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compare ground-state densities  ρ(r)
 

resulting from different 
external potentials  v(r).

QUESTION:
 

Are the ground-state densities coming from 
different potentials always different?
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Hohenberg-Kohn-Theorem (1964)

G: v(r)  → ρ (r)   is invertibleG: v(r)  → ρ (r)   is invertible
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Proof

Step 1:  Invertibility
 

of map A

Solve many-body Schrödinger equation for the external potential:

This is manifestly the inverse map:    A given Ψ
 

uniquely yields the 
external potential.
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Step 2:  Invertibility
 

of map Ã

Given: two (nondegenerate) ground states Ψ, Ψ’
 

satisfying 

Ĥ EΨ = Ψ

Ĥ ' ' E ' 'Ψ = Ψ
with

ˆ ˆ ˆ ˆH T W V= + +
ˆ ˆ ˆ ˆH ' T W V '= + +

to be shown: ' '    Ψ ≠ Ψ ⇒ ρ ≠ ρ

Ψ

Ψ’
ρ = ρ’

cannot happen



Use Rayleigh-Ritz principle:

( ) ( ) ( )3

ˆ ˆE H ' H ' ' H ' V V ' '

E ' d r ' r v r v ' r

= Ψ Ψ < Ψ Ψ = Ψ + − Ψ

⎡ ⎤= + ρ −⎣ ⎦∫

( ) ( ) ( )3

ˆ ˆE ' ' H ' ' H '

E d r r v ' r v r

= Ψ Ψ < Ψ Ψ

⎡ ⎤= + ρ −⎣ ⎦∫

Reductio
 

ad absurdum:
Assumption ρ

 
= ρ’.   Add and ⇒ E + E’ < E + E’



Every quantum mechanical observable is completely 
determined by the ground state density.

Proof:  

observables   

[ ] [ ]1G solve S.E.v  
i    

−

ρ ⎯⎯→ ρ ⎯⎯⎯⎯→ Φ ρ

[ ] [ ] [ ]ˆ ˆB B B i i i:   ρ = Φ ρ Φ ρ

ConsequenceConsequence



What is a FUNCTIONAL?

E[ρ]

functional

set of functions set of real numbers

ρ(r)

Generalization:

[ ] [ ]( )rv v rρ = ρ

[ ] [ ]( )
1 Nr ... r 1 Nr ...rψ ρ = ψ ρ ( )1 Nr ...r

functional depending parametrically on r

or on



QUESTION:

How to calculate ground state density of a given
 

system 
(characterized by external potential  ) without 
recourse to the Schrödinger Equation?

Theorem:

( )o rρ
( )o oV r=∑v

There exists a density functional  EHK

 

[ρ]  with properties 
i)   EHK

 

[ρ] > Eo

 

for  ρ ≠ ρo
ii)   EHK

 

[ρo

 

] = Eo
where  Eo

 

= exact ground state energy of the system 

Thus, Euler equation

yields exact ground state density ρo

 

.
( ) [ ] 0E
r HK =ρ

δρ
δ



proof:

formal construction of EHK

 

[ρ] :  

for arbitrary ground state density         

define: [ ] [ ] [ ]HK o
ˆ ˆ ˆE T W V ρ ≡ Ψ ρ + + Ψ ρ
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for  ρ
 

≠
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= Eo

 

for  ρ
 

= ρo

[ ] [ ]ˆ ˆT W Ψ ρ + Ψ ρ

F[ρ]  is    universal

q.e.d.
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HOHENBERG-KOHN THEOREMHOHENBERG-KOHN THEOREM

1.
 

v(r)                  ρ(r)
one-to-one correspondence between external potentials v(r) and ground-state 
densities ρ(r)

2.
 

Variational
 

principle
Given a particular system characterized by the external potential v0

 

(r).  Then the 
solution of the Euler-Lagrange equation

yields the exact ground-state energy E0

 

and ground-state density ρ0

 

(r)
 

of this 
system 

3.

F[ρ]
 

is  UNIVERSAL.
 

In practice,  F[ρ]
 

needs to be approximated

1—1
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Expansion of  F[ρ]
 

in powers of e2

F[ρ]
 

= F(0)[ρ]

 
+ e2 F(1)[ρ]

 
+ e4 F(2)[ρ]

 
+ ···

where: F(0)[ρ]

 
= Ts

 

[ρ]

 
(kinetic energy of non-interacting particles)
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(Hartree
 

+ exchange energies)

(correlation energy)
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By construction, the HK mapping is well-defined for all those functions ρ(r) 
that are ground-state densities of some potential (so called V-representable

 functions ρ(r)).

QUESTION:  Are all “reasonable”
 

functions ρ(r) V-representable?

V-representability
 

theorem
 

(Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985))
On a lattice (finite or infinite), any normalizable

 
positive function ρ(r), that 

is compatible with the Pauli principle, is (both interacting and
 

non-
 interacting) ensemble-V-representable.

In other words: For any given
 

ρ(r) (normalizable, positive, compatible with 
Pauli principle) there exists a potential, vext

 

[ρ](r), yielding ρ(r) as interacting 
ground-state density, and there exists another potential, vs

 

[ρ](r), yielding 
ρ(r) as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the 
given ρ(r) is representable

 
as a linear combination of the degenerate 

ground-state densities (ensemble-V-representable).



[ ]( )extv ρ r ( )ρ r [ ]( )sv ρ r

HK 1-1 mapping for 
interacting particles

HK 1-1 mapping for 
non-interacting particles

Kohn-Sham Theorem

Let ρo

 

(r) be the ground-state density of interacting electrons moving in the external 
potential vo

 

(r). Then there exists a local potential vs,o

 

(r) such that non-interacting 
particles exposed to vs,o

 

(r) have the ground-state density ρo

 

(r), i.e. 
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proof:

Uniqueness follows from HK 1-1 mapping
Existence follows from V-representability

 
theorem
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,
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Define
 

vxc

 

[ρ](r)  by the equation
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: d r '
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ρ
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vs

 

[ρ] and vext

 

[ρ] are well 
defined through HK.

KS equations

Note:  The KS equations do not
 

follow from the variational
 

principle. 
They follow from the HK 1-1 mapping and the V-representability

 theorem.
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to be solved selfconsistently
 

with ( ) ( ) 2

o jρ r r= ϕ∑



Variational
 

principle gives an additional property of vxc

 

:
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Consequence: 
Approximations can be constructed either for Exc

 

[ρ] 
or  directly for  vxc

 

[ρ](r).
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δTs

 

= change of Ts

 

due to a change δρ
 

which corresponds to a change δvs
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