
Practical session

Guided Construction
of a 2D TDDFT code

1 Introduction

These practical sessions (attempt to) provide an introduction to the design of a software
implementation of time-dependent density-functional theory (TDDFT). The objective is
to build a functional little code, capable of demonstrating some of the most essential
features of the theory.

Essentially, our goal is to obtain:

(i) a code that performs ground state DFT, i.e. a code that calculates the ground-state
of a many-electron system subject to an external potential;

(ii) a code that implements the time-dependent Kohn-Sham or Runge-Gross equations,
i.e. that propagates in real time the Kohn-Sham orbitals subject to the time-
dependent Kohn-Sham Hamiltonian; and

(iii) a code that implements the linear-response formulation of TDDFT.

Coding is, for most of us, a painful time-consuming task; the production of even the
simplest code piece may require anything from a few minutes to several days of work, with
most of the time dedicated to looking for information completely unrelated to the Physics
of the problem or the design of the algorithm. Due to this fact, there is obviously not
enough time in these sessions to build these three elements from scratch. Hence, we will
do a “guided construction”. A preliminary, primitive, code is already written – except
for some pieces which we suggest you to fill in. This will speed up the process, but you
will still have to dig into the code, and in this way you will learn the manner in which
the underlying TDDFT ideas are transformed into a working algorithm. If you wish, you
can add any enhancement. This document is the road map for the construction process.

�

Between these two lines you will find side-information, suggested optional
exercises, lengthier descriptions of the algorithms forming the code, comments
on alternative possibilities, etc.
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This is the outline of this handout:

• In Section 2, you can find a few words about the two-dimensional electrons gas. The
reason is that, for practical purposes, the code is two-dimensional.

• In Section 3, some more theory: the generalised Kohn’s theorem, that will be studied
numerically later.

• Section 4 describes how the code is organised in practice.

• Finally, the following sections are a step-by-step presentation of the code.

2 Two-dimensional problems and quantum dots.

The scope of the code is not general: it is a two-dimensional code. The reason to limit
the code in this form is that in this way the computations can be done in very short time
(typically seconds or minutes).

In principle, however, the extension to the 3D problem is straightforward. The algo-
rithms presented are essentially the same in the 3D world. In practice, the code that we
provide is specially simple and lacks some of the features that a fully-fledged code has
(e.g. non-local pseudopotentials – which are covered elsewhere in this course –, etc). This
is necessary due to the time limitation. Note, however, that the 2D problem is not only of
academic interest; the 2D electron gas is subject of very lively and active research, both
theoretically and experimentally.

Quantum dots (QDs) are artificial nano-scale devices; essentially they may be viewed
as confined electron crowds. Due to their smallness, they exhibit quantum-mechanical
atom-like behaviour (e.g. shell structure). To some extent, we can consider quantum dots
as the basic components of nanoelectronics [1]. Quantum dots are fabricated by confining
metal or semiconductor conduction-band electrons in a localised region. There are several
ways to achieve this localisation; one of them is by making use of semiconductor interfaces.
In this case, the movement of the electrons is not possible in the perpendicular direction
to the interface and the thickness of the interface region is very small. The resulting
structure is known as the two-dimensional electron gas (2DEG). Laterally, the electrons
also have to be confined applying some kind of potential, which is typically modelled in
some simple way.

Not surprisingly, DFT has been successfully applied to describe numerous examples
of 2DEG QDs [2]. And, also not surprisingly, TDDFT has also played a role to describe
properties related to excited-states of 2DEG QDs [3]. The program that we will work
with could be a useful tool for this kind of investigations – very active nowadays –, and
not only a classroom exercise.

Some important features, however, will not be incorporated: to name a few, we will
assume spin-unpolarised calculations, and will not consider the possible presence of a
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magnetic field, or the extension to current density-functional theory (CDFT) – rather
relevant in this field. Regarding numerics, you may find the design of the program, or
the choice of the algorithm, to be sub-optimal, to say the least. We invite you to add
any feature, or to improve the code in any manner, as a final exercise or project, if time
permits.

�

It is common practice to use the effective mass approximation to describe the
electrons in semiconductors or metals. This number in principle depends on
the kinetic energy of the electron, but if it turns out to be approximately
a constant, the problem is greatly simplified. We may then work with an
effective Hamiltonian:

Ĥ =
N
∑

i=1

p̂2
i

2m∗ ++
N
∑

i=1

v̂ext(r̂i) +
N
∑

i<j

e2

4πǫ

1

|r̂i − r̂j |
, (1)

For the GaAs semiconductor (very common material in QDs experiments),
the effective mass m∗ is 0.067 times the mass of a free electron.

To ease the numerical work, it is convenient to choose the appropriate units
system. In atomic, molecular and solid-state Physics, this is usually the so-
called atomic units system. If we take the effective mass approximation, it is
convenient to redefine this system of units: We set the effective mass m∗ = 1,
the dielectric constant of the medium ε = 1, Planck’s constant h̄ = 1 and the
absolute charge of the electron e = 1. In the CGS-unit system, we then get
the effective mass atomic units.

The unit of length is then then effective bohr a∗0 = (ε/m∗)a0 (a0 is the Bohr
radius); the unit of energy is the effective Hartree Ha∗ = (m∗/ε2)Ha, and the
unit of time is the effective atomic time, u∗t = (me/h̄)a

∗
0. It is assumed in the

code that this effective system of units is used. (In a typical GaAs lattice,
ε = 12.4ε0).

In the following, we will assume this system of units (and will the omit the
symbols with asterisks, unless necessary).




