5" School on Time-Dependent Density-
Functional Theory: Practical Sessions

E. K. U. Gross, M. A. L. Marques, F. Nogueira,
A. Rublo and A. Castro
szcecam

ELI HOPEARN
":'.'lEI"'ITFiT{:ilI DE CIENCIAS

OUNDATION

F-"EDRD PASCUAL




Practical Sessions

1) Software development: construction of a
basic TDDFT code.
2) Tutorial I: octopus

3) Tutorial Il: yambo




Construction of a basic TDDFT code

Some Basic Concepts About
Scientific Software
Development

Source: “Basic concepts of software maintenance”,
Introductory talk given by Xavier Gonze at the CECAM 2010
Tutorial "Basic techniques and tools for the development and
maintenance of atomic-scale software” (Zaragoza, Spain,
June 21-25 2010)



Software engineering for scientists

* The expertise of scientists Is not software
engineering (unless they are computer scientists...)

« Software engineering Is best understood as a
human science: it is about improving the productivity
of the developers, who are human beings. It is not
only about studying the software itself.

* “No single software engineering development will
produce an order of magnitude improvement in
programming productivity within ten years” (F.
Brooks, No Silver Bullet, 1986).



Software

Software Is not just code.

Software should be understood as the set of
programs, documentation, and operating procedures
by which computers can be made useful to people.

Program: source code, object code.

Documentation: articles, specifications, manuals,
tutorials, description of I/O, internal description of
data structures in any format,

Operating procedures: instructions or scripts to set
up and use the program, instructions on how to
treat failures, instructions or scripts to test the
program.



Software development: the waterfall model

Requirements \
Design \

Coding

Module tcsting\

Integration

System testing \

Installation
Maintenance




Software maintenance

Software maintenance: the continuous modification
of a software product after delivery in order to:

Improve performance,
Add features,

Correct faults,
Adapt the product to other environments.

In most of the cases, for atomic-scale software, we
restart from existing software to add new
functionalities. Maintenance is essential. Waterfall
model is inadequate.



Software evolution

Release 1 — Release 2 —*{ Release 3 ] .

. ——— Release N

Changes:

Adaptive changes.
Corrective changes.
Perfective changes.
Preventive changes.
The problem with changes: “A badly structured

program is like a plate of spaghetti: if one strand is

pulled, then the ramifications can be seen at the other
side of the plate.



A Maintenance Conscious Model
Idea

Documentation Specification

Release ﬂ Design

Training Implementation

Testing



The reality of the development/maintenace
Idea

Specification

Design :

Implementation )\

_/

Testing

Training

Documentation
Release ,/

User acceptance



Some of “Lehman's Laws” of Software
Evolution

II. Law of increasing complexity

As a system evolves, its complexity increases unless work is done to maintain
or reduce it. If changes are made with no thought to system structure,
complexity will increase and make future change harder. On the other hand, if
resource is expended on work to combat complexity, less is available to system

change. No matter how is balance is reconciled, the rate of system growth
inevitably slows.

VII. Law of declining quality

Unless rigorously adapted to meet changes in the operational environment,
system quality will appear to decline. A system is built on a set of assumptions,
and however valid these are at the time, the changing world will tend to
invalidate them. Unless steps are taken to identify and rectify this, system
quality will appear to decline, especially in relation to alternative products
that will come onto the market based on more recently formulated
assumpltions.



Some of “Lehman's Laws” of Software
Evolution

II. Law of increasing complexity

As a system evolves, its complexity increases unless work is done to maintain
or reduce it. If changes are made with no thought to system structure,
complexity will increase and make future change harder. On the other hand, if
resource is expended on work to combat complexity, less is available to system
change. No matter how is balance is reconciled, the rate of system growth
inevitably slows.

VII. Law of declining quality

Unless rigorously adapted to meet changes in the operational environment,
system quality will appear to decline. A system is built on a set of assumptions,
and however valid these are at the time, the changing world will tend to
invalidate them. Unless steps are taken to identify and rectify this, system
quality will appear to decline, especially in relation to alternative products
that will come onto the market based on more recently formulated
aAssumpltions.



What takes time?

What takes time ?

<2 Clean I/Os
> File formats
Interfaces
x4 l x4
- : -
Documentation This is what we want to
Testing, portability rely on, for our
Maintenance long-term research !

“Essays on software engineering”, by F. Brooks



What takes time?

Usually, scientific software development is a group
effort.

However, in Science each person has a different
agenda, and different strengths and weaknesses.

The training of a person should also be included In
the total computation of time.

Division of labor. But: in a similar manner to code
parallelization, a bad “communication” can reduce
the total productivity.



Conceptual Integrity

 All the parts of the code should reflect one clear set
of design ideas. Brooks: “Conceptual integrity Is the
most important consideration in system design. It is
better to have a system omit certain anomalous
features and improvements, but to reflect one set of
design ideas, than to have one that contains many
good but independent and uncoordinated ideas.”

* The key is to disentangle the system architecture
from the component implementation.



Some (often forgotten) “standard” advices

A good data representation is the essence of
programming.

Self-documentation: the program should, somehow,
be self-explanatory (it is not just about adding
comments!)

Bad comments are worse than no comments.

Version maintenance: svn, git, whatever. Plan the
system for change.

Automatic testing.



Some (often forgotten) “standard” advices

Fixing one defect has a large probability of
Introducing another one.

Make “adiabatic changes”

Use already existing software! Even if later you plan
to build your own because the existing one does not
perform as well as you think it should.

Choose carefully the variable names.

Describe the purpose, options, and arguments of
each procedure.



Some (often forgotten) “standard” advices

Adhere to standards.

Do not try to produce “clever” code, unless it is
very well documented.

Modularity.



The Cathedral and the Bazaar

Ref.: http://www.tuxedo.org/~esr/writings/cathedral-bazaar
Eric S. Raymond

1. Every good work of software starts by scratching a developer’s personal itch
(Motivation)

5. When you lose interest in a program, your last duty 1s to hand it off to a
competent successor

6. Treating your users as co-developers 1s your least-hassle route to rapid code
improvements and effective debugging

7. Release early. Release often. And listen to your customers.

8. Given a large enough beta-tester and co-developer base, almost every

problem will be characterized quickly and the fix obvious to someone
(Linus’ law)


http://www.tuxedo.org/~esr/writings/cathedral-bazaar

The Cathedral and the Bazaar

Ref.: http://www.tuxedo.org/~esr/writings/cathedral-bazaar
Eric S. Raymond

Q. Smart data structures and dumb code works a lot better than the other
way around.

1. The next best thing to having good ideas is recognizing good ideas
from others. Sometimes the latter is better.

13. Perfection (in design) is achieved not when there is nothing more to
add, but rather when there is nothing more to take away.

19. Provided the development coordinator has a medium at least as good as

the Internet, and known how to lead without coercion, many heads are
inevitably better than one


http://www.tuxedo.org/~esr/writings/cathedral-bazaar

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

