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Overview

Chemistry is about atomic rearrangements

From Wikipedia:

Chemistry (from Egyptian keme (chem), meaning ”earth”) is the science concerned with the

composition, structure, and properties of matter, as well as the changes it undergoes during

chemical reactions. Historically, modern chemistry evolved out of alchemy following the chemical

revolution (1773). Chemistry is a physical science related to studies of various atoms, molecules,

crystals and other aggregates of matter whether in isolation or combination, which incorporates

the concepts of energy and entropy in relation to the spontaneity of chemical processes.
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Overview

Chemistry is about atomic rearrangements

We need dynamics to model chemical reactions ....

(Sterol synthesis)
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Overview

Chemistry is about atomic rearrangements

... and a way to describe the interaction with the environment.
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Overview

Chemistry is about atomic rearrangements

From Wikipedia:

Chemistry (from Egyptian keme (chem), meaning ”earth”) is the science concerned with the
composition, structure, and properties of matter, as well as the changes it undergoes during
chemical reactions. Historically, modern chemistry evolved out of alchemy following the chemical
revolution (1773). Chemistry is a physical science related to studies of various atoms, molecules,
crystals and other aggregates of matter whether in isolation or combination, which incorporates
the concepts of energy and entropy in relation to the spontaneity of chemical processes.

A theoretical/computational approach will therefore need:

theoretical model for matter in the energy range [0 to few hundred of eV]

description of chemical reactions (structural changes)

description of the interaction with the environment (condensed phase)
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Overview

Chemistry is about atomic rearrangements

From Wikipedia:

Chemistry (from Egyptian keme (chem), meaning ”earth”) is the science concerned with the
composition, structure, and properties of matter, as well as the changes it undergoes during
chemical reactions. Historically, modern chemistry evolved out of alchemy following the chemical
revolution (1773). Chemistry is a physical science related to studies of various atoms, molecules,
crystals and other aggregates of matter whether in isolation or combination, which incorporates
the concepts of energy and entropy in relation to the spontaneity of chemical processes.

... which translate into:

theory of electronic structure and ways to solve the corresponding equations

solution of the equations of motion for atoms and electrons +
statistical mechanics (from the microcanonical to the canonical ensemble)

approximate solutions for the description of the interactions with the rest of
the universe
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Overview

Photochemistry is about atomic rearrangements

From Wikipedia:

Photochemistry, a sub-discipline of chemistry, is the study of the interactions between atoms,
small molecules, and light (or electromagnetic radiation). [. . . ] Photochemistry may also be
introduced to laymen as a reaction that proceeds with the absorption of light. Normally a
reaction (not just a photochemical reaction) occurs when a molecule gains the necessary
activation energy to undergo change. A simple example can be the combustion of gasoline (a
hydrocarbon) into carbon dioxide and water. This is a chemical reaction where one or more
molecules/chemical species are converted into others. For this reaction to take place activation
energy should be supplied. The activation energy is provided in the form of heat or a spark. In
case of photochemical reactions light provides the activation energy.

Interesting there are no entries for Photophysics (Jan 2012).
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Overview

Photochemistry is about atomic rearrangements
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Overview

Why TDDFT in chemistry?
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Overview

Wavefunction-based methods for excited states properties

Most of the wavefunction-based methods in quantum chemistry are more
accurate than TDDFT (using the standard exchange and correlation functionals)
but their use is limited to small systems (up to 10-20 atoms).

The ZOO of quantum chemical methods
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Overview Why TDDFT in chemistry?

TDDFT for excitation energies of large molecules

Among the single reference (SR) (plus perturbation) methods:

CIS : is practically no longer used in the calculation of excitation energies in
molecules.
The error in the correlation energy is usually very large and give qualitatively
wrong results.
STILL good to gain insights into CT states energies.
Largely replaced by TDDFT.

CC2 : Is a quite recent development and therefore not widely available.
Accurate and fast, is the best alternative to TDDFT.
Good energies also for CT states.
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Overview Why TDDFT in chemistry?

TDDFT for excitation energies of large molecules

Among the single reference (SR) (plus perturbation) methods:

CIS : is practically no longer used in the calculation of excitation energies in
molecules.
The error in the correlation energy is usually very large and give qualitatively
wrong results.
STILL good to gain insights on CT state energies.
Largely replaced by TDDFT.

CC2 : Is a quite recent development and therefore not widely available.
Accurate and fast, is the best alternative to TDDFT.
Good energies also for CT states.

Multi reference (MR) ab initio methods are still computationally too expensive for
large systems (they are limited to few tenths of atoms) and for mixed-quantum
classical dynamics. However, there are many interesting new developments (MR-
CISD, G-MCQDPT2).
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Overview Why TDDFT in chemistry?

TDDFT for excitation energies of large molecules

TDDFT :

is formally exact and improvements of the xc-functionals is still possible.

is still computationally more efficient and scales better than ab-initio
methods.

can be used for large systems (up to thousand atoms).

can be easily combined with MD (mixed quantum classical MD)

BUT is not a black box !
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Overview Why TDDFT in chemistry?

TDDFT can easily be combined with molecular dynamics

Ultrafast tautomerization of 4-hydroxyquinoline·(NH3)3

Hydrogen or proton transfer along this molecular wire?

CIS/CASSCF for the in-plane geometry → ππ∗/πσ∗ crossing leads to a hydrogen
atom transfer.
S. Leutwyler et al., Science, 302, 1736 (2003)
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Overview Why TDDFT in chemistry?

TDDFT can easily be combined with molecular dynamics

Ultrafast tautomerization of 4-hydroxyquinoline·(NH3)3

Hydrogen or proton transfer along this molecular wire?

What about TDDFT combined with nonadiabatic dynamics?
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Overview Why TDDFT in chemistry?

TDDFT can easily be combined with molecular dynamics

Ultrafast tautomerization of 4-hydroxyquinoline·(NH3)3

Hydrogen or proton transfer along this molecular wire?

With TDDFT, we observe:

Symmetry breaking.

No crossing with the πσ∗ state.

Proton transfer instead of a hydrogen transfer.

Guglielmi et al., PCCP, 11, 4549 (2009).
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Overview Why TDDFT in chemistry?

TDDFT can easily be combined with molecular dynamics

Ultrafast tautomerization of 4-hydroxyquinoline·(NH3)3

Hydrogen or proton transfer along this molecular wire?
Similar observations with CASPT2 calculations:

Forcing in-plane symmetry: hydrogen transfer.
Unconstrained geometry optimization leads to a proton transfer!
Fernandez-Ramos et al., JPCA, 111, 5907 (2007).
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Overview Why TDDFT in chemistry?