3 Kohn’s theorem, and generalised Kohn’s theorem.

The original Kohn’s theorem [4] considers an electron gas in the presence of a uniform
magnetic field. It states that, regardless of the form of the electron-electron interaction,
the only possible excitation frequency of the system is the cyclotron frequency, ωc =
eB/mc. A very similar result may be found [5] for an electron gas in a parabolic shape
quantum well: it can only absorb radiation at the bare harmonic oscillator frequency ω0,
independently of the electron-electron interaction, and of the number of electrons in the
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well. This can be called a “generalised” Kohn’s theorem. Here we will work with a slightly
modified version.

�

It is easy to state and prove the generalised Kohn’s theorem that we will work
with. Assuming a two-dimensional problem, such as the one we are interested
in, we depart from a Hamiltonian in the form:

Ĥ =
N
∑

i=1

p̂2i,x
2m

+
N
∑

i=1

p̂2i,y
2m

+
N
∑

i=1

1

2
mω2

0(x̂
2
i + ŷ2i ) +

N
∑

i<j

û(r̂i − r̂j) , (2)

where the interaction û is of arbitrary shape. By defining the operators ĉ± =
∑N

i=1(mω0x̂i ∓ ip̂i,x), prove that:

(i) for any eigenstate Φn, ĉ±Φn is also an eigenstate, Φn±1, whose energy
differs ±h̄ω0 from En;

(ii) the dipole operator
∑N

i=1 x̂i only couples Φn to its neighbours Φn±1.




This result is exact, and it is not obvious that any approximation to the many-body
problem, such as for example TDLDA, respects it. We will try to ascertain whether this
is the case or not. For that purpose, we will obtain the absorption spectrum of a parabolic
quantum dot both assuming the normal Coulomb interaction, and also assuming a Yukawa
form for the electron-electron interaction:

û(r̂i − r̂j) =
e−γr

r
, (r = |r̂i − r̂j|) . (3)

We will check that both absorption spectra are identical, and contain only one absorption
peak at precisely the harmonic well frequency, as prescribed by the theorem. We will also
see how this is not the case if we use a different external potential, i.e. a quartic potential
well.

�

The Yukawa potential, Eq. (3), may be regarded as one “screened” Coulomb potential.
It certainly does not describe the interaction between electrons in free space. In fact,
it is used to describe elementary particles whose interaction is mediated by massive
particles – not as the Coulomb interaction, mediated by massless photons.

However, the use of the Yukawa interaction is not limited to the elementary particles
world. Screened potentials are widespread in many areas of Physics and Chemistry,
since they are simple models to approximate many-body interactions [6]. For ex-
ample, they may approximate the effects of the screening between charges due to
the presence of a background hot plasma. In consequence, a DFT formulation for
Yukawa-interacting is not a completely unrealistic exercise.
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4 Brief description of the code

The code is called qd; it is included in the package qd-0.1.0.tar.gz. Please unpack it,
i.e.:

> tar -xzvf qd-0.1.0.tar.gz

This should produce a directory qd-0.1.0. If you navigate into it, you will find a bunch
of files and directories; the two important directories are src and doc. In the latter you
will find a pdf with this document (along with the man and info pages of the code, which
are rather empty). The important files – the source files that you will have to modify, are
in src.

4.1 Compilation

The first task is to compile and install the code. This should be rather straightforward in
the machines of the school: First of all, decide where you want to install the code; since you
do not have root privileges in that machine, you can for example install software locally
in your home directory. Then you do the usual configure-make-make install sequence:

> ./configure --prefix=$HOME

> make

> make install

Although, depending on the computer setup, you might need to pass extra options
to the configure scripts. After this, your $HOME should contain at least three directories:
bin, info and man. The former contains the code, qd. The info directory contains the
qd.info file, in principle an on-line code manual; and man/man.1 contains a man page for
qd.

�

If you don’t have some background with UNIX-like machines, probably you
are not familiar with info or man documentation. You do not need them for
these sessions. In any case, you can consult the info file by typing:

> info -f $HOME/share/info/qd.info

The man/man1 directory contains the manual page of the code. You get it by
typing:[7]

> man qd
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In fact, both manuals are rather empty. We have included them here since both
the info and the man formats are two of the most standard documentation
schemes in software development, and it can be useful for you to learn how
to use and manage them. The sources to generate these documents are the
qd.texinfo file (the info file is generated from this source with the makeinfo
program), and the qd.pod file (the man file is generated from this source with
the pod2man program).




Being qd the code name, you just have to type:

> $HOME/bin/qd

qd 0.1.0

Written by The 2012 Benasque TDDFT School.

Copyright (C) 2012 The 2012 Benasque TDDFT School

This program is free software; you may redistribute it under the terms of

the GNU General Public License. This program has absolutely no warranty.

to run the code. If you add $HOME/bin to your PATH environment variable, you will
have no need of specifying the full path, and you can just type qd. Note that by running
qd without any command line argument, it merely emits a greeting message, as illustrated
above.

Whenever you make a modification to the code, you have to recompile it by typing
make, and re-install it by typing make install.

Hopefully, the installation process should run smoothly in the machines installed in
Benasque. However, we have on purpose constructed a code following, at least partially,
the “standard” coding conventions of the free software community: gnu autotools,
possibility of info documentation, etc. By making use of the autotools, in particular, we
ensure that the porting of the code to other machines / operating systems / compilers
should pose no problems. We thought that constructing the code in this manner is a way
to demonstrate these techniques to those of you who are unfamiliar with them.

4.2 Running modes

The code is written in a combination of C and Fortran – in fact, most of the code is
Fortran, and this is the part that you will have to work on. The purpose of the C code
is to build interfaces with some useful C libraries: the getopt library that takes care of
parsing the command line arguments, and the GSL mathematical library.

