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Chemistry is about atomic rearrangements

From Wikipedia:

Chemistry (from Egyptian keme (chem), meaning "earth”) is the science concerned with the
composition, structure, and properties of matter, as well as the changes it undergoes during
chemical reactions. Historically, modern chemistry evolved out of alchemy following the chemical
revolution (1773). Chemistry is a physical science related to studies of various atoms, molecules,
crystals and other aggregates of matter whether in isolation or combination, which incorporates

the concepts of energy and entropy in relation to the spontaneity of chemical processes.
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Chemistry is about atomic rearrangements

We need dynamics to model chemical reactions ....
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Chemistry is about atomic rearrangements

. and a way to describe the interaction with the environment.
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- o o]
Chemistry is about atomic rearrangements

From Wikipedia:

Chemistry (from Egyptian keme (chem), meaning "earth”) is the science concerned with the
composition, structure, and properties of matter, as well as the changes it undergoes during
chemical reactions. Historically, modern chemistry evolved out of alchemy following the chemical
revolution (1773). Chemistry is a physical science related to studies of various atoms, molecules,
crystals and other aggregates of matter whether in isolation or combination, which incorporates
the concepts of energy and entropy in relation to the spontaneity of chemical processes.
A theoretical /computational approach will therefore need:

o theoretical model for matter in the energy range [0 to few hundred of eV]

@ description of chemical reactions (structural changes)

@ description of the interaction with the environment (condensed phase)
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Chemistry is about atomic rearrangements

From Wikipedia:

Chemistry (from Egyptian keme (chem), meaning "earth”) is the science concerned with the
composition, structure, and properties of matter, as well as the changes it undergoes during
chemical reactions. Historically, modern chemistry evolved out of alchemy following the chemical
revolution (1773). Chemistry is a physical science related to studies of various atoms, molecules,
crystals and other aggregates of matter whether in isolation or combination, which incorporates
the concepts of energy and entropy in relation to the spontaneity of chemical processes.

. which translate into:

@ theory of electronic structure and ways to solve the corresponding equations

@ solution of the equations of motion for atoms and electrons +
statistical mechanics (from the microcanonical to the canonical ensemble)

@ approximate solutions for the description of the interactions with the rest of
the universe
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Photochemistry is about atomic rearrangements

From Wikipedia:

Photochemistry, a sub-discipline of chemistry, is the study of the interactions between atoms,
small molecules, and light (or electromagnetic radiation). [...] Photochemistry may also be
introduced to laymen as a reaction that proceeds with the absorption of light. Normally a
reaction (not just a photochemical reaction) occurs when a molecule gains the necessary
activation energy to undergo change. A simple example can be the combustion of gasoline (a
hydrocarbon) into carbon dioxide and water. This is a chemical reaction where one or more
molecules/chemical species are converted into others. For this reaction to take place activation
energy should be supplied. The activation energy is provided in the form of heat or a spark. In
case of photochemical reactions light provides the activation energy.

Interesting there are no entries for Photophysics (Jan 2012).
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Photochemistry is about atomic rearrangements

Absorption of light

Electronic excitation
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Why TDDFT in chemistry?
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Wavefunction-based methods for excited states properties

Most of the wavefunction-based methods in quantum chemistry are more
accurate than TDDFT (using the standard exchange and correlation functionals)
but their use is limited to small systems (up to 10-20 atoms).

The ZOO of quantum chemical methods

Wavefunction based SR MR
methods suited for (single reference = 1 Slater (multi reference = more than 1
excited states calc. determinant) Slater determinant weighted by the
coefficients C;)
(¢]] CIS (D) Full CI
(Configuration Interaction) (In bracket extension via CISD, QCISD
perturb)
CcC CC2 MRCC
(coupled-cluster) (SRCC with approximated CCSD, CCSD(T)
second order corrections)
SCF - MCRCF
(self-consistent field. CASSCF, CASPT2
Orbitals optimized like in
HF)
MPn - MP2 and MP4
(Mgller-Plesset)
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I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT for excitation energies of large molecules

Among the single reference (SR) (plus perturbation) methods:

o CIS : is practically no longer used in the calculation of excitation energies in
molecules.
The error in the correlation energy is usually very large and give qualitatively
wrong results.
STILL good to gain insights into CT states energies.
Largely replaced by TDDFT.

@ CC2 : Is a quite recent development and therefore not widely available.
Accurate and fast, is the best alternative to TDDFT.
Good energies also for CT states.
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I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT for excitation energies of large molecules

Among the single reference (SR) (plus perturbation) methods:

o CIS : is practically no longer used in the calculation of excitation energies in
molecules.
The error in the correlation energy is usually very large and give qualitatively
wrong results.
STILL good to gain insights on CT state energies.
Largely replaced by TDDFT.

@ CC2 : Is a quite recent development and therefore not widely available.
Accurate and fast, is the best alternative to TDDFT.
Good energies also for CT states.

Multi reference (MR) ab initio methods are still computationally too expensive for
large systems (they are limited to few tenths of atoms) and for mixed-quantum
classical dynamics. However, there are many interesting new developments (MR-
CISD, G-MCQDPT?2).

TDDFT for excitation energies



I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT for excitation energies of large molecules

TDDFT :
@ is formally exact and improvements of the xc-functionals is still possible.
@ is still computationally more efficient and scales better than ab-initio
methods.
@ can be used for large systems (up to thousand atoms).
@ can be easily combined with MD (mixed quantum classical MD)
e BUT is not a black box !
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I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT for excitation energies of large molecules

TDDFT :
@ is formally exact and improvements of the xc-functionals is still possible.
@ is still computationally more efficient and scales better than ab-initio
methods.
@ can be used for large systems (up to thousand atoms).
@ can be easily combined with MD (mixed quantum classical MD)
e BUT is not a black box !

JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 12 22 SEPTEMBER 2002

Failure of density-functional theory and time-dependent density-functional
theory for large extended = systems

Zheng-Li Cai, Karina Sendt, and Jeffrey R. Reimers?
School of Chemistry, The University of Sydney, New South Wales, 2006 Australia
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I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT for excitation energies of large molecules

TDDFT :
@ is formally exact and improvements of the xc-functionals is still possible.
@ is still computationally more efficient and scales better than ab-initio
methods.
@ can be used for large systems (up to thousand atoms).
@ can be easily combined with MD (mixed quantum classical MD)
@ BUT is not a black box !

Chemical Physics Letters 461 (2008) 338342
Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

Failure of time-dependent density functional theory for excited state surfaces
in case of homolytic bond dissociation

K.J.H. Giesbertz, E.J. Baerends*

Afdeling Theoretische Chemie, Vrije Universiteit, De Bosleloan 1083, 1081 HY Amsterdan, The Netherlands
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I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT for excitation energies of large molecules

TDDFT :
@ is formally exact and improvements of the xc-functionals is still possible.
@ is still computationally more efficient and scales better than ab-initio
methods.
@ can be used for large systems (up to thousand atoms).
@ can be easily combined with MD (mixed quantum classical MD)
@ BUT is not a black box !