Main topics of this set of lectures

Topics of this set of lectures

1 Review basic theory of TDDFT and LR-TDDFT.

2 Look at critical failures of current xc-functionals.

3 Ab initio molecular dynamics.

4 Nonadiabatic dynamics using LR-TDDFT.

5 Coupling with the environment (TDDFT/MM).

TDDFT for excitation energies



Outline

1 Overview
Why TDDFT in chemistry?

2 TDDFT and LR-TDDFT - Theory
TDDFT
LR-TDDFT
LR-TDDFT
Casida equations
The Sternheimer equations and the LR-TDDFT forces

3 Examples of LR-TDDFT calculations
When does it work?
Some known failures

TDDFT for excitation energies



TDDFT and LR-TDDFT - Theory

1 Overview
Why TDDFT in chemistry?

2 TDDFT and LR-TDDFT - Theory
TDDFT
LR-TDDFT
LR-TDDFT
Casida equations
The Sternheimer equations and the LR-TDDFT forces

3 Examples of LR-TDDFT calculations
When does it work?
Some known failures

TDDFT for excitation energies



TDDFT and LR-TDDFT - Theory TDDFT

The time-dependent KS equations

The role played by the second Hohenberg-Kohn theorem in the derivation of the
time-independent DFT equation is now taken by a variational principle involving the action,

A =

Z t1

t0

〈Ψ(t)|i
∂

∂t
− Ĥ(t)|Ψ(t)〉dt.

The wavefunction is determined up to a time-dependent constant

Ψ(r1, . . . , rN , t) = Ψ[ρ](t)e−iα(t)

The effect of the phase factor is simply to contribute with an additive constant to the total
action,

A[ρ] =

Z t1

t0

〈Ψ̃[ρ](t)|i
∂

∂t
− Ĥ(t)|Ψ̃[ρ](t)〉dt + α(t1)− α(t0) = A[ρ] + const.

Thus the time-dependent density determines the action, up to an additive constant.

RG II

The true time-dependent density is the one which makes the action stationary,

0 =
δA[ρ]

δρ(r, t)
=

Z t1

t0

〈 δΨ(t′)

δρ(r, t)
|i ∂
∂t′
− Ĥ(t′)|Ψ(t′)〉dt′ + c.c. .

Corrected action density functional: R. van Leeuwen, Phys. Rev. Lett., 80, 1280 (1998).
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TDDFT and LR-TDDFT - Theory TDDFT

The time-dependent KS equations

The functional A[ρ] can be written as

A[ρ] = B[ρ]−
Z

dr

Z t1

t0

dt v(r, t)ρ(r, t)

where the universal functional B[ρ] is independent of the external potential.
In analogy with to the time-dependent Kohn-Sham equation, we may assume an
independent particle system whose orbitals ψi (r, t) have the property:

ρ(r, t) =
X

i

fi |ψi (r, t)|2

Using this definition, we can write B[ρ] as:

B[ρ] =
X

i

fi

Z t1

t0

dt〈ψi (t)|i ∂
∂t
− 1

2
∇2

i |ψi (t)〉

− 1

2

Z t1

t0

dt

Z Z
dr1dr2

ρ(r1, t)ρ(r2, t)

|r1 − r2|
− Axc [ρ]

where Axc [ρ] is the exchange and correlation action functional.
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TDDFT and LR-TDDFT - Theory TDDFT

The time-dependent KS equations

Applying the variational principle to

A[ρ] = B[ρ]−
Z

dr

Z t1

t0

dt v(r, t)ρ(r, t)

with the constraint that

ρ(r, t) =
X

i

fi |ψi (r, t)|2 =
NX
i

|ψi (r, t)|2

leads to the time-dependent Kohn-Sham equation:»
−1

2
∇2 + veff(r, t)

–
ψi (r, t) = i

∂

∂t
ψi (r, t)

veff(r, t) = vH(r, t) + vxc(r, t) + vext(r, t)

The unknown is now the time-dependent xc potential

vxc (r, t) =
δAxc [ρ]

δρ(r, t)
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TDDFT and LR-TDDFT - Theory TDDFT

Adiabatic Approximation in TDDFT

In analogy to the traditional time-independent Kohn-Sham scheme, all exchange and
correlation effects in TDDFT are collected in δAxc [ρ]/δρ(r, t).

In the formal derivation of the time-dependent density functional equations (both the
time-dependent KS equations and the linear response matrices) no approximations are
made, and therefore the theory is in principle exact.

However, the exact time-dependent exchange-correlation action functional is not known,
and approximations have to be introduced in order to perform numerical calculations on
real systems.
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TDDFT and LR-TDDFT - Theory TDDFT

Adiabatic Approximation in TDDFT

Within the adiabatic approximation (AA),

vxc [ρ](r, t) =
δAxc [ρ]

δρ(r, t)
≈ δExc [ρ]

δρ(r)

˛̨̨̨
˛
ρ=ρ(r,t)

We assume that the exchange and correlation potential changes instantaneously when
the electron density is changed! No retardation effects!

we can use all xc functionals, vxc (r), derived for the time-independent DFT also for the
time-dependent functionals, vxc (r)|t and fxc (r, r′)|t (including hybrid functionals).

The TDDFT xc-kernel used in the AA becomes

f στxc (rt, r ′t′) = δ(t − t′)
δ2Exc [ρ]

δρσ(r)δρτ (r′)
.

Important approximation! We neglect all retardation or memory effects!
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TDDFT and LR-TDDFT - Theory TDDFT

Real time dynamics in TD Kohn-Sham scheme

[
−1

2
∇2 + veff(r, t)

]
ψi (r, t) = i

∂

∂t
ψi (r, t)

Propagation of the time-dependent Kohn-Sham equations:

ψi (t) = U (t, t0)ψi (t0)

U (t, t0) = T̂ exp

[
−i

∫ t

t0

HKS (t ′) dt ′
]

Since the real dynamics of the electrons has high frequencies, the time step
for propagation is very small (∼ 10−3 atu)

Problem: we need to find a good approximations for the time-evolution
operator 1.