The source for the main function is in file qdf.f90. However, the only purpose of
this function is parsing the command line options, and calling the appropriate Fortran
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procedure afterwards. The rest of the Fortran code is linked as a library (libqdf.a) to
this main function [8].

The program qd accepts command line arguments; you can learn which by typing qd

--help or qd -h:

Usage: qd [OPTIONS]

Options:

-h, --help Print this help and exits.

-v, --version Prints qd version.

-c, --coefficients Generates coefficients for the discretization.

-p, --test_hartree Tests the Poisson solver.

-l, --test_laplacian Tests the Laplacian.

-e, --test_exponential Tests the exponential.

-g, --gs Performs a ground state calculation.

-t, --td Performs a time-dependent calculation.

-s, --strength_function Calculates the strength function.

-x, --excitations Performs a LR-TDDFT calculation.

The options determine in which running mode the code will operate. Depending on
the mode, main procedure will in turn call different routines. These routines, and their
dependencies, are contained in the rest of the Fortran files *.f90.

The files have “holes”, that we suggest you to fill in. Also, note that the code is
purposely simple-minded to increase clarity; you may think of ideas to improve on the
algorithms for performance (or just elegance) reasons. The “holes” are marked by the
delimiters:

!!!!!! MISSING CODE X

...

!!!!!! END OF MISSING CODE

The number X is an identifier number. Possible solutions for the missing parts are offered
in file missing.f90. You may choose to code those tasks that you find more useful for
your purposes, or else copy directly from missing.f90, and improve the code with ideas
of your own, or with other suggestions.

5 The mesh.

The first choice to make when building an electronic-structure code is that of the basis set.
Numerous possibilities are available [9]. For this code we will choose the most intuitive of
them all: a real space mesh. In other words, the functions (wave functions, densities, etc)
are represented by the values that they take on a selected set of points in real space [10].
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A given function f , is represented by its set of values {fi} on those points. We may
understand these values as the components of a vector of an N -dimensional Hilbert space
(N being the number of points of our mesh).

In the Fortran 90 module mesh, in file mesh.f90, you can find the definition of the
points that conform the mesh, and the procedures that manage the functions defined in
this mesh. The comments explain the purpose of the module, and of each procedure. If
they are not that clear (which will usually happen), you will have to read the code to
understand what is its purpose.

The key procedures in the mesh module are the functions that calculate the dot prod-
ucts, and the functions that calculate the Laplacian of a function. And here you will
see the first piece of missing code; one first coding task that you may attempt is the
construction of the Laplacian operator.

We need the coefficients {ck}+N
k=−N to build up an expression in the form:

∂2f

∂x2
(x0) = c0f(x0) +

N
∑

k=1

ckf(xk) +
−N
∑

k=−1

ckf(xk) . (4)

This expression provides an approximation for the second derivative of a function f at
a mesh point x0, in terms of the values of f at the neighbour points (and itself) xk =

kh, k = −N, . . . , N . You may then build the Laplacian simply by doing ∇2 =
∂2f

∂x2
+
∂2f

∂y2
.

In order to get these coefficients, you will need to run the code in “coefficients” mode,
by passing the -c or the --coefficients command line argument. The program is
already prepared for a 9-point formula (N = 4) of the second derivative.

Visit the coeff.f90 file. It contains the source for the run-mode that generates the
coefficients necessary to build a real-space discretisation of the second order derivative (or
any other derivative).

> qd -c

c(0) = -0.2847222E+01

c( 1: n) = 0.1600000E+01 -0.2000000E+00 0.2539683E-01 -0.1785714E-02

c(-1:-n) = 0.1600000E+01 -0.2000000E+00 0.2539683E-01 -0.1785714E-02

�

For the curious, it is maybe worth a little explanation on what we have just
done.

The most common approach to the electronic structure problem (either with
DFT or with any other method) is the expansion of the wave functions (and
related functions) in terms of a set of basis functions. This approach has
two important properties, which may be easily derived from the variational
principle: (i) The approximate ground-state energy obtained with a given basis
set is always an upper bound to the exact value; any supplement to the basis set
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will yield a lower energy; (ii) The energy displays a quadratic convergence with
increasing basis set size. Despite these two nice features, basis set expansion
is not the only approach to the electronic structure problem. An alternative
are the “real-space” methods, which rely on the representation of functions
directly on a real-space grid, either regular (as the one we are using) or adapted
to the problem at hand.

In a real-space implementation, the functions are represented in a real space
grid, i.e., we know their values on a selected set of sampling points, {xj}Mj=1,
which typically are arranged in a regular mesh (in the following, we will assume
a one-dimensional problem; the extension to two or three dimensional problems
will be done later):

f ≡ {f(xj)}j=1,...,M . (5)

We want to calculate its n-th derivative in a finite difference scheme.

Let us call x0 = 0, and let us assume that we want to get the n-th derivative of
f in x0 = 0, f (n)(x = 0). As input information, we will use the values of f at
N points to the right, and N points to the left, besides f(x0): {f(xk)}Nk=−N .
The objective is to obtain a linear expression of the form:

f (n)(x0) = c0f(x0) +
N
∑

k=1

ckf(xk) +
−N
∑

k=−1

ckf(xk) . (6)

The problem is then to obtain the set of coefficients ck. For that purpose, we
consider the set of polynomials:

gl(x) = xl , l = 0, . . . , 2N . (7)

Their n-th derivatives are:

g
(n)
l (x) =











l(l − 1) . . . (l − n+ 1)xl−n , n < l
n! , n = l
0 , n > l

(8)

In x = x0 = 0:

g
(n)
l (x0) = δnln! . (9)