JIAICIS

ARTICLES

Published on Web 03/06/2004

Failure of Time-Dependent Density Functional Theory for
Long-Range Charge-Transfer Excited States: The
Zincbacteriochlorin—Bacteriochlorin and
Bacteriochlorophyll—Spheroidene Complexes

Andreas Dreuw*' and Martin Head-Gordon*
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I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT can easily be combined with molecular dynamics

Ultrafast tautomerization of 4-hydroxyquinoline-(NHj3),
Hydrogen or proton transfer along this molecular wire?
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CIS/CASSCEF for the in-plane geometry — 7r* /mo™* crossing leads to a hydrogen
atom transfer.
S. Leutwyler et al., Science, 302, 1736 (2003)
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I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT can easily be combined with molecular dynamics

Ultrafast tautomerization of 4-hydroxyquinoline-(NHj3),
Hydrogen or proton transfer along this molecular wire?

What about TDDFT combined with nonadiabatic dynamics?
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I EEEEEE—————— . \iny TDDFT in chemistry?
TDDFT can easily be combined with molecular dynamics

Ultrafast tautomerization of 4-hydroxyquinoline-(NHj3),
Hydrogen or proton transfer along this molecular wire?

What about TDDFT combined with nonadiabatic dynamics?

TDDFT for excitation energies



N 1, . ) 'y TDDFT in chemistry?

TDDFT can easily be combined with molecular dynamics

Ultrafast tautomerization of 4-hydroxyquinoline-(NHj3),
Hydrogen or proton transfer along this molecular wire?

With TDDFT, we observe:

@ Symmetry breaking.
@ No crossing with the mo™* state.

@ Proton transfer instead of a hydrogen transfer.

Guglielmi et al., PCCP, 11, 4549 (2009).
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N 1, . ) 'y TDDFT in chemistry?

TDDFT can easily be combined with molecular dynamics
Ultrafast tautomerization of 4-hydroxyquinoline-(NHj3),

Hydrogen or proton transfer along this molecular wire?
Similar observations with CASPT?2 calculations:

e 2%% [aebes=tN

v em P&
— TSer
21 v
-1. 248 "-‘5&‘?‘0 =

q.f%;%b PT2
&

=0

ENOL S,

$5.4 KETO2 S,

412
823 45.¢

KETO So

4
e
9.9

ENOL Sy

Forcing in-plane symmetry: hydrogen transfer.

Unconstrained geometry optimization leads to a proton transfer!
Fernandez-Ramos et al., JPCA, 111, 5907 (2007).
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N . .U | 'y TDDFT i chemistry?
Main topics of this set of lectures

Topics of this set of lectures
© Review basic theory of TDDFT and LR-TDDFT.
@ Look at critical failures of current xc-functionals.
© Ab initio molecular dynamics.
© Nonadiabatic dynamics using LR-TDDFT.
@ Coupling with the environment (TDDFT/MM).
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© Overview
@ Why TDDFT in chemistry?

© TDDFET and LR-TDDFT - Theory
e TDDFT
o LR-TDDFT
o LR-TDDFT
o Casida equations
@ The Sternheimer equations and the LR-TDDFT forces

© Examples of LR-TDDFT calculations
@ When does it work?
@ Some known failures
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TDDFT and LR-TDDFT - Theory

© TDDFET and LR-TDDFT - Theory
e TDDFT
o LR-TDDFT
o LR-TDDFT
o Casida equations
@ The Sternheimer equations and the LR-TDDFT forces
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TDDFT and LR-TDDFT - Theory BNislolap

The time-dependent KS equations

The role played by the second Hohenberg-Kohn theorem in the derivation of the
time-independent DFT equation is now taken by a variational principle involving the action,

t 9 R
A= [l - FON @) d
t ot
The wavefunction is determined up to a time-dependent constant

W(ry, ... 1y, t) = W[p](t)e =)

The effect of the phase factor is simply to contribute with an additive constant to the total
action,

Alp] = /tn(q’[ﬂ](f)"’% — ()W [p](t))dt + a(t1) — a(to) = Alp] + const.

Thus the time-dependent density determines the action, up to an additive constant.

RG I

The true time-dependent density is the one which makes the action stationary,

Al _ [t ou(e)
‘6p(r7r)‘/< St 31157 ™

Corrected action density functional: R. van Leeuwen, Phys. Rev. Lett., 80, 1280 (1998).

AW (t))dt + c.c.



TDDFT and LR-TDDFT - Theory Saublslag

The time-dependent KS equations

The functional A[p] can be written as

Al = 817 - [ ar [ atvv o)

where the universal functional B[p] is independent of the external potential.
In analogy with to the time-dependent Kohn-Sham equation, we may assume an
independent particle system whose orbitals 1;(r, t) have the property:

0 =3 lilr. )P

Using this definition, we can write B[p] as:
.0 1,
Blo] = Z [ el Dlis = 5 Vilwi(D)

- 7/ dt//dr drz p(”’t)p(rf"t) Asclp]

where A, [p] is the exchange and correlation action functional.
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VEEF
The time-dependent KS equations

Applying the variational principle to

Al = 817 [ ar [ aevv o)

with the constraint that

N

,O(I‘, t) = Z fiW)i(": t)‘2 = Z W}f(n t)|2
leads to the time-dependent Kohn-Sham equation:

[—§v2 el t>] e, ) = i (e, )

Ve (1, t) = vi(r, t) + vie(r, t) + Vexs(r, t)
The unknown is now the time-dependent xc potential

0 Ax[p]
op(r, t)

TDDFT for excitation energies
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TDDFT and LR-TDDFT - Theory Saublslag

Adiabatic Approximation in TDDFT

In analogy to the traditional time-independent Kohn-Sham scheme, all exchange and
correlation effects in TDDFT are collected in . A«[p]/dp(r, t).

In the formal derivation of the time-dependent density functional equations (both the
time-dependent KS equations and the linear response matrices) no approximations are
made, and therefore the theory is in principle exact.

However, the exact time-dependent exchange-correlation action functional is not known,
and approximations have to be introduced in order to perform numerical calculations on
real systems.

TDDFT for excitation energies



VEEF
Adiabatic Approximation in TDDFT

Within the adiabatic approximation (AA),

3 Axelp]  0Excp]

veelPl(n 8) = 50000 ™ o)

p=p(r,t)

We assume that the exchange and correlation potential changes instantaneously when
the electron density is changed! No retardation effects!

we can use all xc functionals, vic(r), derived for the time-independent DFT also for the
time-dependent functionals, vic(r)|: and fc(r, )| (including hybrid functionals).

The TDDFT xc-kernel used in the AA becomes

8% Exc[p]
27 (et r ') = 6(t — t) ———2 .
e S (1T (3)

Important approximation! We neglect all retardation or memory effects!
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ALDDET
Real time dynamics in TD Kohn-Sham scheme

1 .0
~372  verr, )| (e, ) = i,
o Propagation of the time-dependent Kohn-Sham equations:

Yi (t) = U (t, to) i (to)

t
U (t, ) = Texp [I/ His (t') dt’]
to

@ Since the real dynamics of the electrons has high frequencies, the time step
for propagation is very small (~ 1073 atu)

@ Problem: we need to find a good approximations for the time-evolution
operator 1.