1For a very complete discussion, see A. Castro, M. A. L. Marques, and A. Rubio, J Chem
Phys 121, 3425-3433 (2004).
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TDDFT and LR-TDDFT - Theory TDDFT

Propagators

Iterative Chebysheff interpolation scheme, combined with a two step Runge-Kutta scheme to maintain
order ∆t3 accuracy.
A first guess for the potential at time t0 + ∆t/2, veff (r, t0 + ∆t/2), is obtained by evolving the KS
states using the effective potential at time t0. The full time-evolution is then achieved by evolving the
wavefunctions for the full time step ∆t, using the approximated potential computed from the half step.
For a given effective potential veff (r, t), the solution of the time-dependent Schrödinger-like equations,
for both half and full steps, is accomplished by iterating until convergence the set of integral equations

φ
(n)
j (t0 + ∆t) = φ

(0)
j (t0 + ∆t)− i

Z t0+∆t

t0

dτ ĤKS

`
{φ(n−1)

i (τ)}, τ
´
φ

(n−1)
j (τ).

The integrals are computed by Chebyshev interpolation in the time domain.

The implicit midpoint rule, also known as Crank-Nicholson method

ÛCN (t + ∆t, t) =
1− i

2 ∆t ĤKS (t + ∆t/2)

1 + i
2 ∆t ĤKS (t + ∆t/2)

The CN scheme is unitary and preserves time-reversal symmetry.

Both schemes are implemented in CPMD.
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TDDFT and LR-TDDFT - Theory TDDFT

Example: Time propagation of the electronic density

Electronic spin density dynamics (ρα(r, t)− ρβ(r, t)) dynamics after photoinduced
ionization on a simple model compound.
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TDDFT and LR-TDDFT - Theory TDDFT

Absorption spectra calculation

N,N-dimethylaminobenzonitrile
(DMABN)

1 Ground state Kohn-Sham calculation.

2 Time propagation of the KS orbitals:

I Apply a short perturbative field (usually an
instantaneous perturbation on the KS orbitals).

I Propagate the perturbed orbitals for a long time
(the longer the simulation, the higher the energy
resolution).

3 Sample the dipole moment time series µx (t)

4 Fourier transform to obtain the dynamic polarizability
αxz (ω) a.

5 Spectrum can be obtained from the optical
absorption cross-section:

σ(ω) =
4πω

c
={α(ω)}

amore will come soon on this topic...
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TDDFT and LR-TDDFT - Theory TDDFT

Absorption spectra calculation

N,N-dimethylaminobenzonitrile
(DMABN)

Figure: Dipole moment in the x-direction: µx (t)
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TDDFT and LR-TDDFT - Theory TDDFT

Absorption spectra calculation

N,N-dimethylaminobenzonitrile
(DMABN)

Figure: Extraction of the absorption spectrum.
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Linear response in TD Kohn–Sham scheme

Linear response time-dependent density functional theory
(LR-TDDFT); The chemists prospective

Different solutions:

Mark E. Casida, Time-Dependent Density Functional Response Theory for
Molecules, in ”Recent advances in Density Functional Theory”, ed. D.P. Chong,
Singapore, World Scientific (1995), p155.

Excitation Energies from Time-Dependent Density-Functional Theory, Petersilka,
Gossmann & Gross, PRL 76, 1212-1215 (1996)

The Sternheimer time-dependent perturbation scheme. See for instance
Excited state nuclear forces from the Tamm–Dancoff approximation to
time-dependent density functional theory within the plane wave basis set
framework, Jürg Hutter, JPC (2003)
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Time-Dependent Density Functional Response Theory
(LR-TDDFT).

In the linear response formulation of TDDFT (LR-TDDFT) one studies the density
response of a system under the influence of an external time dependent perturbation,

ρ(r, t) = ρ0(r) + δρ(r, t)

The basic quantity in the LR-TDDFT is the density-density response function

χ(r, t, r′, t′) =
δρ(r, t)

δvext(r′, t′)

˛̨̨̨
v0

which relates the first order density response δρ(r, t) to the applied perturbation δv(r, t)

δρ(r, t) =

Z t

t0

dt′
Z

dr′ δv(r′, t′)χ(r, t, r′, t′),

where the total external potential, vext(r, t) is given by the sum of the static ground state
KS potential, v0(r), and the external potential δv(r, t).
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TDDFT and LR-TDDFT - Theory LR-TDDFT

LR-TDDFT in Physics and Chemistry

There are different ways to represent “quasi-particles” states in many-body systems

Bloch functions

Wannier functions

Hartree-Fock orbitals

Kohn-Sham orbitals

B Molecular systems are not translational invariant and therefore the momenta are not
good quantum numbers. [We cannot FT (r1 − r2)]

B HF and KS orbitals constitute a discrete basis of one-electron states {φi (r)} for the
expansion of all many-body operators.

B In chemistry the LR-TDDFT equations are expressed in matrix form using the
Kohn-Sham base.
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TDDFT and LR-TDDFT - Theory LR-TDDFT

LR-TDDFT in Physics and Chemistry
The Green’s function in the states representation is given by

G(x, t, x′, t′) =
X

pq

Gpq(t, t′)φ∗p (x)φq(x′)

with
Gpq(t, t′) = 〈Ψ0|T̂ [â†(t)â(t′)]|Ψ0〉 .

For the first-order HF Green’s function, in the time evolution of the state k, Gkk (ω) = Gk (ω), the only
interaction terms that give a non-zero contributions are of the form Vklkl and Vkllk (with contracted l lines)

and the corresponding Hartree-Fock self-energy (ΣHF =
P

k>kF
ΣHF

k ) is given by

ΣHF
k =

X
|l|<kF

(Vklkl − Vkllk )

k

k k

k

l
l

The Dyson’s series gives the ”dressed” propagator

Gk (ω) =
1

(G 0
k )−1(ω)− ΣHF

k (ω)

or equivalently

Gk (ω) = G 0
k (ω) + G 0

k (ω)ΣHF
k (ω)Gk (ω) .
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Time-Dependent Density Functional Response Theory
(LR-TDDFT).