We may then join Eq. 6 and 9 to obtain 2N + 1 equations. To clarify ideas,
let us begin by approximating the first derivative, n = 1:

l = 0 : g
(1)
0 (x0) : 0 = c0 +

∑N
k=1 ck +

∑−N
k=−1 ck

l = 1 : g
(1)
1 (x0) : 1 = 0 +

∑N
k=1 ckxk +

∑−N
k=−1 ckxk

l = 2 : g
(1)
2 (x0) : 0 = 0 +

∑N
k=1 ckx

2
k +

∑−N
k=−1 ckx

2
k

. . . : . . . : . . . = . . .

l = 2N : g
(1)
2N (x0) : 0 = 0 +

∑N
k=1 ckx

2N
k +

∑−N
k=−1 ckx

2N
k

(10)

It is useful to setup this linear system in matrix form. We define:

xT = [x1, . . . , xN , x−1, . . . , x−N ] , (11)

cT = [c1, . . . , cN , c−1, . . . , c−N ] , (12)
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A(x) =











x1 . . . xN x−1 . . . x−N

x21 . . . x2N x2−1 . . . x2−N

. . . . . . . . . . . . . . . . . .
x2N1 . . . x2NN x2N−1 . . . x2N−N











, (13)

and the n-th unit vector in the 2N dimensional space:

eTn = [0, . . . , , 0,
n
1, 0, . . . , 0] . (14)

The coefficient c0 will always be c0 = −∑N
k=1 ck −

∑−N
k=−1 ck. The rest of the

coefficients may be derived from the resulting system, which, for n = 1, is:

A(x)c = e1 (15)

It is very easy to generalise this expression for higher derivatives: the n-th
derivative coefficients may be obtained through:

A(x)c = n!en (16)

Note that, up to now, we have not enforced a regular mesh; the positions {xk},
measured with respect to the “problem” point x0 = 0, are arbitrary. It is clear
from the previous formulas, how to build finite differences schemes with irreg-
ular meshes: for each point in the mesh, one has to solve the previous linear
system built with its neighbouring points, and obtain the resulting coefficients
(which will be different for each point). In laplacian subroutine, however,
we have assumed a regular mesh. The neighbouring points of a given point
x0 = 0 in a regular mesh can be easily described by:

xk = kh , k = −N, . . . , N . (17)

We may now illustrate the procedure with the simplest example: approxima-
tion to the first derivative with N = 1, i.e. only two neighbouring points. The
matrix equation is:







1 1 1
0 h −h
0 h2 (−h)2













c0
c1
c−1






=







0
1
0






. (18)

Solving this linear system one obtains the well known formula: [12]

f ′(x0) =
f(x1)− f(x−1)

2h
. (19)

The program coeff is setup to provide the N = 4 approximation to the second
derivative. However, subroutine coeff is more general and can be used to get
arbitrary derivatives, out of an arbitrary number of points, distributed non-
uniformly around the problem point.

As an exercise, you may try to implement derivatives of various orders, and
check how the errors behave with increasing approximation orders.






section 6. Visualisation 11

Before proceeding, it is important to test that the Laplacian is actually working; you
may test the Laplacian that you have built by running in the test-laplacian mode
(-l or --test-laplacian). Take a look at the test laplacian.f90 file. It defines a
Gaussian distribution in the form:

n(r) =
1

2πα
e−r2/α2

, (20)

(which, incidentally, is normalised:
∫

d3r n(r) = 1). The program calculates numerically
the Laplacian of this function, and compares it to the exact result which may be easily
obtained analytically. You may see how the accuracy depends on the ratio between the
“hardness” parameter α and the grid spacing, and on the order of discretisation.

�

Some work suggestions:

• An interesting exercise is to check how the discretisation order (the num-
ber of points you take in the finite difference formula) affects the error
in the calculation of the Laplacian. The key concept is to figure out
how the dependency of the error with the grid spacing changes with the
discretisation order.

• The procedure in the file coeff.f90 does not only contain the code
necessary to obtain a second derivative, but derivatives of any order. It
could be useful to use this feature and build, in module mesh, a routine
that calculates the gradient of a function.

• Both in coeff.f90 and in mesh.f90, the discretisation order is hard-
wired. It would be interesting to allow for more flexibility by, e.g., intro-
ducing a new command line argument that reads in this number. Then,
instead of hard-wiring the Laplacian or gradient coefficients, these num-
bers could be computed every time the code is executed.




The grid spacing, as you will see, is hard wired in module mesh. Also, the size of
the real-space box in which the systems are to be contained, is hard wired. However,
note that you can change these numbers in any moment if required. One could also allow
the possibility of changing these parameters from the command line, by introducing new
command line arguments. In more elaborate codes, one normally uses an input file that
is parsed by the program, and where all the parameters are specified.

6 Visualisation

In some places of the code (and anywhere you want to put them), there are some calls
to the output subroutine, in the output.f90 file. These calls print out to some file the
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"rho"
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Figure 1: Gaussian function, as depicted by gnuplot.

functions in the 2D grid. They may be easily plotted with the gnuplot command splot.
For the previous example, you will get a rho file with the Gaussian function, whose plot is
depicted in Fig. 1. You will also get an approximated laplacian file with the numerically
computed Laplacian, and an exact laplacian file with the Laplacian that one should
obtain.

Of course, you may use any other visualisation program of your choice, and change the
output function to suit your needs. For example, it may be interesting to see functions
only along one given axis (normal “xy” plots), instead of 3D plots such as the one you
obtain with the “splot” command of gnuplot.

7 Setting up the Hamiltonian

7.1 Number of states, number of electrons

Take a look at the module states in file states.f90: It holds the number of occupied
and unoccupied orbitals that are to be considered. In our simple example, we will always
consider spin-unpolarised calculations with doubly occupied KS orbitals. The module
also contains the variables that contain the wave functions. Any procedure that needs to
access the number of states or electrons, or the wave functions, should get access to this
module through an use states statement.