IFor a very complete discussion, see A. Castro, M. A. L. Marques, and A. Rubio, J Chem
Phys 121, 3425-3433 (2004).
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ALDDET
Propagators

@ Iterative Chebysheff interpolation scheme, combined with a two step Runge-Kutta scheme to maintain
order At® accuracy.
A first guess for the potential at time to + At/2, ver(r, to + At/2), is obtained by evolving the KS
states using the effective potential at time tp. The full time-evolution is then achieved by evolving the
wavefunctions for the full time step At, using the approximated potential computed from the half step.
For a given effective potential veg(r, t), the solution of the time-dependent Schraodinger-like equations,
for both half and full steps, is accomplished by iterating until convergence the set of integral equations

n ) t0+At ~ e e

¢\ (1o + At) = ¢\ (8o + At) — ,/ dr ks ({8 (1)}, 7) 64" (7).
fo

The integrals are computed by Chebyshev interpolation in the time domain.

@ The implicit midpoint rule, also known as Crank-Nicholson method

1— LAt Fks(t + At/2)

Oen(t + At, t) = 2
on ) 1+ LAt Frs(t + At/2)

The CN scheme is unitary and preserves time-reversal symmetry.

Both schemes are implemented in CPMD.
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VEEF
Example: Time propagation of the electronic density

Electronic spin density dynamics (pq(r, t) — ps(r, t)) dynamics after photoinduced
ionization on a simple model compound.
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VEEF
Absorption spectra calculation

© Ground state Kohn-Sham calculation.
@ Time propagation of the KS orbitals:

Apply a short perturbative field (usually an
instantaneous perturbation on the KS orbitals).
Propagate the perturbed orbitals for a long time
(the longer the simulation, the higher the energy
resolution).

4 4 © Sample the dipole moment time series p.(t)

© Fourier transform to obtain the dynamic polarizability
Qe (w) °
’ ! @ Spectrum can be obtained from the optical
’ absorption cross-section:

N,N-dimethylaminobenzonitrile Aw
(DMABN) o(w) = ——S{a(w)}

?more will come soon on this topic...

TDDFT for excitation energies



TDDFT and LR-TDDFT - Theory Saublslag

Absorption spectra calculation
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Figure: Dipole moment in the x-direction: pu(t)
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VEEF
Absorption spectra calculation

0.4 . .
2 ﬁo.s— i
5 | ]
=
« 02 -
J ) s -
=
e 4
E M
4 S n B
! ) S |
o ! ! i
N,N-dimethylaminobenzonitrile 10 15
(DMABN) eV

Figure: Extraction of the absorption spectrum.
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Linear response in TD Kohn—-Sham scheme

Linear response time-dependent density functional theory
(LR-TDDFT); The chemists prospective

Different solutions:

@ Mark E. Casida, Time-Dependent Density Functional Response Theory for
Molecules, in " Recent advances in Density Functional Theory”, ed. D.P. Chong,
Singapore, World Scientific (1995), p155.

@ Excitation Energies from Time-Dependent Density-Functional Theory, Petersilka,
Gossmann & Gross, PRL 76, 1212-1215 (1996)

@ The Sternheimer time-dependent perturbation scheme. See for instance
Excited state nuclear forces from the Tamm—Dancoff approximation to
time-dependent density functional theory within the plane wave basis set
framework, Jirg Hutter, JPC (2003)
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Time-Dependent Density Functional Response Theory
(LR-TDDFT).

In the linear response formulation of TDDFT (LR-TDDFT) one studies the density
response of a system under the influence of an external time dependent perturbation,

p(r,t) = po(r) + 6p(r, t)

The basic quantity in the LR-TDDFT is the density-density response function

Sp(r, t)
t / t/ — )
X(I’, L ) 6Vext(r,7 t/)

Yo

which relates the first order density response dp(r, t) to the applied perturbation dv(r, t)

t
S, t):/ ot /dr'av(r',t')x(r, £, ),
to

where the total external potential, vex(r, t) is given by the sum of the static ground state
KS potential, vo(r), and the external potential dv(r, t).
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CRTDDET
LR-TDDFT in Physics and Chemistry

There are different ways to represent “quasi-particles” states in many-body systems
@ Bloch functions
@ Wannier functions
@ Hartree-Fock orbitals

@ Kohn-Sham orbitals

> Molecular systems are not translational invariant and therefore the momenta are not
good quantum numbers. [We cannot FT (r1 — r2)]

> HF and KS orbitals constitute a discrete basis of one-electron states {¢i(r)} for the
expansion of all many-body operators.

> In chemistry the LR-TDDFT equations are expressed in matrix form using the
Kohn-Sham base.

TDDFT for excitation energies



CRTDDET
LR-TDDFT in Physics and Chemistry

The Green's function in the states representation is given by
G(x,t, X/, t/) = Z qu(t, t/)¢; (X)¢q(x/)
Pq
with

Gpa(t, t') = (Wo| T[a (£)a(t")]|Wo) -

For the first-order HF Green's function, in the time evolution of the state k, Gy (w) = Gi(w), the only
interaction terms that give a non-zero contributions are of the form Vi and Vi (with contracted / lines)

and the corresponding Hartree-Fock self-energy (X = Zk>kF ¥ 1) is given by

Z':F = Z (Vi — Vi)

1l <ke
NEVENNRN | - A\/\\\//"/
« g P
!
!
The Dyson's series gives the "dressed” propagator
1

@) = e 1) — T (@)

or equivalently
Gu(w) = G{(w) + GR(W)E{" () Gi(w) -
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TDDFT and LR-TDDFT - Theory EZslolay

Time-Dependent Density Functional Response Theory
(LR-TDDFT).

The first order density response dp(r, t) can be expanded in the basis of unperturbed
orbitals {¢;}

dp(r, t) /dt /dr Sv(r', t) x(r, t,r', t))

=3 [ [ sule'€) (6B sl 7€)

ijki ¥t

=5 o ([ a5 )90 6 Ol )

ijki o

= Z/ dt’ via(t' )7 (1) (r)xiju(r, t, ¢ t)

ijki ¥t

Z(/ dt’ Z(;Vk/ Xii ki (r, £, t)> F(r)gi(r)
= Z(SPU (t)7 (r)g;(r)
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Time-Dependent Density Functional Response Theory
(LR-TDDFT).

