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Outline

Laser-matter interaction: atoms

Classical models and quantum description

Floguet theory, Volkov states

Multiphoton processes, tunneling ionization

Recollision, high-harmonic generation, double ionization
Strong-field approximation

Recent examples of research on atoms in strong fields
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Laser-matter interaction

“Weak” light field Strong light field
(normal light, synchrotron) (laser pulses)
o 0 =
NS\~ T VAV
W tw
tw
_tw
Single-photon absorption Multiphoton absorption
P ~ |(1|r - E|0)|? perturbative or

nonperturbative
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Ultrashort laser pulses

Femtosecond pulses are available:

02

| = 5x10" W/ecm®

FWHM =6 fs
0.1 |

Field (a.u.)
o
o

-0.1

-0.2 - - - :
-20 -10 0 10 20
Time (fs)

— cause ionization of atoms, fragmentation of molecules
— allow ultrafast time-resolved measurements (pump-probe)
— “carrier-envelope phase” becomes important
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Classical preliminaries

Free classical electron in a monochromatic laser field

Equation of motion: |¥(t) = —Eq sin(wt)
(using dipole approximation; Eq sin(wt) = electric field, linearly polarized)

Velocity: 1(t) = Vg + 2 cos(wt)
Position: r(t) = ry + Vdrlftt + E —& sin(wt)

X

drift + oscillation

N t

Oscillation amplitude : a = Eq/w?



Classical preliminaries

2 2
Kinetic energy: T'(t) = d2“ft + Varift - 12}0 cos(wt) + 2%2 cos? (wt)
oAt 5 Vann L, Eo
Average kinetic energy: | 1" = it + 17
. . E;
— Define ponderomotive potential : |U, = 4—&

If fleld amplitude Is position dependent, there will be a
ponderomotive force F, = —VU,(r).
(But in an ultrashort laser pulse, the electron has not enough time to

follow this force).
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Quantum mechanical description

Time evolution is described by the time-dependent

Schrédinger equation (TDSE):  |i2U(t) = H(¢)¥(¢).

Hamiltonian in dipole approximation (A >> system size):

H(t) = Ho+ E(t) - 3, 1,

This iIs called length gauge.

Alternatively:

with E(¢) = electric field.

H'(t) = Ho + A(t) - 3, [p; + A(1)/2] | with

Alt) = — [ B(t)dr.

This is called velocity gauge.
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Quantum mechanical description

The velocity-gauge wave function ¥'(¢) is related to the
length-gauge wave function W (¢) by

\Ifl(t) _ e—iA(t)-Zj r; \If(t)

Are there problems with TDDFT and velocity gauge
(momentum-dependent interaction)?

No, because gauge transformation does not change density .
— TDKS equations may be solved in either gauge.

But: orbitals change under gauge transformation.
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Floquet theory

Consider monochromatic field E(t) = Eg sin(wt)
— periodic Hamiltonian H(t + T) = H(t)

— Floquet theorem (cf. Bloch theorem in solid-state physics):

TDSE has solutions of the form
U(t) = e “tP(t)

with time-periodic wave functions &(t),

P(t+T)=d(t).
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Floquet theory

The Floquet states ®(t) are eigenstates of the Floquet

operator H(t) = H(t) — z’%,

H(t)D(t) = ED(1),

where £ Is the quasienergy .

If £ and &(t) are solutions, then also
E' =& +nwand ?'(t) = ®(t)e"™" are solutions.

d(t) are called dressed states
(analog to stationary eigenstates for time-independent Hamiltonian).
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\olkov states

Free electron in the presence of a time-dependent electric
field is described by the Hamiltonian (length gauge):

Hit)=—-% +E()-r

Possible solutions of the TDSE are Volkov states :

Vv _ —iS(p,t,t") Ji[p+A(t)]r
\ij (r’ t) — e (p )6 P (1))

t
with the action integral S(p,¢,t') = 5 [[p + A(t")]*dt” and
t/
arbitrary, fixed t'.

These are plane waves with momenta depending on time as
In classical mechanics.
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\olkov states

For a monochromatic field, the Volkov states can be written
as

e (r,t) = e~ /24 Un)t (1 t)

with a time periodic function @, I.e. this is a Floquet state
with quasienergy

E, =p?/2+ U,.

The ponderomotive potential is the ac Stark shift of plane
waves!
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Tunneling

Static electric field £ — potential barrier, allows tunneling.

A

Tunneling rate for the hydrogen atom (see Landau & Lifshitz):

4 — E
Le-2/BF)

w =

(derived from quasiclassical theory)
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Over-barrier ionization

For sufficiently large field £ > critical field Fys
— ground-state energy above barrier maximum

-------- N

A

— Classical escape of the electron.