7.2. The external potential 13

7.2 The external potential

Now you must define the external potential that confines the quantum dot. For that
purpose, you must visit the external pot subroutine in the epot.f90 file. You may play
with different potentials; for our first example we will need a harmonic potential in the
form:

Vhar(r) =
1

2
ω2
0r

2 . (21)

For example, to use numbers of the order of the ones in the calculations presented in
Ref. [11] (maybe it is worth to read that paper to get an idea of what we will be doing
later), set ω to 0.22 Ha∗. In a following example, we will make use of a quartic potential:

Vquar(r) = αr4 . (22)

A reasonable value for α in this case is 0.00008.

7.3 The Hartree potential

The following task is providing the code with a procedure to calculate the Hartree potential
out of a given density:

VH[n](r) =
∫

d3r
n(r′)

|r− r′| . (23)

It turns out that this old problem continues to be one of the key computational challenges.
In one and two-dimensional problems, one may actually use the obvious and slow solution:
performing directly the sum on the grid. If {ri} denote the set of grid points:

VH[n](ri) =
∑

j

n(rj)

|ri − rj|
δv . (24)

In this equation, δv denotes the volume (surface, in 2D) surrounding each grid point
(δv = ∆2 if ∆ is the grid spacing in 2D). In case of using an interaction in the form of
the Yukawa potential, the equation must change accordingly:

VH[n](ri) =
∑

j

e−γ|ri−rj | n(rj)

|ri − rj|
δv . (25)

�

Of course, you encounter an infinity problem when i = j. The way to circum-
vent this problem in 2D is:

VH[n](ri) =
∑

j 6=i

n(rj)

|ri − rj |
δv + 2∆

√
πn(ri) . (26)
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which is the algorithm that you may implement. We also invite you the work
of thinking why the previous equation appropriately approximates the Hartree
potential.

The infinity problem also appears in the Yukawa case. You may also want to

prove that in this case, the i = j term should be 2πn(ri)
1− e−γ∆/

√
π

γ
, which

reduces to the Coulomb case when γ → 0.



Unfortunately, this easy scheme is slow, and becomes unpractical when the size of the

system grows – it is easy to see that it is an O(N2), algorithm, where N is number of
mesh points. In 3D one should not try to use it.

An alternative is to perform the integral in Fourier space; by making use of the con-
volution theorem, it is easy to see that in the plane wave representation, the Coulomb
(or Yukawa) interaction is diagonal. In the case of the Yukawa interaction (the Coulomb
case is easily obtained by taking γ → 0):

ũH(G) =
2π

γ
√

1 + G2

γ2

,

ṼH[n](G) = ũH(G)ñ(G) . (27)

However, when applying this technique to the Coulomb interaction (and also to the
Yukawa interaction, depending on the magnitude of γ) for finite or aperiodic systems,
one encounters one difficulty inherently linked to the plane wave representation: a plane
wave representation necessarily implies periodic boundary conditions, and replication of
the original charge density in an infinite array. Since the Coulomb interaction is long-
ranged, the simple application of the previous equations (27) includes the interactions of
the replicas with the original system. This must be avoided. One possible solution is to
define a cutoff on the interaction, e.g.:

uRH(r) =

{

1
r

, r < R
0 , r > R

(28)

One then uses ũRH(G) in Eqs. (27).

�

Due to the lack of time, we have purposely shortened the discussion of the
Hartree problem in the main text. Numerous authors have addressed the
problem; our vanity leads us to cite our own work on the subject [26, 27]. The
first of those two articles describes the problem (and some possible solutions)
in 3D, whereas the second one addresses the issue in 2D, which concerns this
case.

In this 2D case, and considering – as we have, in this program – a distribution
of charge n placed in a square of side L, the procedures begins by placing
it in a bigger square of side (1 +

√
2)L, padding with zeros the extra space.

Then one defines an interaction in the form of Eq, (28), with R =
√
2L.
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It is easy to see that this guarantees that the interaction does not change
within the original charge distribution, but at the same time avoids interaction
between neighbouring cells. Then one needs to get the Fourier transform of
the interaction, ũRH(G) (prove this!):

ũRH(G) = R
∞
∑

k=1

Jk(RG)/(RG) , (29)

where Jk is the Bessel function of order k.

In the Yukawa case, however, one needs not to define a cutoff, since the po-
tential is short-ranged by definition. The solution is to define the bigger cell
large enough to make the interaction between cells negligible, and then apply
Eqs. (27) directly.

Both options, for the Coulomb and for the Yukawa case, are implemented in
the poisson module.




To practice some programming, you may want to code the simple solution of Eq. (26),
in subroutine poisson sum in the poisson module (file poisson.f90). In this module,
you may see that one needs to set through the values of some variables, which interaction
to use (Coulomb or Yukawa), what is the value of the Yukawa parameter in case of using
it, and which method to use (the direct sum, or the plane waves approach).

To try out the accuracy of the implemented schemes, you may want to take a look at
the program test hartree and run it. First, you should read the source code of the test
itself, to try to understand how it is built and what it does.

�

The implementation of Eq. 29 is an excellent numerical exercise, by the way.
First, it is interesting to understand where this equation comes from, for which
you will need to understand a little bit of the theory that we have just men-
tioned. Then, one must supply a numerical procedure that calculates the right
hand side of Eq. 29; you will find, in module poisson, two possible solutions
(functions besselint, one of them is commented out). We suggest you to try
to understand how they work, and compare their relative efficiencies. Then,
you may try to improve them – if this is the case please let us know how!