The first order density response δρ(r, t) can be expanded in the basis of unperturbed
orbitals {φi}

δρ(r, t) =

Z t

t0

dt′
Z

dr′ δv(r′, t′)χ(r, t, r′, t′)

=
X
ijkl

Z t

t0

dt′
Z

dr′ δv(r′, t′)
`
φ∗i (r)φj (r)φ∗k (r′)φl (r′)χij,kl (r, t, r′, t′)

´
=
X
ijkl

Z t

t0

dt′
„Z

dr′ δv(r′, t′)φ∗k (r′)φl (r′)

«
φ∗i (r)φj (r)χij,kl (r, t, r′, t′)

=
X
ijkl

Z t

t0

dt′ δvkl (t′)φ∗i (r)φj (r)χij,kl (r, t, r′, t′)

=
X

ij

 Z t

t0

dt′
X

kl

δvkl (t′)χij,kl (r, t, r′, t′)

!
φ∗i (r)φj (r)

=
X

ij

δPij (t)φ∗i (r)φj (r)
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Time-Dependent Density Functional Response Theory
(LR-TDDFT).

Expressed in matrix form, the linear response of the electronic density is

δPij (t) =

Z t

t0

dt′
X

kl

δvkl (t′)χij,kl (r, t, r′, t′)

In Fourier space,

δP̃ij (ω) =
X

kl

δvkl (ω)χij,kl (ω)

Where
χ(r , r ′, t − t′) = ΠR (r , r ′, t − t′)

iΠ(r , r ′, t − t′) = 〈Ψ0|T [ψ̂†H (r , t)ψ̂H (r , t)ψ̂†H (r ′, t′)ψ̂H (r ′, t′)]|Ψ0〉

=
X
ij,kl

φ∗i (r)φj (r)φ∗k (r)φl (r)Πij,kl (t − t′)

and
iΠij,kl (t − t′) = 〈Ψ0|T [â†Hi (t)âHj (t)âHk (t′)†âHl (t′)]|Ψ0〉
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Linear response TDDFT

The response function for the physical system of interacting electrons, χ(r, t, r′, t′), can
be computed from the Dyson-like equation

χ(r, t, r′, t′) = χs (r, t, r′, t′)+

+

Z
dr1dt1

Z
dr2dt2 χs (r, t, r1, t1)

 
δ(t1 − t2)

|r1 − r2|
+
δvxc (r1, t1)

δρ(r2, t2)

!
χ(r2, t2, r, t1) ,

whre χs (r, t, r′, t′) is the “non interacting” density response

χs (r, r′, ω) =
X
k,j

(fk − fj )
ψ∗k (r)ψj (r)ψj (r ′)ψ∗k (r ′)

ω − (εj − εk ) + iη

(η is a positive infinitesimal)

For χs (r, r′, ω) evaluate

i j

lk

i j
i k j l

g 0
ik (ω) is the Fourier transform of the single-electron propagator

g 0
ik (ω) = δik

»
fi

ω − εi + iη
+

(1− fi )

ω − εi − iη

–
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Linear response TDDFT

The relationship between the exact density response function and the Kohn-Sham
response function, is compactly expressed in term of the inverse of their corresponding
Fourier transform the time, t2 − t1,

χ−1(r, r′, ω) = χ−1
s (r, r′, ω)− 1

|r1 − r2|
− fxc (r1, r2, ω)

In summary, the problem of finding excitation energies of the interacting system has been
mapped into the search for the poles of the response function.

{ωI , fI} ⇒ poles of χ(ω) ⇒ zeros of χ−1(ω)

In fact, χ(ω) has poles at the true excitation energies ωI , while the non-interacting
response, χs (ω), has poles at the Kohn-Sham orbital energy differences.
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Linear response TDDFT in molecular spectroscopy

Of particular interest in molecular spectroscopy is the computation of the dynamic dipole
polarizability, α(ω), which is the response function that relates the external potential to
the change in the dipole (without loss of generality we consider the effect on the
x-component of the dipole induced by an electric field polarized in the z-direction).

µx (t) = µx +

Z ∞
−∞

dt′αxz (t − t′)Ez (t′) + ...

Using the convolution theorem

f (t) =

Z ∞
−∞

dt′g(t − t′)h(t′) =⇒ f (ω) = g(ω)h(ω)

The Fourier transform of the dynamic dipole polarizability can be written as

δµx (ω) = αxz (ω) Ez (ω)
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TDDFT and LR-TDDFT - Theory LR-TDDFT

Linear response TDDFT in molecular spectroscopy

δµx (ω) = αxz (ω) Ez (ω)

Using the previously derived expression

δP̃ij (ω) =
X

kl

δvkl (ω)χij,kl (ω)

and knowing the definition:

δµx (ω) = −
X

ij

xijδP̃ij (ω) = −
X
ijkl

xijδvkl (ω)χij,kl (ω)

= −
X
ijkl

xijEz (ω)zklχij,kl (ω) ,

we obtain:

αxz (ω) =
δµx (ω)

Ez (ω)
= −

X
ijkl

xijχij,kl (ω)zkl .

(xij = 〈ψj |x̂ |ψj〉).
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Linear response TDDFT in molecular spectroscopy

According to the sum-over-states (SOS) relation,

α(ω) =
X

I

fI

ω2
I − ω2

and considering that

fI =
2

3
ωI (|〈Ψ0|x̂ |ΨI 〉|2 + |〈Ψ0|ŷ |ΨI 〉|2 + |〈Ψ0|ẑ |ΨI 〉|2)

and
ωI = EI − E0

the poles of the dynamic polarizability determine the excitation energies, ωI , while the
residues, fI , determine the corresponding oscillator strengths.

αxz (ω) =
δµx (ω)

Ez (ω)
= −

X
ijkl

xijχij,kl (ω)zkl .

TDDFT for excitation energies



TDDFT and LR-TDDFT - Theory Casida equations

The Casida equations

By expressing the dynamic polarizability in the basis of unperturbed MOs, Casida showed
that the TDDFT excitation energies (solutions of χ−1(ω) = 0)

χ−1(r, r′, ω) = χ−1
s (r, r′, ω)− 1

|r1 − r2|
− fxc (r1, r2, ω)

are solutions of the system of equations»
A(ω) B(ω)
B∗(ω) A∗(ω)

– "
~XI

~YI

#
= ωI

»
1 0
0 −1

– "
~XI

~YI

#
.

Here
Aiaσ,jbτ (ω) = δστδijδab(εaσ − εiσ) + (ia|fH + f στxc (ω)|jb)

Biaσ,jbτ (ω) = (ia|fH + f στxc (ω)|bj),

where

f στxc (r1, r2;ω) =

Z +∞

−∞
e iω(t1−t2) δ2Axc [ρ↑, ρ↓]

δρσ(r1, t1)δρτ (r2, t2)
d(t1 − t2).
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The Casida equations - adiabatic case

In the AA Casida’s equations simplify to»
A B
B∗ A∗

–"
~XI

~YI

#
= ωI

»
1 0
0 −1

–"
~XI

~YI

#
.

Where
Aiaσ,jbτ = δστδijδab(εaσ − εiσ) + (ia|fH + f στxc |jb)

Biaσ,jbτ = (ia|fH + f στxc |bj),

and

f στxc (r1, r2) =
δ2Exc [ρ]

δρσ(r1)δρσ(r2)

Note that the frequency dependence of the matrices A and B drops.
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Adiabatic Approximation in LR-TDDFT

Since also fxc becomes frequency independent, the number of solutions of the
LR-TDDFT equations is just equal to the dimensions of Casida’s matrices.