Expressed in matrix form, the linear response of the electronic density is

t
5P,'j(t) = / dt’ Zévk/(t/)xij,k/(n t, I‘,, t/)
kl

to

In Fourier space,

P W) Zévk/ w)xij ki (w)

Where
x(r,r',t—t) = I'IR(r, r't—t)
N(r, 't —t") = (Wo| T[] (r, f)ﬁH(f )L (r' ) bu(r', )] Wo)
=81 (NS(NGi(r)di(r)Nya(t — t')
ij kI
and

Myt — ") = (Wo| T[a],(£)2m(£)am (') ar(t")]|Wo)
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CRTDDET]
Linear response TDDFT

The response function for the physical system of interacting electrons, x(r, t,r',t'), can
be computed from the Dyson-like equation

X(rv ta rl7 tl) = XS(r7 t7 I’/, tl)+

+/dr1dt1/dr2dt2 xs(r, t, r1,t1)<6(t1 —t) + 6vxc(rl’t1)>x(l’27t2,r7 t1),

Irn—r2| — Sp(r2, t2)

whre xs(r, t,¢', t') is the “non interacting” density response

o w) = Z(fk 3 ﬁ)W(f)wj(r)wj(f’)wZ(f’)

w— (¢ —e) +in
(n is a positive infinitesimal)

For xs(r, ¢, w) evaluate K |
I - H:: \y*/ 61/(6//
i j AN
g,%(w) is the Fourier transform of the single-electron propagator
fi ) }

w—¢€+in w—¢€ —in

g (w) = i [
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CRTDDET]
Linear response TDDFT

The relationship between the exact density response function and the Kohn-Sham
response function, is compactly expressed in term of the inverse of their corresponding
Fourier transform the time, t, — t1,

1

- m - f;<c(|'17 r2>w)

X, w) = xg (' w)

In summary, the problem of finding excitation energies of the interacting system has been
mapped into the search for the poles of the response function.

{wi, i} = poles of x(w) = zeros of x '(w)

In fact, x(w) has poles at the true excitation energies w;, while the non-interacting
response, xs(w), has poles at the Kohn-Sham orbital energy differences.

TDDFT for excitation energies



TDDFT and LR-TDDFT - Theory RRE:Syslslay

Linear response TDDFT in molecular spectroscopy

Of particular interest in molecular spectroscopy is the computation of the dynamic dipole
polarizability, a(w), which is the response function that relates the external potential to
the change in the dipole (without loss of generality we consider the effect on the
x-component of the dipole induced by an electric field polarized in the z-direction).

px(t) = pix +/ dt’ o (t — t)E(t') + ...
Using the convolution theorem
)= [ dg(e— O)h(r) = F(w) = g(w)hle)

The Fourier transform of the dynamic dipole polarizability can be written as

Opx(w) = ae(w) E(w)

TDDFT for excitation energies



TDDFT and LR-TDDFT - Theory RRE:Syslslay

Linear response TDDFT in molecular spectroscopy

Spx(w) = vz (w) Ex(w)

Using the previously derived expression
(SPL, Z (5Vk/ Xij, kl

and knowing the definition:

Opix(w) = ZXU(SPU(W qudvk/ w) X,k (W)

ijkl

== > xiEx(w)zuxi (@),

ijkl

we obtain:

Opx
(W) = & E:d) == xiXiju(w)zu

ijkl

(xi = (Wil &)
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TDDFT and LR-TDDFT - Theory RRE:Syslslay

Linear response TDDFT in molecular spectroscopy

According to the sum-over-states (SOS) relation,
_ fi
a(w) = ZI: w? — w?

and considering that

2 N N o
fi = §w/(|<‘|’ol><l‘|’/>|2 + [(Wolg|Wi)|* + [(Wo|2|W)[)
and
w| = E/ — Eo

the poles of the dynamic polarizability determine the excitation energies, w;, while the
residues, f;, determine the corresponding oscillator strengths.

Opux(w
e (w) = £ )) %;XUXUM(W)ZH
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(Casidaleqtaions
The Casida equations

By expressing the dynamic polarizability in the basis of unperturbed MOs, Casida showed
that the TDDFT excitation energies (solutions of x~!(w) = 0)

N 0) = X (1 0) — e — flrn,e2,0)
r1 —raf
are solutions of the system of equations
A(w) B(w) X | 10 X,
B*(w) A*(w) v, | [0 -1 Y
Here
Aiacr,jbf(w) == 50T5U5ab(5ao' - 6io‘) + (Ia|fH + ch;‘r(w)‘Jb)
Biao jor (w) = (ialfu + £7(w) b)),
where

+oo 6% Axe| ]
for . — iw(t;—tp) xelP1, Pl d(ti — ).
xc (rl’ 2 w) /;oo ¢ 5p(7(r17 tl)de(r27 t2) ( ' 2)
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TDDFT and LR-TDDFT - Theory Casida equations

The Casida equations - adiabatic case

In the AA Casida's equations simplify to

A B X |__ 1 o Xi
B* A v | ¥lo 1 7R
Where . .
Afaa,jbr = 5075U53b(530' - Eia’) + (’a|fH + f;gTle)
Biaa,jb-r = ("a|fH + f;fch‘bJ)a
and 2 ]
Exc P
fe (r,n) = ——F—~———
1) = G ()60 (1)

Note that the frequency dependence of the matrices A and B drops.
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Adiabatic Approximation in LR-TDDFT

Since also f,c becomes frequency independent, the number of solutions of the
LR-TDDFT equations is just equal to the dimensions of Casida’s matrices.

This corresponds exactly to the number of possible one-electron excitations in the
system. Hence we conclude that, although the AA does include important correlations
effects, it is essentially a one-electron (CIS-like) theory.

LR-TDDFT within the AA has become the most widely used implementation of TDDFT.
This theory is known to work well for low-lying excitations of primarily single electron
character, which do not involve too large charge density relaxations and which are at
least somewhat localized in space.

Caution

Notation: AA or ALDA are both used. Sometimes, ALDA means that, in addition to
AA, LDA functional is used for the xc-kernel.
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Casida equations
Tamm-Dancoff approximation (TDA)

The TDA consists of setting B = 0 in Casida equation. We obtain:
A)?/ = w,)?,

which is comparable to the CIS equation (TDA on the TDHF equations), with the
difference that in LR-TDDFT the elements of the matrix A depend on the
exchange-correlation kernel.

Physically, setting B = 0 means neglecting all contributions to the excitation energies coming
from the de-excitation of the correlated ground state. Even though an approximation, the TDA
can improve the stability of the TDDFT calculations with most of the standard (approximated)
functionals. In particular, decoupling the DFT ground state problem from the calculation of the
LR-TDDFT excitation energies, TDA can provide better PESs especially in the regions of strong
coupling with the ground state. This is of crucial importance for all nonadiabatic MD schemes
based on LR-TDDFT PESs.

TDDFT for excitation energies



(Casidalequations
How to get excitations energy using LR-TDDFT?

@ Do a ground state Kohn-Sham calculation: obtain {¢;} and the corresponding {¢;}.
@ Form the matrices A (and B if TDA is not used).

© Diagonalize the full matrices or used specific algorithm to extract the first roots:
obtain {w/} and f.

@ Informations about the character of the excited states can be obtained from the
vectors X; and Y, (interpretation).

TDDFT for excitation energies



(Casidalequations
How to get excitations energy using LR-TDDFT?

@ Do a ground state Kohn-Sham calculation: obtain {¢;} and the corresponding {¢;}.

@ Form the matrices A (and B if TDA is not used).

© Diagonalize the full matrices or used specific algorithm to extract the first roots:
obtain {w/} and f.

@ Informations about the character of the excited states can be obtained from the
vectors X; and Y, (interpretation).