7.4 The exchange and correlation terms

Now it is time to define the exchange and correlation term, which are placed in file
vxc.f90. The subroutine that you have to use is vxc lda, which provides the exchange
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and correlation potential and energies in the local density approximation (LDA). The
expressions are:

Ex[n] =
∫

d3r n(r)εHEG
x (n(r)); vx[n](r) =

δEx[n]

δn(r)
. (30)

Ec[n] =
∫

d3r n(r)εHEG
c (n(r)); vc[n](r) =

δEc[n]

δn(r)
. (31)

εHEG
x (n) and εHEG

c (n) are the exchange and correlation energy per particle, respectively,
of the 2D HEG of density n.

�

The exchange term may be derived analytically (obvious exercise: derive it):

εHEG
x (n) = − 4

√
2

3
√
π

√
n . (32)

The correlation term, however, is much more involved. One has to resort to
numerical results (typically of Quantum Monte-Carlo type), which are later
parameterised for easy use in DFT codes. We have chosen the expression pa-
rameterised by Attaccalite and coworkers [28], which for the spin-unpolarised
case, has the form:

εHEG
c (n) = a+ (brs + cr2s + dr3s)× Ln

(

1 +
1

ers + fr
3/2
s + gr2s + hr3s

)

, (33)

where rs is the Wigner-Seitz radius of the 2D HEG (rs = 1/
√
πn).

You may find the generalised subroutines for the spin-polarised case in the
octopus distributions. But we suggest you to write your own version, at least
for the exchange case:

(i) You may easily derive the exchange term for a homogeneous electron gas of

arbitrary polarisation ξ =
n↑ − n↓
n↑ + n↓

by making use of the identity (spin-scaling

identity):

Ex[n↑, n↓] =
1

2
Ex[2n↑] +

1

2
Ex[2n↓] . (34)

[The result is εHEG
x (n, ξ) = 1

2

[

(1 + ξ)3/2 + (1− ξ)3/2)
]

εHEG
x (n, 0).]

(ii) Generalise the given subroutines to allow for spin polarised cases.




7.5 The interaction

Subroutine interaction pot in file ipot.f90 has the task of building the terms of the
Kohn-Sham potential that arise from the electronic interaction: the Hartree and exchange
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and correlation terms. It is useful if one writes it in such a way that it is easy to disconnect
any of the terms at will, as it is done in the suggested solution in file missing.f90.

Alternatively, you can introduce the distinction by allowing the interaction to be a
new command-line argument, so that you do not need to recompile the code when you
want to change.

Finally, in file hpsi.f90, you have to fill two subroutines: hpsi and zhpsi. They
should apply the Kohn-Sham Hamiltonian on an input wavefuction, respectively real or
complex.

8 The SCF cycle, and the ground state program.

• It is now time to build one of the mains procedures: the gs subroutine, in charge
of obtaining the ground state Kohn-Sham orbitals. Note that this subroutine, in
the gs.f90 file, consists essentially of some initialisations, and a call to the scf

subroutine, explained below and which performs the self-consistent cycle.

• An essential step in each step of the self-consistent procedure is the diagonalisation
of the current approximation to the Kohn-Sham Hamiltonian (the exact one at
the end of the cycle). For this task we have implemented a conjugate-gradients
algorithm in conjugate gradients subroutine in cg.f90 file. We have chosen to
implement the simple yet successful scheme suggested by H. Jiang, Baranger and
Yang [13].

�

The computational research on eigensolvers starts with the works of Ja-
cobi, long time before the existence of computers. Until the 1960s, the
state of the art is dominated by the QR algorithm and related schemes,
suitable for the full diagonalisation of general, albeit small, matrices.
The eigenproblem has thereafter proved to be ubiquitous in all disci-
plines of Science; In Ref. [14] you may find introductions to the topic.

In our case, we are confronted with the algebraic eigenproblem that
emerges from the real-space discretisation of the Kohn-Sham equations
(a similar problem arises when other representations, e.g., plane waves,
are used). The Kohn-Sham operator is the sum of a potential term (typ-
ically non-local, although not severely non-local) and a partial differen-
tial operator. In most DFT electronic-structure method, the solution to
this eigenproblem is the most time-consuming part of the calculations.
Some key features of this problem are:

– Large size. Typically, the matrix dimension is 105-106 (smaller, in
the 2D case). Not even modern supercomputers may store the full
matrix in memory; one requires solvers that need only to know how
to operate the Hamiltonian on a vector.
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– Sparsity. This is the reason that facilitates the solution, despite
the enormous dimensions. The non-null elements of the matrix are
normally a few rows around the diagonal – its number depending
on the order of discretisation of the Laplacian operator. Non-local
pseudopotentials add more non-diagonal terms.

– Hermiticiy. The Hamiltonian of a physical system should be an
observable.

– One is interested only on the smallest eigenvales, i.e. one only needs
one small part of the spectrum, not the 105-106 eigenpairs.

– Usually, approximations to the eigenpairs are available. The reason
is that the eigenproblem has to be solved at each iteration in the
SCF cycle. One can use the solutions obtained in the previous step
as initial guesses for the present step.

– Typically, and related to the previous point, the solution algorithms
are iterative, i.e. the solutions are obtained by iterative improve-
ment of approximate guesses.

This is a shallow enumeration of typical approaches:

– The implemented eigensolver is a conjugate gradients method, very
much in the spirit of the approaches described in the papers cited
in Ref. [15]. However, the preconditioning employed in these refer-
ences, which is based on the fact that the kinetic term is diagonal
in a plane wave approach, cannot be used in our real space case.

– Another option is the preconditioned block-Lanczos algorithm [19]
implemented by Saad and collaborators, already used for DFT elec-
tronic calculations. In this case, the preconditioning is based of
high-frequency filtering in real space.