This corresponds exactly to the number of possible one-electron excitations in the
system. Hence we conclude that, although the AA does include important correlations
effects, it is essentially a one-electron (CIS-like) theory.

LR-TDDFT within the AA has become the most widely used implementation of TDDFT.
This theory is known to work well for low-lying excitations of primarily single electron
character, which do not involve too large charge density relaxations and which are at
least somewhat localized in space.

Caution

Notation: AA or ALDA are both used. Sometimes, ALDA means that, in addition to
AA, LDA functional is used for the xc-kernel.
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Tamm-Dancoff approximation (TDA)

The TDA consists of setting B = 0 in Casida equation. We obtain:

A~XI = ωI
~XI

which is comparable to the CIS equation (TDA on the TDHF equations), with the
difference that in LR-TDDFT the elements of the matrix A depend on the
exchange-correlation kernel.

Physically, setting B = 0 means neglecting all contributions to the excitation energies coming

from the de-excitation of the correlated ground state. Even though an approximation, the TDA

can improve the stability of the TDDFT calculations with most of the standard (approximated)

functionals. In particular, decoupling the DFT ground state problem from the calculation of the

LR-TDDFT excitation energies, TDA can provide better PESs especially in the regions of strong

coupling with the ground state. This is of crucial importance for all nonadiabatic MD schemes

based on LR-TDDFT PESs.
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How to get excitations energy using LR-TDDFT?

1 Do a ground state Kohn-Sham calculation: obtain {φi} and the corresponding {εi}.
2 Form the matrices A (and B if TDA is not used).

3 Diagonalize the full matrices or used specific algorithm to extract the first roots:
obtain {ωI} and fI .

4 Informations about the character of the excited states can be obtained from the
vectors XI and YI (interpretation).
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TDDFT and LR-TDDFT - Theory Casida equations

How to get excitations energy using LR-TDDFT?

1 Do a ground state Kohn-Sham calculation: obtain {φi} and the corresponding {εi}.
2 Form the matrices A (and B if TDA is not used).

3 Diagonalize the full matrices or used specific algorithm to extract the first roots:
obtain {ωI} and fI .

4 Informations about the character of the excited states can be obtained from the
vectors XI and YI (interpretation).

Assignment problem: the Casida’s Ansatz:

Φ̃I [{φ·}] =
X
iaσ

c I
iaσ â†aσ âiσΦ̃0[{φ·}] ,

with

c I
iaσ ≡

s
S−1

iaσ

ω0I
e I

iaσ

where Φ̃0[{φ·}] is the Slater determinant of all occupied KS orbitals {φiσ}N
i=1, which, at a

turn, are promoted into a virtual (unoccupied) orbitals, ψaσ.
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The Sternheimer equations

Notation:

The KS equations are defined as

Hσ
KS |φ0

iσ〉 =
NσX
j=1

εijσ|φ0
jσ〉

with

Hσ
KS (r) = −1

2
∇2 + V σ

SCF(r)

and ε the matrix of Lagrange multipliers

εijσ = 〈φ0
iσ|Hσ

KS |φ0
jσ〉 .

The ground state density becomes

ρ0
σ(r) =

NσX
i=1

φ0∗
iσ (r)φ0

iσ(r)

TDDFT for excitation energies



TDDFT and LR-TDDFT - Theory The Sternheimer equations and the LR-TDDFT forces

The Sternheimer equations

We define the perturbing potential as

λδv(r, t) = λδv +(r)e iωt + λδv−(r)e−iωt

for which
φjσ(r, t) = e−iεj t

X
m=0

λmφ
(m)
jσ (r, t)

In first order (and setting λ = 1)

φ
(1)
jσ (r, t) = φ

{+}
jσ (r)e iωt + φ

{−}
jσ (r)e−iωt

from which
ρ(1)(r, t) = ρ+(r)e iωt + ρ−(r)e−iωt

with
ρ±(r) =

X
jσ

φ±∗jσ (r)φ0
jσ(r) + φ0∗

jσ(r)φ±jσ(r)
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The Sternheimer equations

The perturbing potential induces the effective potential energy change

δv±eff(r, t) = δv±(r)e±iωt + δv±SCF (r)e±iωt

with

δvσ±SCF (r) =
X

τ∈{α,β}

Z
d3r ′

 
1

|r − r′| +
δ2Exc

δρσ(r) δρτ (r′)

˛̨̨
ρ=ρ{0}

!
δρ±τ (r′)

Until now the frequency ω is still arbitrary.

Inserting into the time-dependent KS equation and keeping only O(λ) one gets

NσX
j=1

(εij − (Hσ
KSδij ± ω)δij )|φ(±)

jσ 〉 = Qσc (δV± + δV σ
SCF (±ω))|φ(0)

iσ 〉

where the response orbitals are chosen perpendicular to the occupied Kohn-Sham states,

|φ(0)
iσ 〉, 〈φ

(±)
iσ |φ

(0)
jσ 〉 = 0, and Qσc = 1−

Pocc
i=1 |φ

0
iσ〉〈φ0

iσ|.
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The Sternheimer equations

The Sternheimer equation is in the form

(A− ωB)δρ(ω) = δv(ω)

and therefore χ−1(ω) ≡ (A− ωB).
The resonant energies are therefore computed from the solution of the generalized
eigenvalue problem χ−1(ω) = 0

occX
j=1

(Hσ
KSδij − εijσ)|φ(±)

jσ 〉+Qσc δV σ
SCF |φ

(0)
iσ 〉 = ∓ω|φ(±)

iσ 〉

Solution strategy:

1. Solve the unperturbed KS equation and get |φ{0}
iσ 〉

2. Solve the Self-Consistent Sternheimer equations for

I the excitation energies ωI

I the linear response orbitals |φ(±)
iσ,I 〉

(the index I labels the different solutions)
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The Sternheimer equations

Properties of the Sternheimer approach

The evaluation of the Sternheimer equations requires only occupied KS orbitals,
φiσ(r): this is an important advantage compared to Casida equations.