Assignment problem: the Casida’s Ansatz:

Si[{¢}]1 = cho 3L, 210 Po[{6.}],
with
! Slacl

elaa
Wol

Ciae =

where ®o[{¢.}] is the Slater determinant of all occupied KS orbitals {¢, } 1, which, at a
turn, are promoted into a virtual (unoccupied) orbitals, ¥, .
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The Sternheimer equations and the LR-TDDFT forces
The Sternheimer equations
Notation:

The KS equations are defined as

o
His| i) = D €iioldjo)
j=1

with 1
His(r) = _Evz + Veer(r)

and e the matrix of Lagrange multipliers

cio = (9% | His|d)s) -

The ground state density becomes

Zas r)¢is (r)
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The Sternheimer equations

We define the perturbing potential as
Aov(r, t) = Aov T (r)e’t + Adv ™ (r)e !
for which
bjo(r, t) e Z)‘m

In first order (and setting A = 1)

oD(r t) = oL (e + ol (r)e ™
from which )
pO(r,t) = p' (re™" +p~(r)e ™"
with

Z (185 () + s (r) b5 (r)
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The Sternheimer equations

The perturbing potential induces the effective potential energy change

6V§f(r7 t) = §vi(r)eii“’t + (;VSiCF(r)eiiwr

52E,
3 7 XC +,0
= > [ <|r_r, 502 (1) 3p. () ppm>5”f(’)

T€{a,B8}
Inserting into the time-dependent KS equation and keeping only O()\) one gets

with

Until now the frequency w is still arbitrary.

NC

> (e — (HRsdy £ w)dp)|dls)) = QF (0VF + 6VEer () 412)

=

where the response orbitals are chosen perpendicular to the occupied Kohn-Sham states,

169), (62[6(0) = 0, and Q7 =1 — 25 [6%,) (6%, .
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The Sternheimer equations

The Sternheimer equation is in the form
(A — wB)dp(w) = dv(w)

and therefore x ' (w) = (A — wB).
The resonant energies are therefore computed from the solution of the generalized
eigenvalue problem x(w) =0

occ

> (HEsb — €io)|62)) + Q7 §VEr|4D) = Fwlo'E)

-
j=1
Solution strategy:
1. Solve the unperturbed KS equation and get \qﬁl.{:})
2. Solve the Self-Consistent Sternheimer equations for
> the excitation energies wy

> the linear response orbitals |¢Ef),)

(the index I labels the different solutions)
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The Sternheimer equations and the LR-TDDFT forces
The Sternheimer equations

Properties of the Sternheimer approach

@ The evaluation of the Sternheimer equations requires only occupied KS orbitals,
¢io(r): this is an important advantage compared to Casida equations.

@ The unoccupied space is only referenced through the projector Q7.

@ The KS orbitals do not have to be in canonical form: no diagonalization of Hgs
required

@ Virtual KS states only computed for the assignments of the excitations.
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The Sternheimer equations and the LR-TDDFT forces
The Sternheimer equations: the matrix form

Expanding the ground state KS orbitals and the linear response orbitals in an orthogonal
basis set {r,(r)} definies the expansion coefficients {c {0}} and {c;if}}

pic
M
0 0
¢l{ } Z C;IU}K/P(
M
+ +
¢i{o' } Z C;IG'}KP(r

In the following, the indeces i,j, k, ... run over the KS states (1,..., Ny, and the
indeces p, q,r,... refer to the basis functions (1,..., M).
Introducing the new set of coefficients

1 -
Xpi = 5(C{f} + C{- })
o= 55 i)

For a real perturbation: 0p°(4+w) = 0p?(—w) and 6V (+w) = VEr(—w)
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The Sternheimer equations and the LR-TDDFT forces
The Sternheimer equations: the matrix form

Matrix form of the Sternheimer equations

A(A + B)x = w’x
(A + B)Ay = w’y

The (super-) operators A and B are defined as (H = Hks)
Apio,qir = ((H)pq05ﬁ - Eijfr(qu)‘sﬂ‘r
plo‘ gt — Z Qtpcr C,Eg-} J{SS-})*KtrU,qST

rst

where

o 0 0
Hpqo‘ = ("’ile ‘K’Q> € = Z ( 1;{70}) ancjgd}
pq

0}y+ {0 o
Ppgo = Z C,{ 4 u{qa} » Qpgo = 0pg — Ppgo,  Wpgo = (rp|0Vser|rq)

1 52E,
Kiogsr = | d°r /d3 Kor X
o = [ Y] [ I P Py

TDDFT for excitation energies
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Analytic derivatives

dEtDt[c{o}, X, y] dEKs[c{O}] dw[c{o}, X, y]
= +
dn dn dn

where 7 is an external parameter.

A staightforward calculation of dw[c{o},x]/dn requires derivatives of the MO coefficients
which are computationally very costly.
(Especially when 7 represents the f nuclear degrees of freedom.)

strategy

Derive an extended Lagrangian that is vatiational with respect to c®} and x, y in order
to eliminate the derivatives of the MO coefficients.

Ref: Sternheimer-Dalgarno interchange theorem: R.M. Sternheimer, H. M. Flory, Phys.Rev. 92, 1460 (1953);
S. Dalgarno, Proc. R. Soc. London, Ser. A, 247, 243 (1958).
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TDDFT and LR-TDDFT - Theory The Sternheimer equations and the LR-TDDFT forces

LR-TDDFT forces: the extended Lagrangian formalism

The TDDFT forces can be derived in a compact way using the Lagrangian formalism.

In the Tamm-Dancoff approximation to the TDDFT equations, the linear response ampli-
tudes, ¢!}, are set to zero and the Sterhheimer equation becomes (x,, = -Y,)
(A+B)x = wx

The LR-TDDFT/TDA Hermitian eigenvalue equation is related to the extended energy
functional

Lrpa[c® x,w] = x"(A+ B)x — w(x'x — 1)

° ETDA[C{O},X,w] is variational in x and w.

@ we have the following stationary conditions:

0Lipa .
v (A+B)x—wx=0
0L 1o =xx—1=0
ow
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The Sternheimer equations and the LR-TDDFT forces
LR-TDDFT forces: the extended Lagrangian formalism

The extended Lagrangian functional that is variational in all wavefunction coefficients
{0}
ctlix s

‘Ctot[c{o}7 X, W, A7 Z] =

= ['KS[C{ } /\] + ACTDA[C{ ' , X u-)] + Z Zpla {Z Hpqo'C;,OU} Z C{O}/\jlo'}

pioc
where

ﬁxs[c“’},A]EKs[c{"}]ZAvv{Z (i) el — 5}

ijo P

Lrpalc®,x,w] = x" (A + B)x —w(x'x — 1)

and Z is the matrix od Lagrangian multipliers associated with the stationarity of the
Kohn-Sham orbitals.
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LR-

TDDFT forces: the extended Lagrangian formalism

Properties of the total extended Lagrangian (within the TDA):

£mt[c{0},x,w,/\, Z] is required to be stationary with respect to all its variavles,
% x WA, Z.

