Static Density Functional Theory: An Overview




compare ground-state densities p(r) resulting from different

external potentials v(r).
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QUESTION: Are the ground-state densities coming from

different potentials always different?
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Hohenberg-Kohn-Theorem (1964)

‘ G: v(r) — p (r) 1sinvertible |




Proof

Step 1: Invertibility of map A

Solve many-body Schrodinger equation for the external potential:
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This 1s manifestly the inverse map: A given ¥ uniquely yields the
external potential.



Step 2: Invertibility of map A

Given: two (nondegenerate) ground states W, ¥’ satisfying

HY =E¥ , H=T+W+V
with

H'Y¥'=E"Y' H'=T+W+V'

tobe shown: Y #¥Y' = p=#p'

cannot happen




Use Rayleigh-Ritz principle:

AE=<Tﬁ\P><<T'ﬁ\P> < H+V-V]w)
=E'+. |:V ) }
B=(w ]y )<(v >
—E+jd3rpr[v }

Reductio ad absurdum:
Assumptionp=p’. Add A and X = E+E <E+F %




‘ Consequence |

Every quantum mechanical observable 1s completely
determined by the ground state density.
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Proof: p > V[p] sove SE. D. [p]

A

observables B: Bi[p] = <CDi [p] B

O, [p]>



What is a FUNCTIONAL?

Elp]

functional

set of functions set of real numbers

Generalization:

\A [p] =V [p] (f) functional depending parametrically on T

=

Vi [P1=w[p](5.. %) oron (3.5
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QUESTION:

How to calculate ground state density p, (f) of a given system
(characterized by external potential V, =» v, () ) without
recourse to the Schrodinger Equation?

Theorem:

There exists a density functional E[p] with properties
i) Eulp]>E, for p#p,
”) EHK[po] - Eo

where E_ = exact ground state energy of the system

Thus, Euler equation = 8(1:) E [p] =0

yields exact ground state density p,.




proof:

formal construction of E[p] :

A—l

for arbitrary ground state density P (f) > [P]

v [p])

define: | E, [p] = <qj[p] ‘T+W+\Afo

>E, for p#p,
=E, for p=p, q.e.d.

Euc[p]= [d'rp(r)v, (r)+ (¥[p] [T+W|¥[p])

N— —

Flp] is “ universal “




‘ HOHENBERG-KOHN THEOREM \

1—1
1. v(r) «—— p(r)
one-to-one correspondence between external potentials v(r) and ground-state
densities p(r)

2. Vanational principle

Given a particular system characterized by the external potential v (r). Then the
solution of the Euler-Lagrange equation

O
5 EHK [p ] =0
p(r)
yields the exact ground-state energy E, and ground-state density p,(r) of this
system

3. Exc|p]= F[p]+“‘p(r)v0 (r)d’r

F[p] 1s UNIVERSAL. In practice, F[p] needs to be approximated




Expansion of F[p] in powers of e’

F[p] = FO[p] + e2FD[p] + e* FP[p] + -

where: FO[p] =T, [p] (kinetic energy of non-interacting particles)

ezF(l) [p] = 622 H P (i)—pr('r ') d’rd’r'+ E, [p] (Hartree + exchange energies)

i (e2 )i g0 [p] =E, [p] (correlation energy)

= Flp] =T, [p]+ <[] (?_pr(f') Frd’r+E, [p]+E. [p]




By construction, the HK mapping is well-defined for all those functions p(r)
that are ground-state densities of some potential (so called V-representable
functions p(r)).

QUESTION: Are all “reasonable” functions p(r) V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985))

On a lattice (finite or infinite), any normalizable positive function p(r), that

is compatible with the Pauli principle, is (both interacting and non-
interacting) ensemble-V-representable.

In other words: For any given p(r) (normalizable, positive, compatible with
Pauli principle) there exists a potential, v, [p](r), yielding p(r) as interacting
ground-state density, and there exists another potential, v [p](r), yielding
p(r) as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the
given p(r) is representable as a linear combination of the degenerate
ground-state densities (ensemble-V-representable).




HK 1-1 mapping for HK 1-1 mapping for
interacting particles non-interacting particles
A\ VA J
Y Y

Ve [P(r) < - p(r) - v [p](r)

Kohn-Sham Theorem

Let p (r) be the ground-state density of interacting electrons moving in the external
potential v (r). Then there exists a local potential v, (r) such that non-interacting
particles exposed to v, (r) have the ground-state density p (1), i.e.

V? , 2
_7_'_‘,8,0(1') ¢;(r)=¢; ¢;(r). Po("):.(zﬂ; ‘(Pj(r)‘
Jj(wi
lowest €;)

ot v,, (r) =, [p,](r

Uniqueness follows from HK 1-1 mapping

Existence follows from V-representability theorem



Define v_.[p](r) by the equation

v, [p](r) = ve [p](r)+] P v, [P](r)

r-r]
v v[p] and v_[p] are well
Vu [P] (r) defined through HK.

KS equations

~— Ve [P, |(r)+vy[p,](r)

v, (r)

fixed
to be solved selfconsistently with P (l‘)

Note: The KS equations do not follow from the variational principle.
They follow from the HK 1-1 mapping and the V-representability
theorem.



Variational principle gives an additional property of v__:

Consequence:

Approximations can be constructed either for E_ [p]
or directly for v_/[p](r).



Proof: E, [p]=T,[p]+[p(r)v, (r)d’r+E, [p]+E,[p]
OB [p]| _ 3T, OF,

=S ] POl

Po Po

Po

0T, = change of T, due to a change op which corresponds to a change ov;

—5ZI o;[p](r (——}PJ [p](r)d’r

_SZj(pJ )) r)d’r= S(Ze jp
_ZSE_I6p d3 jpr r)d’r
J (B

oo (r)o (1) -
= —[3p(r)v, (r)d’r MO
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