The unoccupied space is only referenced through the projector Qσ
c .

The KS orbitals do not have to be in canonical form: no diagonalization of Hσ
KS

required

Virtual KS states only computed for the assignments of the excitations.
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The Sternheimer equations: the matrix form

Expanding the ground state KS orbitals and the linear response orbitals in an orthogonal
basis set {κp(r)} definies the expansion coefficients {c{0}

piσ } and {c{±}piσ }

φ
{0}
iσ (r) =

MX
p=1

c
{0}
piσ κp(r)

φ
{±}
iσ (r) =

MX
p=1

c
{±}
piσ κp(r)

In the following, the indeces i , j , k, . . . run over the KS states (1, . . . ,Nσ, and the
indeces p, q, r , . . . refer to the basis functions (1, . . . ,M).
Introducing the new set of coefficients

xpi =
1

2
(c
{+}
pi + c

{−}
pi )

ypi =
1

2
(c
{+}
pi − c

{−}
pi )

For a real perturbation: δρσ(+ω) = δρσ(−ω) and δV σ
SCF (+ω) = V σ

SCF (−ω)
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The Sternheimer equations: the matrix form

Matrix form of the Sternheimer equations

A(A+ B)x = ω2x

(A+ B)Ay = ω2y

The (super-) operators A and B are defined as (H = HKS )

Apiσ,qjτ =
`
(H)pqσδij − εijσδpq

´
δστ

Bpiσ,qjτ =
X
rst

Qtpσc
{0}
irσ (c

{0}
jsτ )∗Ktrσ,qsτ

where

Hpqσ = 〈κp|Hσ|κq〉 , εij =
X

pq

`
c
{0}
ipσ

´∗Hpqσc
{0}
jqσ

Ppqσ =
X

i

c
{0}
ipσ

´∗c
{0}
iqσ , Qpqσ = δpq − Ppqσ , Wpqσ = 〈κp|δVσSCF |κq〉

Ktrσ,qsτ =

Z
d3r

Z
d3r ′ κ∗t (r)κr (r)

"
1

|r− r′|
+

δ2Exc

δρσ(r)δρτ (r′)

˛̨̨
ρ{0}

#
κ
∗
q (r′)κs (r′)
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LR-TDDFT forces

Analytic derivatives

dEtot [c{0}, x , y ]

dη
=

dEKS [c{0}]

dη
+

dω[c{0}, x , y ]

dη

where η is an external parameter.

A staightforward calculation of dω[c{0}, x ]/dη requires derivatives of the MO coefficients
which are computationally very costly.
(Especially when η represents the f nuclear degrees of freedom.)

strategy

Derive an extended Lagrangian that is vatiational with respect to c{0} and x , y in order
to eliminate the derivatives of the MO coefficients.
Ref: Sternheimer-Dalgarno interchange theorem: R.M. Sternheimer, H. M. Flory, Phys.Rev. 92, 1460 (1953);

S. Dalgarno, Proc. R. Soc. London, Ser. A, 247, 243 (1958).
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LR-TDDFT forces: the extended Lagrangian formalism

The TDDFT forces can be derived in a compact way using the Lagrangian formalism.

In the Tamm-Dancoff approximation to the TDDFT equations, the linear response ampli-
tudes, c{+}, are set to zero and the Sterhheimer equation becomes (xµ = −yµ)

(A+ B) x = ωx

The LR-TDDFT/TDA Hermitian eigenvalue equation is related to the extended energy
functional

LTDA[c{0}, x , ω] = x†(A+ B)x− ω(x†x− 1)

LTDA[c{0}, x , ω] is variational in x and ω.

we have the following stationary conditions:

δLLDA

δx†
= (A+ B)x− ωx = 0

δLLDA

δω
= xx† − 1 = 0
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LR-TDDFT forces: the extended Lagrangian formalism

The extended Lagrangian functional that is variational in all wavefunction coefficients
c{0}, x is

Ltot [c{0}, x , ω,Λ,Z ] =

= LKS [c{0},Λ] + LTDA[c{0}, x , ω] +
X
piσ

Zpiσ

(X
q

Hpqσc
{0}
qiσ −

X
j

c
{0}
qjσ Λjiσ

)

where

LKS [c{0},Λ] = EKS [c{0}]−
X
ijσ

Λijσ

(X
p

(c
{0}
piσ )∗c

{0}
pjσ − δij

)
LTDA[c{0}, x, ω] = x†(A+ B)x− ω(x†x− 1)

and Z is the matrix od Lagrangian multipliers associated with the stationarity of the
Kohn-Sham orbitals.
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LR-TDDFT forces: the extended Lagrangian formalism

Properties of the total extended Lagrangian (within the TDA):

Ltot [c{0}, x , ω,Λ,Z ] is required to be stationary with respect to all its variavles,
c{0}, x , ω,Λ,Z .

Ltot [c{0}, x , ω,Λ,Z ] is a fully variational expression for the excited state energy
functional.

variation with respect to ω and x give the LR-TDDFT/TDA equations.

variation with respect to Z enforce the ground state KS equations and the MO
orthogonality.

thanks to the variational principle, the implicit dependence of Ltot through the MO
coefficients drops: X

c{0}

∂L
∂c{0}

∂c{0}

∂η
= 0

Ltot depends only from the explicit dependence on the external parameter η. We
can place the total derivatives ∂L

∂η
= Lη with the ”explicit” one L(η).
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TLR-TDDFT forces: the extended Lagrangian formalism

Considering η as a nuclear displacement

ω(η) =
X
piσ

X
qjτ

(xpiσ)∗A(η)xqjτ +
X
pqiσ

ZpiσH(η)
pqσc

{0}
qiσ

=
X
pqiσ

(xpiσ)∗H(η)
pqσxqiσ −

X
pjiσ

X
uv

(xpiσ)∗(c
{0}
uiσ )∗H(η)

uvσc
{0}
vjσ xpjσ

Introducing the density matrices

δPx
qpσ =

X
iσ

(xpiσ)∗xqiσ +
X

rij

xrjσc
{0}
pjσ (c

{0}
pjσ )∗(xriσ)∗

δPZ
qpσ =

X
i

Zpiσc
{0}
qiσ

Finally,

ω(η) =
X
pqσ

H(η)
pqσ

“
δPx

qpσ + δPZ
qpσ

”
For the full derivation see:

F. Furche, R. Ahlrichs, J, Chem. Phys.,117 (2002) (localized basis sets)

J. Hutter, J. Chem. Phys, 118, 3928 (2003) (plane wave basis sets)
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Examples of LR-TDDFT calculations

1 Overview
Why TDDFT in chemistry?

2 TDDFT and LR-TDDFT - Theory
TDDFT
LR-TDDFT
LR-TDDFT
Casida equations
The Sternheimer equations and the LR-TDDFT forces

3 Examples of LR-TDDFT calculations
When does it work?
Some known failures
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Benchmarks and references

”Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules”

JCTC, 5, 2420 (2009)
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Organic dyes

”Computational Study of Promising Organic Dyes for High-Performance Sensitized Solar
Cells”

JCTC, 6, 1219 (2010)
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Examples of LR-TDDFT calculations When does it work?