[,tc,t[(:{(”,x,(.u7 A, Z] is a fully variational expression for the excited state energy
functional.

variation with respect to w and x give the LR-TDDFT/TDA equations.

variation with respect to Z enforce the ground state KS equations and the MO
orthogonality.

thanks to the variational principle, the implicit dependence of L through the MO
coefficients drops:
Z oL ac{"}
8C{O}

L¢or depends only from the exp/icit dependence on the external parameter . We
can place the total derivatives 2 a = £ with the "explicit” one £,

TDDFT for excitation energies
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TLR-TDDFT forces: the extended Lagrangian formalism

Considering 1 as a nuclear displacement

= Z Z(pra)*-A(")Xq/T + Z Zpia HF(’ZZf tfl(if}

pioc  qjT pqic
_2 : § :} : {0} {0}
(XP’U PGOXQ’U XP’C’ ula) HUVU V_jo' Xpjo
pqic pjic uv

Introducing the density matrices

X 0 0 *
0Pgps = Z(Xpw Xgio + ZX’JU ,f,g} F;{,a} (Xriv)
rij
5P¢i’7 Z ZP’O'CqAU

Finally,

Z P (5P;po +9 qpo)

pqo
For the full derivation see:

o F. Furche, R. Ahlrichs, J, Chem. Phys.,117 (2002) (localized basis sets)
@ J. Hutter, J. Chem. Phys, 118, 3928 (2003) (plane wave basis sets)
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Examples of LR-TDDFT calculations

© Examples of LR-TDDFT calculations
@ When does it work?
@ Some known failures

TDDFT for excitation energies
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Benchmarks and references

" Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules”

Tabla 1. Training St and Mathod Used in Aecent TO-DFT G ions"
citatian ainng set method
group(sl  rel.  states malecules besia et sobdent  transtons gesmmetry

Boey 14 25 mixed 18 moleculies SVIVN, BVWH-VE ET-pvas none werlical BRTZeR mixed”
Fabian 3 e3mmed 76 sulfurbaaring dyes BaLYR 531+Gid) nane vartizal BalYPig-a1+ Gid) sparment
Fablan 12 54 mixed 21 sullur-free dyes B3LYP, BRLYR(THE) &314+Gid) none wertical BALYPE-31 +Gid) exparment
Grimma 13 22 mixed 14 malecules BaLypP TP nane wartizal BaLYPTIve mixed
Garinime 83 427 - 20 40 laige molecules” BP3E. BILYP, BHHLYP TEVP none? -0 DFTITZVP exparment
Grimme B4 1435 mived 205 smalllarge malecules  &17 funciionals® TZVP none' PCM  vartical'0-0 MP2DFT theorylexparment
Herbert 57 20 mixed & molecules LC-PRE, LE-BLYP, LC-PBES aug-ce-PVDE none wariical B3LYPE-31 Gid) exparment
Matsumea 7 507 - 3% 50 organic dyes BaLYpR E31G(d), copVDZ none vartizal BalYP sparment
Tazer 55 59 mixed 18 madel molecules. PBE, BLYP, CAM-B3LYP eo-pi Ty none wertical Mixed" mixed'
Thiel &2 107 med 28 small molecules BPaE, BALYP. BHHLYP, MR-DFT TZVP none wartizal MP2E-31Gid) theary'
Us 80 3 n-a* 34 small dyes 12 pure and hybrd functionals Large w. diffuse’ PCM wertical POM-DFT experment
Us 58 1B7-a* 115 oganic dyes & pure and hybeid funcionals™ 6311 +Gdp)  PGM vartical PCM-PREGE-311G{dp) expariment

TCAS P2, gasphase ar_ scdvent = commactad o ism. CMainly 7 -~ 7° hansmans corespandng 1o sngol and doublat

exciec-atates but a few other states. * Manly aromatic and aliphatc nydlucarbms of cligomenc sructunes with a few hetematoms. “ Mo salvent model in e feary, bt the expesimental
values have Leon shifted by a constant 0,15 @V {far al sclvenis) 1 include salvatacheoeism, * BFB5. BELYP. B2LYP, B2GPLYP, B2PLYP, and B2GPPLYP for the smal macudes wih
PBE, OPBE, BLYP, mPWLYP, TPSS, VEXC. OSLYP. B69, PBED, BMK. and BHHLYP for the lange ones. " CAE-PT2 from el B, using the same basie et and geomeiry. ¥ d-aug-co-gVT2
for Fydberg statos. * Experimental, BLYPTZVE, CAM-B3LYPIS-31G(d), oo MP2%-31G(d) pocmetics, dopending an the malecuo, ' CAS-PT2, CCP, cr gas-phase experment, depending
oA the molecie. ! Boat setimates {generally DO of CAS-PT2) fon ther owm of 8. ueing e same Lasls set and geometry. * HF. BLYP, PEE. TPSS, BILYP, PEED, BMK, LC-BLYP,
LC-PRE, LCTPSS, LCwPBE, and CaM-BILYP, 63114+ G(3d 3} far nircso dyos and 6311+ Gi2dip) far thiocarkanyl chromephares, ™ HE, PRE, PREQ, LC-PAE, LC-mPBE, and
CAM-BILYP. " For each contributon, we 151 he nature of the selected exclted-stated. molecues, and functionals a8 wel ag a summary of the methodelogleal scheme. In this tabie, i)
“basis saf’ rafors ¥ the basis sot used for TO-DFT calculations; i} “schvent” indicates the considoration crinat of rviranmental ffects; il "Fansitions” indicabos if full vibraric calulations
have been (X)HIFI.IE‘\] of i vertical values have been used. iv) 'gmeln’ pves the method used to obiain the mokscular guund-elme atructures; and v) “comparison” indicates the Cﬂg"\ of
the valas used as roferonce data during the statistical analysis

JCTC, 5, 2420 (2009)
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Organic dyes

" Computational Study of Promising Organic Dyes for High-Performance Sensitized Solar

Cells”
Table 1. Transition Energies (in eV) of the Dn Dyes in the COOH qd
Gas Phase and Ethanol Solution (SM8 solvation model) for Q S <\:/\ s PO
All Studied Excited State Methods, Computed for the N /NS o N T e
B3LYP/6-31G(d) SM8 Optimized Geometries with the @ /_§ -
6-31+G(d) Basis Set =
Ds % De
method D5 D7 D9 D11
Vacuum ,
B3LYP 228 2.08 2.18 1.96 Q
wB97 310 3.09 303 296 @ o~ co0
wB97X 3.04 3.01 2.96 2.88 70 e
Cls 3.24 3.23 3.19 3.13 N O
S0S-CIS(D) 275 2.72 2.64 253 @
CIs(D) 292 2.89 2.82 272 o Dyy N@—o\
Ethanol, SM8 O
B3LYP 216 2.07 1.98 1.88 _d
wB97 3.04 3.01 2.95 2.88
wB97X 297 2.94 2.87 2.81
Cls 3.20 3.18 3.13 3.07
S0S-CIS(D) 259 2.56 2.43 2.35
SOs-CIsS(D)* 272 2.68 2.59 248
CIs(D) 277 2.75 2.62 254
cis(D)® 2.89 2,84 277 266
experimental 281 2.81 2.68 27

