casida linear response).

@ Parallelization in domains:
o Each processor handles points in a region of space.
@ Points in the boundaries of each region must be copied to other
nodes.
o Integrals are performed locally and summed over all domains.
o Efficient and scalable scheme.
o Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

o Parallelization in k-points/spin.
@ Parallelization in electron-hole pairs (for Casida linear response).
@ Combined parallelization.

@ Parallelization in domains:

o Each processor handles points in a region of space.

@ Points in the boundaries of each region must be copied to other
nodes.

o Integrals are performed locally and summed over all domains.

o Efficient and scalable scheme.

@ Parallelization in states:

o Each processor handles a group of states.
o Efficient scheme for time-propagation.
o Also applicable for the ground state.

o Parallelization in k-points/spin.

@ Parallelization in electron-hole pairs (for Casida linear response).
@ Combined parallelization.

@ Scales to thousands of processors.

@ Octopus is free open-source software (GNU Public License v2).

@ Octopus is free open-source software (GNU Public License v2).
@ Freeto use it.

@ Octopus is free open-source software (GNU Public License v2).

o Free to use it.
@ Study the code and modify it.

@ Octopus is free open-source software (GNU Public License v2).

o Freeto use it.
@ Study the code and modify it.
@ Contribute back your changes.

@ Octopus is free open-source software (GNU Public License v2).

o Free to use it.
@ Study the code and modify it.
@ Contribute back your changes.

@ New developers are welcome.

@ Joseba Alberdi (Universidad del Pais Vasco, San Sebastian)
@ Xavier Andrade (Harvard)

@ Heiko Appel (Fritz-Haber Institut)

@ Alberto Castro (BIFI, Zaragoza)

@ Miguel Marques (Université Lyon I)

@ Danilo Nitsche (Freie Universitat Berlin)

@ Fernando Nogueira (Universidade de Coimbra)

@ Micael Oliveira (Universidade de Coimbra)

@ Carlo Andrea Rozzi (Universita di Modena e Reggio Emilia)
@ Angel Rubio (UPV San Sebastian and FHI)

David Strubbe (University of California, Berkeley; LBNL)

©

Other contributors: Fulvio Berardi, Umberto de Giovannini, Roberto
Olivares, Pablo Garcia Risuefo, Arto Sakko, José Rui de Sousa

@ Ground-state calculation.

“http://ww.tddft.org/programs/octopus/wiki/index.php/Tutorial

@ Ground-state calculation.
@ Optimizing grid parameters.

“http://ww.tddft.org/programs/octopus/wiki/index.php/Tutorial

@ Ground-state calculation.
@ Optimizing grid parameters.
@ Visualization.

“http://ww.tddft.org/programs/octopus/wiki/index.php/Tutorial

@ Ground-state calculation.

@ Optimizing grid parameters.

@ Visualization.

@ Time-propagation with a laser.

“http://ww.tddft.org/programs/octopus/wiki/index.php/Tutorial

@ Ground-state calculation.

@ Optimizing grid parameters.

@ Visualization.

@ Time-propagation with a laser.

@ Optical spectrum from time-propagation.

“http://ww.tddft.org/programs/octopus/wiki/index.php/Tutorial

Ground-state calculation.

Optimizing grid parameters.

Visualization.

Time-propagation with a laser.

Optical spectrum from time-propagation.
Optical spectrum from a Casida calculation.

e © 6 ¢ ¢ ¢

“http://ww.tddft.org/programs/octopus/wiki/index.php/Tutorial

Have fun!

