

5th School on Time-Dependent Density-
Functional Theory: Practical Sessions

E. K. U. Gross, M. A. L. Marques, F. Nogueira,
A. Rubio, and A. Castro

Practical Sessions
1) Software development: construction of a
basic TDDFT code.
2) Tutorial I: octopus

3) Tutorial II: yambo

Construction of a basic TDDFT code

Some Basic Concepts About
Scientific Software

Development

Source: “Basic concepts of software maintenance”,
introductory talk given by Xavier Gonze at the CECAM 2010
Tutorial "Basic techniques and tools for the development and
maintenance of atomic-scale software” (Zaragoza, Spain,
June 21-25 2010)

Software engineering for scientists

● The expertise of scientists is not software
engineering (unless they are computer scientists...)

● Software engineering is best understood as a
human science: it is about improving the productivity
of the developers, who are human beings. It is not
only about studying the software itself.

● “No single software engineering development will
produce an order of magnitude improvement in
programming productivity within ten years” (F.
Brooks, No Silver Bullet, 1986).

Software

● Software is not just code.
● Software should be understood as the set of

programs, documentation, and operating procedures
by which computers can be made useful to people.

– Program: source code, object code.

– Documentation: articles, specifications, manuals,
tutorials, description of I/O, internal description of
data structures in any format,

– Operating procedures: instructions or scripts to set
up and use the program, instructions on how to
treat failures, instructions or scripts to test the
program.

Software development: the waterfall model

Software maintenance

● Software maintenance: the continuous modification
of a software product after delivery in order to:

– Improve performance,

– Add features,

– Correct faults,

– Adapt the product to other environments.

● In most of the cases, for atomic-scale software, we
restart from existing software to add new
functionalities. Maintenance is essential. Waterfall
model is inadequate.

Software evolution

● Changes:
– Adaptive changes.

– Corrective changes.

– Perfective changes.

– Preventive changes.

● The problem with changes: “A badly structured
program is like a plate of spaghetti: if one strand is
pulled, then the ramifications can be seen at the other
side of the plate.

A Maintenance Conscious Model

The reality of the development/maintenace

Some of “Lehman's Laws” of Software
Evolution

Some of “Lehman's Laws” of Software
Evolution

What takes time?

“Essays on software engineering”, by F. Brooks

What takes time?

● Usually, scientific software development is a group
effort.

● However, in Science each person has a different
agenda, and different strengths and weaknesses.

● The training of a person should also be included in
the total computation of time.

● Division of labor. But: in a similar manner to code
parallelization, a bad “communication” can reduce
the total productivity.

Conceptual Integrity

● All the parts of the code should reflect one clear set
of design ideas. Brooks: “Conceptual integrity is the
most important consideration in system design. It is
better to have a system omit certain anomalous
features and improvements, but to reflect one set of
design ideas, than to have one that contains many
good but independent and uncoordinated ideas.”

● The key is to disentangle the system architecture
from the component implementation.

Some (often forgotten) “standard” advices

1.A good data representation is the essence of
programming.

2.Self-documentation: the program should, somehow,
be self-explanatory (it is not just about adding
comments!)

3.Bad comments are worse than no comments.

4.Version maintenance: svn, git, whatever. Plan the
system for change.

5.Automatic testing.

Some (often forgotten) “standard” advices

6.Fixing one defect has a large probability of
introducing another one.

7.Make “adiabatic changes”

8.Use already existing software! Even if later you plan
to build your own because the existing one does not
perform as well as you think it should.

9.Choose carefully the variable names.

10. Describe the purpose, options, and arguments of
each procedure.

Some (often forgotten) “standard” advices

11. Adhere to standards.

12. Do not try to produce “clever” code, unless it is
very well documented.

13. Modularity.

The Cathedral and the Bazaar
Ref.: http://www.tuxedo.org/~esr/writings/cathedral-bazaar

Eric S. Raymond

http://www.tuxedo.org/~esr/writings/cathedral-bazaar

The Cathedral and the Bazaar
Ref.: http://www.tuxedo.org/~esr/writings/cathedral-bazaar

Eric S. Raymond

http://www.tuxedo.org/~esr/writings/cathedral-bazaar

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