#The solvent effects in CIS second-order corrected methods
were obtained from the gas phase vs SM8 differences obtained in

cis.
JCTC, 6, 1219 (2010)
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When does it work?
Organometallic complex - Mn,(CO),,

Structure and Bonding, 112, 49 (2004)
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Organometallic complex - Mn,(CO),,

Table 6 TDDFT/BP excitation energies (eV) and oscillator strengths (in parentheses) of the

lowest allowed excited states of Mn,(CO), compared to experimental data and to ASCF-
DFT and CASPT?2 results

State  ASCE-DFT [68]3, TDDFT/BP [68]* CASPT2 [71]¢ Expt?
[73]°

1'E,  3.07%3.62° d,—o* 32200075 d,—o* 3.29(0.03) d,—o* 331
3.44(0.006)%;
3.35(0.006)°

1'B,  2.95%3.42° o—0*  3.76(0.384)% o—o*  3.43(0.92) o—o*  3.69
4.01(0.252)5
3.84(0.350)°

* Becke-Perdew optimized geometry (see [81], Table 6, row 9); ® Becke-Perdew opti-
mized geometry; © X-ray structure from [82]; © solution spectrum of Mny(CO),, from
[63]; € electron diffraction structure from [83]

@ Very good agreement between TDDFT and CASPT2.

@ However, result very sensitive to the molecular geometry.

Structure and Bonding, 112, 49 (2004)



Examples of LR-TDDFT calculations When does it work?

A brief detour into ground state

DFT

In 2006 J. Perdew has ordered the different xc-functional families on a Jacob’s ladder.
Each functional class represents a step towards the "heaven” of chemical accuracy.

LDA = GGA = meta-GGA = Hybrids = Others..

. (Double hybrids,...)

[ Quantum

chemical Heaven |

feweh OF CREMGR “‘%‘2 double-hybrid
. RS-hybrids
' Py | A hybrids
T A mGGA
- GGA
LDA

p(r), x(r),

p(r),

p(r), x(r), 7(r), ¥i(r), Ra
p(r), x(r), 7(r

7(r), Yi(r), ¥a(r)

), ¥i(r)
x(r), 7(r)
p(r), x(r)

p(r)

\ Hartree world ‘

JCTC, 5, 902 (2009)

RS: range-separated.

KARTREE WORLD Reduced gradient: x(r) =
Local lfinetic energy: 7(r) =

Occupied, 1;(r), and unoccupied, 14 (r), KS orbitals.

IV ()1 /0%/3(0).

i i ()92 ;((r)
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob's ladder of functionals.

PCCP, 13, 6670 (2011)
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When[doeslielwork
A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob's ladder of functionals.

PCCP, 13, 6670 (2011)

1218 single point calculations and 841 data points (relative energies):

@ Properties: atomization energies, electron affinities, ionization potentials, proton
affinities, SIE related problems, barrier heights

@ Various reaction energies: isomerizations, DielsAlder reactions, ozonolyses, reactions
involving alkaline metals

@ Noncovalent interactions: water clusters, conformational energies, and inter- and
intra- molecular London-dispersion interactions

computed for 47 different xc-functionals
e 2 LDA
o 14 GGA
@ 3 meta-GGA
@ 23 hybrid
@ 5 double-hybrid (DHDF) density functionals
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob's ladder of functionals.

PCCP, 13, 6670 (2011)

CAUTION:
Only closed-shell organic molecules have been considered!

TDDFT for excitation energies



Examples of LR-TDDFT calculations When does it work?

A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob's ladder of functionals.

PCCP, 13, 6670 (2011)

Jacob’s ladder

HARTREE WARLD
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When[doeslielwork
A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob's ladder of functionals.
PCCP, 13, 6670 (2011)

Jacob’s ladder
b)

12— . -1

—
=
T
|

w
T
1

average WTMAD / (keal mol™)

hybrid |

ouble-hybrid o

LDA
GGA|
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When[doeslielwork
A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob's ladder of functionals.
PCCP, 13, 6670 (2011)

GGA clearly improves over LDA - Only moderate improvement for meta-GGA

a L 119120

complete set

10

1=

e ]

WTMAD / (keal mol™)

mPWLYP D
OPBE B
ssB

0 ihslis 2 o] 1 ]
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When does it work?

A brief detour into ground state DFT

Examples of LR-TDDFT calculations

Grimme et al. checked (computationally) the existence of the

Using a very large test set,
Jacob's ladder of functionals.

PCCP, 13, 6670 (2011)

Hybrid improves, but not as much as expected!

complete set
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob's ladder of functionals.

PCCP, 13, 6670 (2011)

Ground state DFT

Hybrid functionals improve only moderately compared to GGA functionals.

TDDFT for excitation energies



Examples of LR-TDDFT calculations

In TDDFT hybrid functionals may improve strongly compared to GGA

B2PLYP

2LY
DFT/MR-CI
CAM-B3LYP|
wBY7XD
wBY7X
wBY7
LC-wPBE|

PCCP, 13, 16987 (2011) -0.80 -0.60 -0.40 -0.20 0.00 020 040 0.60 0.80
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Examples of LR-TDDFT calculations

Choice of the xc-functional

Count
100

Count
I

‘

When does it work?

Count

Count

CAM-B3LYP

0 60 a
a0 40 40
20 2 2
It o 0 o o
08 04 00 04 08 08 04 00 04 08 04 00 08 08 04 00 04 08
Error Range (eV) Error Range (eV) Error Range (eV) Error Range (eV)
Count Count
100 100

LC-0PBE(20)

08 04 00 04 08

Error Range (eV)

08 -04 00 04 08
Error Range (¢V)

Figure: Histograms of the error for 614 excited states (VE = versus experiment)

JCTC, 5, 2420 (2009)
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When does it work?
Choice of the xc-functional

[ PBE

e |I=1:
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Figure: Examples of molecules in

the VE test set.

Like for DFT: the

quality of a

functional depends on the

onservable
JCTC, 6, 2071 (2010)
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When does it work?
Choice of the xc-functional

More difficult cases: Transitions between singlet and triplet states... JCTC, 6, 1532 (2010).
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Figure: 20 molecules, 63 excited states. Comparison with CC2, CC3 or CASPT2
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Interesting considerations

Casida has proposed the following condition for accurate excitation energies w;:
(JCP,108,4439 (1998))

w1 < —€HOMO
where —egomo is the TDDFT ionization threshold.

For the exact functional, —eqomo = IE. However, an important shift of —epomo is
observed with approximated functionals (~ 5 eV for N,).
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Examples of LR-TDDFT calculations BE{IUENGUREH T

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state
energies.

TDDFT for excitation energies



Examples of LR-TDDFT calculations BE{IUENGUREH T

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state
energies.

Charge transfer according to IUPAC

An electronic transition in which a large fraction of an electronic charge is transferred from
one region of a molecular entity, called the electron donor, to another, called the electron
acceptor (intramolecular CT) or from one molecular entity to another (intermolecular CT).

TDDFT for excitation energies



Examples of LR-TDDFT calculations BE{IUENGUREH T

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state
energies.