– Another Lanczos-type eigensolver, namely the one implemented in
the arpack package [16]. [20]

– And yet another free implementation of the blocked-Lanczos eigen-
solver is the trlan package. [21] Regarding this approach, and the
Lanczos approach to the eigenproblem, see Refs. [14, 22, 23].

– Finally, another (related) and commonly invoked algorithm suit-
able for this type of calculation is the Davidson algorithm [17],
and, more recently, the Jacobi-Davidson scheme [18]. The precise
implementation that we have tried is the JDQR package [24].



• The scf subroutine, in the scf file, takes care of closing the self-consistent cycle
that solves the Kohn-Sham equations. The basic algorithm is depicted in Fig. 2;
you may practice some programming by implementing it in some way in the scf

subroutine.

�

Figure 2 suggests that the input density (the density that defines the
Kohn-Sham Hamiltonian at each SCF cycle step ĤKS[n

(i)]) is the out-
put density of the previous step (the density obtained from the wave
functions that results of the diagonalisation of the Hamiltonian of the
previous step). This doesn’t work properly, and one has to mix this
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n0(r)

vKS[n](r)

ĥKS[n]ψi = εiψi

n(r) =
∑

i |ψi(r)|2

converged?

yes

no

end

Figure 2: Flow-chart depicting a generic Kohn-Sham calculation

output density with the densities of previous iterations to guarantee the
convergence. The simplest method is the linear mixing:

n(i+1) = αn
(i)
output + (1− α)n(i) , (35)

for some mixing parameter α. You may implement this simple (yet very
safe) scheme; more sophisticated and much more efficients options are
given in Ref. [25].



• Now the gs program should be finished. Run it at will to test it and check that
everything works fine.

If you use the confining potential defined in Eq. (21) and only one occupied orbital
(i.e. one quantum dot with only two orbitals) you should get some output similar
to:

SCF CYCLE ITER # 69

diff = 1.0075E-07

1 7.60044118E-01 8.57155697E-06

SCF CYCLE ENDED

diff = 8.0597E-08

Etot = 8.5714E-01

1 7.60044201E-01 8.57493997E-06
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�

You may check how the eigenvalues depend on the strength of the interaction.
This you can do by varying the Yukawa constant, or in a different manner by
pre-multiplying the Coulomb interaction with a “coupling constant”:

û(r̂i − r̂j) =
λ

r
, (r = |r̂i − r̂j |) . (36)

Note that this coupling constant λ must also affect the exchange and correla-
tion terms in a not-so-obvious way. It will also be interesting to see, depending
on the shape of the confining potential, how the many-body excitation energies
differ from the differences in eigenvalues.



• The total energy. One of the numbers that you get is the total energy of the
electrons, which, if you have studied some DFT, you will know that it is:

E[n0] = TS[n0] + U [n0] + Eext[n0] + Exc[n0] , (37)

where n0 is the ground-state density of the system, TS[n0] is the kinetic energy of
a system of non-interacting electrons with density n0 (i.e. the Kohn-Sham system),
U [n0] is the Hartree energy, Eext[n0] is the energy originated from the external
potential, and Exc[n0] is the exchange and correlation potential.

The previous expression may be rewritten as:

E[n0] =
N
∑

i=1

εi − U [n0] + Exc[n0]−
∫

d3rvxc(~r)n0(~r) . (38)

We suggest you to prove the identity, both theoretically and numerically. In file
energy.f90 an implementation of this last expression. But it would be interesting
to have code for both expressions; in this way we have an extra check of the good
behaviour of the code.

9 Propagators, and the time-dependent program.

• First, take a look at the main subroutine of the time-dependent mode: td. In this
case, you just need to read the file td.f90, since in fact all that this subroutine does
is calling at the end the propagate subroutine.

• There is nothing exciting in subroutine propagate.f90, as you will see. The key
parameters that define the propagation (total time of simulation, and time step) are
defined in the prop time and dt variables. Note that at each time step one needs to
recalculate the Hamiltonian – TDDFT is a problem that involves time-dependent
Hamiltonians, no matter if there is an external perturbation or not.

The real work of propagating the wave functions is done by the propagator sub-
routine.
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• The subroutine that implements the approximator to the quantum mechanical prop-
agator Û(t+∆t, t) is written in the propagator subroutine in then propagator.f90
file. You will be told about propagators in other parts of the School; in this sub-
routine we have implemented the following approximation (you are welcome to try
out other possibilities):

Û(t+ δt) ≈ exp{−iδt
2
ĤKS(t+ δt)} exp{−iδt

2
ĤKS(t)} , (39)

where the (in principle unknown) ĤKS(t + δt) is approximated by considering the
density that results of the wavefunctions obtained by the crude estimation:

φi = exp{−iδtĤKS(t)}φi(t) . (40)

• The previous algorithm requires the computation of the action of the exponential
of the Hamiltonian. For this purpose, it calls the exponential subroutine, which is
the main object of the expo module in the exponential.f90 file.

Elsewhere we will comment on numerical algorithms suited for this particular and
important task. The most obvious you can imagine: truncating the Taylor expansion
of the exponential to a certain order:

exp{−iδtĤKS}φ =
k
∑

i=0

(−iδt)k
k!

Ĥk
KSφ . (41)

This one you have to supply. Then you will see that there are other two options,
which in fact implement the same algorithm, the so-called Lanczos-based approxi-
mation to the exponential. One of them is a simple-minded implementation of the
algorithm, whereas the other makes use of the expokit package, a free library that
implements the same idea in a more elaborate way. For the purpose of running the
code, you may want to try them all and finding out which one of them is faster for
each particular problem.