Organometallic complex - Mn2(CO)10

Structure and Bonding, 112, 49 (2004)
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Examples of LR-TDDFT calculations When does it work?

Organometallic complex - Mn2(CO)10

Very good agreement between TDDFT and CASPT2.

However, result very sensitive to the molecular geometry.

Structure and Bonding, 112, 49 (2004)
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A brief detour into ground state DFT

In 2006 J. Perdew has ordered the different xc-functional families on a Jacob’s ladder.
Each functional class represents a step towards the ”heaven” of chemical accuracy.

LDA ⇒ GGA ⇒ meta-GGA ⇒ Hybrids ⇒ Others... (Double hybrids,...)

JCTC, 5, 902 (2009)

Quantum chemical Heaven

double-hybrid ρ(r), x(r), τ(r), ψi (r), ψa(r)
RS-hybrids ρ(r), x(r), τ(r), ψi (r),Rα

hybrids ρ(r), x(r), τ(r), ψi (r)
mGGA ρ(r), x(r), τ(r)
GGA ρ(r), x(r)
LDA ρ(r)

Hartree world
Reduced gradient: x(r) = |∇ρ(r)|/ρ4/3(r).

Local kinetic energy: τ(r) =
P

i niψi (r)∇2ψi ((r))
Occupied, ψi (r), and unoccupied, ψa(r), KS orbitals.

RS: range-separated.
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob’s ladder of functionals.
PCCP, 13, 6670 (2011)
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob’s ladder of functionals.
PCCP, 13, 6670 (2011)

1218 single point calculations and 841 data points (relative energies):

Properties: atomization energies, electron affinities, ionization potentials, proton
affinities, SIE related problems, barrier heights

Various reaction energies: isomerizations, DielsAlder reactions, ozonolyses, reactions
involving alkaline metals

Noncovalent interactions: water clusters, conformational energies, and inter- and
intra- molecular London-dispersion interactions

computed for 47 different xc-functionals

2 LDA

14 GGA

3 meta-GGA

23 hybrid

5 double-hybrid (DHDF) density functionals
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob’s ladder of functionals.
PCCP, 13, 6670 (2011)

CAUTION:
Only closed-shell organic molecules have been considered!
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob’s ladder of functionals.
PCCP, 13, 6670 (2011)

Jacob’s ladder
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob’s ladder of functionals.
PCCP, 13, 6670 (2011)

Jacob’s ladder
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob’s ladder of functionals.
PCCP, 13, 6670 (2011)

GGA clearly improves over LDA - Only moderate improvement for meta-GGA
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob’s ladder of functionals.
PCCP, 13, 6670 (2011)

Hybrid improves, but not as much as expected!
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A brief detour into ground state DFT

Using a very large test set, Grimme et al. checked (computationally) the existence of the
Jacob’s ladder of functionals.
PCCP, 13, 6670 (2011)

Ground state DFT

Hybrid functionals improve only moderately compared to GGA functionals.
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Back to LR-TDDFT

In TDDFT hybrid functionals may improve strongly compared to GGA

PCCP, 13, 16987 (2011)
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Choice of the xc-functional

Figure: Histograms of the error for 614 excited states (VE = versus experiment)

JCTC, 5, 2420 (2009)
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Examples of LR-TDDFT calculations When does it work?

Choice of the xc-functional

Figure: Examples of molecules in
the VE test set.

Like for DFT: the quality of a
functional depends on the

onservable
JCTC, 6, 2071 (2010)

TDDFT for excitation energies



Examples of LR-TDDFT calculations When does it work?

Choice of the xc-functional

More difficult cases: Transitions between singlet and triplet states... JCTC, 6, 1532 (2010).

Figure: 20 molecules, 63 excited states. Comparison with CC2, CC3 or CASPT2
TDDFT for excitation energies
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Interesting considerations

Casida has proposed the following condition for accurate excitation energies ωI :
(JCP,108,4439 (1998))

ωI < −εHOMO

where −εHOMO is the TDDFT ionization threshold.

For the exact functional, −εHOMO = IE . However, an important shift of −εHOMO is
observed with approximated functionals (∼ 5 eV for N2).
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Interesting considerations

Casida has proposed the following condition for accurate excitation energies ωI :
(JCP,108,4439 (1998))
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Interesting considerations

Casida has proposed the following condition for accurate excitation energies ωI :
(JCP,108,4439 (1998))
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Examples of LR-TDDFT calculations Some known failures

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state

energies.
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Examples of LR-TDDFT calculations Some known failures

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state

energies.

Charge transfer according to IUPAC

An electronic transition in which a large fraction of an electronic charge is transferred from
one region of a molecular entity, called the electron donor, to another, called the electron
acceptor (intramolecular CT) or from one molecular entity to another (intermolecular CT).
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Examples of LR-TDDFT calculations Some known failures

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state

energies.

Figure: JACS,126, 4007 (2004)
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Examples of LR-TDDFT calculations Some known failures

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state

energies.

Figure: JACS,126, 4007 (2004)

How can we understand this failure?

Aiaσ,jbτ = δστδijδab(εaσ − εiσ) + (ia|fH + f στxc |jb)

Biaσ,jbτ = (ia|fH + f στxc |bj)
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Examples of LR-TDDFT calculations Some known failures

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state

energies.