Figure: JACS,126, 4007 (2004)
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Examples of LR-TDDFT calculations BE{IUENGUREH T

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state
energies.

7 B
S ® TDDFT/BLYP TDDFT with HF x

Figure: JACS,126, 4007 (2004)
How can we understand this failure?

Aiao',ij - 607'51]63b(€ao' - 6io‘) + (Ia|fH + fx?— |Jb)

Biao jbr = (ialfu + £27|bj)
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Examples of LR-TDDFT calculations BE{IUENGUREH T

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state
energies.

o | S N goundciae 4 :5‘7 S T e
& ~ .' © ' TDDFT/BLYP TDDFT with HF x
Figure: JACS,126, 4007 (2004)

How can we understand this failure? For v; and 1), with no overlap :

Aiao‘,ij - 607-51]5ab(€ao- - Eio') + ia e |J
Biaojbr = (ia|fu++FZ"1E])
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Examples of LR-TDDFT calculations BE{IUENGUREH T

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state
energies.

R TDDFT/BLYP TDDFT with HF x
Figure: JACS,126, 4007 (2004)

We are left with orbital energy differences.
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,
091101 (2009)

CC2 (wavefunction-based method)
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Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,
091101 (2009)
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Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,
091101 (2009)
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,
091101 (2009)

Overlap of the orbitals
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,
091101 (2009)
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,
091101 (2009)
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,
091101 (2009)
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Failures of xc-functionals for charge transfer states.

wf IF X @ CT failures may affect dramatically the shape of the
= lBe L onl PESs.

@ CT failures may affect the ordering of the electronic
states.

@ The quality of PESs is not uniformly spread over the
entire configuration space.

\/ @ Dramatic for dynamics on excited states.

o eoe @ Hopes from new xc-functionals.

(¢) BILYP

T
(d) CAM-BILYP
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Adiabatic approximation: the problem of double excitations

Due to the adiabatic approximation (frequency independent kernel: Casida
equation gives solutions with single-electron excitation character), double
excitation characters are not properly captured.

52 Exclp]

foT (et X' t') = 5(t — "‘/)W'

Typical examples: butadiene

excitation energies of single \ \
excitation character are well , \T1/2\T/C4\
reproduced (1'B,), not those with

double excitation character (2'A,
and 4'A,).
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Mol. Phys., 104, 1039 (2006)
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Topology of the excited states

Photochemistry/photophysics require a correct description of the topological properties
of the most relevant potential energy surfaces involved.

Conical intersections are now recognized to play a critical role in the reaction dynamics
of electronic excited states.

They occur at geometries for which two electronic states are exactly degenerate.

energy

g

Branching space is composed by the gradient difference g,;; and the nonadiabatic
coupling vector hy;.

g, = Vr(E — E))
hyy = (&;|VRr|®,)
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?
Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell

systems) has the wrong dimensionality for the intersection with the So PES: f — 1 (a
seam of intersections instead of a conical intersection).

TDDFT for excitation energies
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Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?
Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell

systems) has the wrong dimensionality for the intersection with the So PES: f — 1 (a
seam of intersections instead of a conical intersection).

o, ,
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?

Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell
systems) has the wrong dimensionality for the intersection with the So PES: f — 1 (a
seam of intersections instead of a conical intersection).

Why is it the case?

For a simple two level system, the adiabatic energies of each state are described by:

Eo = (Hoo + Hh) /2% 1/ ((Hoo — Hha) /2 + H,

TDDFT for excitation energies
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Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?

Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell
systems) has the wrong dimensionality for the intersection with the So PES: f — 1 (a
seam of intersections instead of a conical intersection).

Why is it the case?

For a simple two level system, the adiabatic energies of each state are described by:

Eo = (Hoo + Hh) /2% 1/ ((Hoo — Hha) /2 + H,

The conditions for a conical intersection are: (Hoo(R) — H11(R)) = 0 and Hn(R) = 0,
i.e. imply generally two constraints. However, from Brillouin's theorem, we know that the
matrix elements Ho: = (¢o|7fle/|d>1> are always zero, therefore there is only one condition
to satisfy and the Cl is described in a f-1 space.
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Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?

Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell
systems) has the wrong dimensionality for the intersection with the So PES: f — 1 (a
seam of intersections instead of a conical intersection).

Why is it the case?

For a simple two level system, the adiabatic energies of each state are described by:

Eo = (Hoo + Hh) /2% 1/ ((Hoo — Hha) /2 + H,

The conditions for a conical intersection are: (Hoo(R) — H11(R)) = 0 and Hn(R) = 0,
i.e. imply generally two constraints. However, from Brillouin's theorem, we know that the
matrix elements Ho: = (¢o|7fle/|d>1> are always zero, therefore there is only one condition
to satisfy and the Cl is described in a f-1 space.

Is this also the case in TDDFT?

TDDFT for excitation energies



Examples of LR-TDDFT calculations

Topology of the excited states

Some known failures

So/S: intersection in linear water (Mol. Phys., 104, 1039 (2006))
CIS - TDDFT
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Examples of LR-TDDFT calculations

Topology of the excited states

Some known failures

So/S1 for Hy + H (Mol. Phys., 104, 1039 (2006))

TDDFT - CASSCF
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TDDFT seems to reproduce the correct splitting of the surfaces.
However, slope around the Cl is much steeper...
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Examples of LR-TDDFT calculations BE{IUENGUREH T

"Scale-up catastrophe” 2: extended (conjugated) systems.

Moving to larger systems, failures of LR-TDDFT can get amplified.
(PRL,88,186401)

Polyacetylene
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FIG. 1. ALDA and VK static axial polarizability of polyacety-

lene compared with restricted Hartree-Fock [18] and MP2 [22]
resuls.

2according to Casida, THEOCHEM 2009
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"Scale-up catastrophe” 2: extended (conjugated) systems.

Moving to larger systems, failures of LR-TDDFT can get amplified.
(PRL,88,186401)

Hydrogen chain
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FIG. 5. ALDA and VK static axial polarizability of hydrogen

chains compared with coupled Hartree-Fock (HF), MP4, and
coupled cluster [CCSD(T)] results [24].

2according to Casida, THEOCHEM 2009
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Examples of LR-TDDFT calculations BE{IUENGUREH T

Short summary - LR-TDDFT for excitation energies

@ For valence excited states well below the ionization potential (~ —enomo)
= error between 0.2 and 0.6 eV (0.1 eV ~ 10 kJ/mol).

@ Good ordering and relative energies of the excited states (except for CT states).
@ Good also for transition metals (difficult for wavefunction based methods).

@ Scales ~ like O(n®) with n the number of electrons: can deal with very large
systems up to many hundreds of atoms.

@ Many times, TDDFT properties are bad because the underlying DFT is
inaccurate (bond dissociations, biradicals, self-interaction error, ... ).

@ Topology of the excited surfaces is not always correct.

@ Problems to describe double excitations, Rydberg excited states, large 7
systems.

@ Standard xc functionals fail in the case of CT states.
@ Errors in the ordering of the excited PESs is deleterious for excited states MD.
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