10 Checking the GKT.

We now have working ground-state and time-dependent codes. We can thus make our
first TDDFT calculations.

• We will start with a two-electron quantum dot, modelled by a harmonic potential,
such as the one defined in Eq. (21). Once that you have obtained its ground-state,
you may start the program in td mode to get its evolution. For that purpose,
however, you have to setup a few things:
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– In propagate subroutine, variables prop time and dt. Regarding the former,
one needs to do a simulation long enough to “see” the frequencies that one is
seeking. For the purpose of our tests, a propagation of about 2000 effective-
mass atomic units should be enough (notice that we are doing calculations very
similar to the ones presented in Ref. [11], where these values are also taken).

– In perturbation subroutine, the shape and magnitude of the initial pertur-
bation. For the purpose of obtaining the optical absorption cross section, one
typically uses a perturbation in the form:

φi(r, t = 0) = eik·rφGS
i (r) . (42)

One may setup the magnitude of the perturbation k and its direction.

Then, one can run the program in td mode. The program sends to standard output
the total energy of the system at each time step; since the many-body Hamiltonian
is time independent, this magnitude should be conserved. If it is not, you must
rethink the time-step, or the characteristics of the propagation algorithm. Also, the
file dipole is written as the program evolves. It contains three columns: the time,
the dipole in direction x, and the dipole in direction y. This is the signal from which
one may obtain the excitation energies.

Then you may analyse where the excitations lie by taking the sine Fourier transform
of the dipole signal. For that purpose, we have put a very simple run mode, -s or
--strength function, whose source is in the sf.f90 file. You may learn how it
works by reading its comments.

Take a look then at the spectrum. The key questions are: how many spectral peaks
do we get? At what energies?

• Now repeat the exercise, but changing to a Yukawa form for the inter-electronic
interaction (setting interaction to YUKAWA in the poisson module. You also have
to specify the γ parameter (gamma variable). A value of 2.0 a.u.−1 is reasonable.
Notice that now you have to disconnect (or change, if you feel like doing that work)
the exchange and correlation parts of the potential.

�

Yes, we cannot use the usual expressions for the exchange and correlation po-
tential. The reason is that they are deduced assuming a Coulomb interaction.
For the exchange-term, if you are curious, one can derive the exchange en-
ergy per particle of a homogeneous fermion gas interacting through Yukawa’s
potential. The result is (for 2D):

εx(n) = −γ

2
{2F1(−

1

2
,
1

2
; 2;

−8πn

γ2
)− 1} , (43)

where 2F1(a, b; c;x) is the so-called Gauss hypergeometric function.

(i) Derive the previous equation. (Hint: – at least this is what I did – Follow
the derivation of the Coulomb exchange energy per particle for a HEG, for
example, in Ref. [29], considering 2D instead of 3D, and Yukawa interaction
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instead of Coulomb interaction). [Please let me know if you obtain a different
result, since I did not check previous equation with any other source...]

(ii) Does the previous equation reduce to the Coulomb expression for γ = 0?

(iii) Implement the previous equation in the code, in order to get a local
density approximation for the exchange of a Yukawa-electrons gas. (Hint:
The hypergeometric functions are defined in the GSL library. We already have
interfaces to GSL functions in the file gslwrappers.c, so you just have to
add the appropriate one.).

I have not even tried to think about the correlation term..




• The question is now: how does the new spectrum compare with the one in which
the Coulomb interaction is used?

• Now, if you still feel like working, repeat previous tests, but using the quartic po-
tential of Eq. (22) – or any other external potential that you find more suitable.
You should see that (i) there is no longer one single peak in the response (note that
there may be large differences in the strengths of the different peaks) and (ii) the
response obtained when using different forms for the inter-electronic interaction is
no longer the same.

11 Linear-Response TDDFT

Finally, we have arranged an almost-complete code that performs TDDFT calculations
within the linear response formalism [30]. This is not the place to derive the equations
that are actually solved; let us just present them very quickly. Let us assume that we
have obtained the set of occupied states {φi} (in the following, i and k run over occupied
states) and a set of unoccupied states {φj} (in the following j and l run over unoccupied
states). You may obtain these states with the gs program, by setting at will the N occ

and N empty variables.

In the linear response formalism, the excitation energies may be obtained by solving
the following eigenvalue equations (the excitation energies are the square roots of the
eigenvalues):

QFI = Ω2
IFi . (44)

The matrix Q ism-dimensional, wherem is the number of occupied-unoccupied KS orbital
pairs. It is defined to be:

Qij,kl = δikδjlω
2
kl + 2

√

λijωijKij,kl

√

λklωkl . (45)

In this equation, ωij = εj−εi, the difference of the corresponding eigenvalues. λij = fi−fj
is the difference in occupation numbers of the orbitals. The key magnitude is the coupling



24 REFERENCES, COMMENTS, ETC.

matrix K:

Kij,kl = 2〈φiφj|
1

|r− r′| |φkφl〉+ 2〈φiφj|
δvxc[n](r

′)

δn(r)
|φkφl〉 . (46)

Very importantly, in the LDA, the second term may be simplified:

δvxc[n](r
′)

δn(r)
= δ(r− r′)

dvxc
dn

[n(r)] . (47)

From now on, we leave you on your own, since this handout is getting too large. Your
task is now to read the excitations program in excitations.f90 file, and see how the
previous equations are implemented, adding whatever pieces may be missing. Then you
can run any of the models of quantum-dots that you wish, and see how these results
compare with the previous approaches.

�

Typically, the previous calculations of the excitation energies is complemented
with the calculation of their strengths. By reading any of the classical refer-
ences of linear response within TDDFT [30], you may locate the appropriate
expressions and implement them (all the necessary quantities are already cal-
culated previously).
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