Figure: JACS,126, 4007 (2004)

How can we understand this failure? For ψi and ψa with no overlap :

Aiaσ,jbτ = δστδijδab(εaσ − εiσ) +(((((((
(ia|fH + f στxc |jb)

Biaσ,jbτ = (((((((
(ia|fH + f στxc |bj)
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Examples of LR-TDDFT calculations Some known failures

An important failure: charge transfer (CT) problem

Current xc-functionals usually underestimate dramatically charge transfer excitation state

energies.

Figure: JACS,126, 4007 (2004)

We are left with orbital energy differences.
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Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,

091101 (2009)

CC2 (wavefunction-based method)
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Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,

091101 (2009)
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Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,

091101 (2009)
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Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,

091101 (2009)

Overlap of the orbitals
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Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,

091101 (2009)

PBE
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Examples of LR-TDDFT calculations Some known failures

Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,

091101 (2009)

B3LYP
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Examples of LR-TDDFT calculations Some known failures

Example of CT problem

N,N-dimethylaminobenzonitrile (DMABN) - Complete analysis by Tozer et al. JCP, 131,

091101 (2009)

CAM-B3LYP
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Examples of LR-TDDFT calculations Some known failures

Failures of xc-functionals for charge transfer states.

CT failures may affect dramatically the shape of the
PESs.

CT failures may affect the ordering of the electronic
states.

The quality of PESs is not uniformly spread over the
entire configuration space.

Dramatic for dynamics on excited states.

Hopes from new xc-functionals.
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Examples of LR-TDDFT calculations Some known failures

Adiabatic approximation: the problem of double excitations

Due to the adiabatic approximation (frequency independent kernel: Casida
equation gives solutions with single-electron excitation character), double
excitation characters are not properly captured.

Typical examples: butadiene
excitation energies of single
excitation character are well
reproduced (11Bu), not those with
double excitation character (21Ag

and 41Ag ).

Mol. Phys., 104, 1039 (2006)

f στxc (rt, r′t′) = δ(t − t′)
δ2Exc [ρ]

δρσ(r)δρτ (r′)
.
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Examples of LR-TDDFT calculations Some known failures

Topology of the excited states

Photochemistry/photophysics require a correct description of the topological properties
of the most relevant potential energy surfaces involved.
Conical intersections are now recognized to play a critical role in the reaction dynamics
of electronic excited states.
They occur at geometries for which two electronic states are exactly degenerate.

Branching space is composed by the gradient difference gIJ and the nonadiabatic
coupling vector hIJ .

gIJ = ∇R(EI − EJ )

hIJ = 〈ΦI |∇R|ΦJ〉
TDDFT for excitation energies



Examples of LR-TDDFT calculations Some known failures

Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?

Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell

systems) has the wrong dimensionality for the intersection with the S0 PES: f − 1 (a

seam of intersections instead of a conical intersection).
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Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?

Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell

systems) has the wrong dimensionality for the intersection with the S0 PES: f − 1 (a

seam of intersections instead of a conical intersection).
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Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?

Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell

systems) has the wrong dimensionality for the intersection with the S0 PES: f − 1 (a

seam of intersections instead of a conical intersection).

Why is it the case?

For a simple two level system, the adiabatic energies of each state are described by:

E0,1 = (H00 + H11) /2±
q

((H00 − H11) /2)2 + H2
01 .
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Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?

Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell

systems) has the wrong dimensionality for the intersection with the S0 PES: f − 1 (a

seam of intersections instead of a conical intersection).

Why is it the case?

For a simple two level system, the adiabatic energies of each state are described by:

E0,1 = (H00 + H11) /2±
q

((H00 − H11) /2)2 + H2
01 .

The conditions for a conical intersection are: (H00(R)− H11(R)) = 0 and H01(R) = 0,
i.e. imply generally two constraints. However, from Brillouin’s theorem, we know that the
matrix elements H01 = 〈Φ0|Ĥel |Φ1〉 are always zero, therefore there is only one condition
to satisfy and the CI is described in a f-1 space.
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Topology of the excited states

What about the topology of the TDDFT PESs close to a conical intersection?

Formally, TDDFT equations in the Tamm-Dancoff approximation (TDA) are similar to
the CIS equations for the excited state energies.

By applying Brillouin’s theorem, one can show that restricted CIS (for closed shell

systems) has the wrong dimensionality for the intersection with the S0 PES: f − 1 (a

seam of intersections instead of a conical intersection).

Why is it the case?

For a simple two level system, the adiabatic energies of each state are described by:

E0,1 = (H00 + H11) /2±
q

((H00 − H11) /2)2 + H2
01 .

The conditions for a conical intersection are: (H00(R)− H11(R)) = 0 and H01(R) = 0,
i.e. imply generally two constraints. However, from Brillouin’s theorem, we know that the
matrix elements H01 = 〈Φ0|Ĥel |Φ1〉 are always zero, therefore there is only one condition
to satisfy and the CI is described in a f-1 space.
Is this also the case in TDDFT?
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Topology of the excited states

S0/S1 intersection in linear water (Mol. Phys., 104, 1039 (2006))
CIS - TDDFT

CASSCF
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Topology of the excited states

S0/S1 for H2 + H (Mol. Phys., 104, 1039 (2006))

TDDFT - CASSCF

TDDFT seems to reproduce the correct splitting of the surfaces.

However, slope around the CI is much steeper...
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Examples of LR-TDDFT calculations Some known failures

”Scale-up catastrophe” 2: extended (conjugated) systems.

Moving to larger systems, failures of LR-TDDFT can get amplified.
(PRL,88,186401)

2according to Casida, THEOCHEM 2009
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”Scale-up catastrophe” 2: extended (conjugated) systems.

Moving to larger systems, failures of LR-TDDFT can get amplified.
(PRL,88,186401)

2according to Casida, THEOCHEM 2009
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Examples of LR-TDDFT calculations Some known failures

Short summary - LR-TDDFT for excitation energies

For valence excited states well below the ionization potential (∼ −εHOMO )
⇒ error between 0.2 and 0.6 eV (0.1 eV ≈ 10 kJ/mol).

Good ordering and relative energies of the excited states (except for CT states).

Good also for transition metals (difficult for wavefunction based methods).

Scales ∼ like O(n2) with n the number of electrons: can deal with very large
systems up to many hundreds of atoms.

Many times, TDDFT properties are bad because the underlying DFT is
inaccurate (bond dissociations, biradicals, self-interaction error, . . . ).

Topology of the excited surfaces is not always correct.

Problems to describe double excitations, Rydberg excited states, large π
systems.

Standard xc functionals fail in the case of CT states.

Errors in the ordering of the excited PESs is deleterious for excited states MD.
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