Egs = barrier suppression field strength
H atom: Fgg = 0.113 a.u.
(corresponds to laser intensity Igg = 4.5 x 10** W/cm?)
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lonization regimes

multiphoton
lonization

v =w/wg > 1

__ tunneling time

tunnel ionization

over-barrier

AL

F

vy=w/w < 1

laser period

H atom: vy =w/FE

lonization
ﬂ(a\
E > ERg

(Keldysh parameter)

in general: v = /I,/(2U,) ,
I, = ionization potential, U, = ponderomotive potential
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Simple man’s model of ionization

e At each instant ¢,, the ionization rate Is given by a simple

estimate (e.g. tunneling formula) using the instantaneous
field strength.

e Electron appears with zero velocity at position zero.
e Subsequent dynamics is described classically.
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Simple man’s model of ionization

e At each instant ¢,, the ionization rate Is given by a simple

estimate (e.g. tunneling formula) using the instantaneous
field strength.

e Electron appears with zero velocity at position zero.
e Subsequent dynamics is described classically.

For monochromatic field: ©(t) = 22 [cos(wt) — cos(wty)]

w

i.e. drift velocity v = — =0 cos(wt)

w

— Estimate of maximum photoelectron energy:

|cos(wip)| =1 — |Fpax = 5% = 2U,
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Above-threshold i1onization

Absorption of more photons than needed to overcome the
lonization threshold

— Peaks separated by the photon energy in the electron
spectrum

T [T T T ] I I

136;15‘ (ref.)
a) |

Example:

experiment with Xe atoms,
Agostini et al. PRA 36, R4111
(1987).

Electron count {arb. units)

Energy (eV)

F1G. 2. Electron energy spectra for different laser intensities
and pulse durations. (a) reference spectrum, /=2.2x10"
Wem ™% (b) and (¢) 7=7.5x10" Wem ™2,
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Above-threshold i1onization

Ponderomotive shift of the ATI peaks

- continuum dressed states have energies £ = k%/2 + U,

- shift of ground-state energy is small: £ ~ E,

so absorption of n photons yields electrons with energy

Ey + nw.

— Photoelectron kinetic energies

k*/2 = Ey + nw — U,
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Recollision mechanism

3-step process:

1. ionization

2. acceleration by the field
3. return to the core
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Recollision mechanism

3-step process:

1. ionization

2. acceleration by the field
3. return to the core

Possible consequences
e recombination (high harmonic generation — coherent light)
e elastic scattering — fast photoelectrons
¢ Inelastic scattering — e.g. double ionization
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High-harmonic generation

nicture

///////////////

A

A

A

0 = N Ve

N photons of frequency w

— 1 photon of frequency /N w.
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High-harmonic generation

Recollision picture
Maximum return energy: Eyax = 3.17U,

| onization Free acceleration Recombination

V() — Cut-offat| hw = 3.17U, + I,

V() M V() ij [Corkum, PRL 71, 1994 (1993)]

|

Harmonic order

—p.21



Calculation of spectra

Calculation of the time-dependent dipole acceleration

a(t) = ((t)|[VVo + E(t)[¥(1))

and Fourier transform

gives emission spectrum

S(Q) ~ [a(Q)[*

In practice: time integration over pulse duration 7',

a(Q) = [, a(t)f(t)e™!

with some window function f(t).

Alternatively: a(t) = D(t) from time-dependent dipole moment D(t)
or: a(t) = v(t) from time-dependent dipole velocity v(t)
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Rescattered photoelectrons

Scattered electrons (high-order above-threshold ionization)

scattered electrons

/

G.G. Paulus et al. PRL 72, 2851 (1994)

1OUp
Electron energy
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Double ionization

1E6

1E4

1E2

1E-4

lE_6 IS A5TI

11118 L11l
1E15 1E16

intensity (W/em 2 )

Walker et al., PRL 73, 1227 (1994)

Double ionization is enhanced
due to electron correlations by
orders of magnitude.

|dentification of the
recollision mechanism:

A. Becker, FH.M. Faisal, J. Phys. B 29, L197
(1996)

R. Moshammer et al., PRL 84, 447 (2000)
T. Weber et al., Nature 405, 658 (2000)
M.L., E.K.U. Gross, V. Engel, PRL 85, 4707
(2000)
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Quantum mechanical methods for ultrashort pulses

e Numerical solution of the TDSE (or TDKS) equations
- accurate,
- but time consuming and hard to interpret,
- approximations for TDDFT xc potential have deficiencies

e Strong-field approximation
(“Keldysh-Faisal-Reiss theory”, “intense field S-matrix formalism™)
- less reliable (e.g. strong dependence on gauge),
- but fast and amenable to physical interpretation.
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Strong-field approximation for ionization

Time evolution operator U(t,t") obeys Schrodinger equation:
19 U(t, ') = [Hy + Hine (1) U (2, 1),
where H;,; Is the system-field interaction.

The solution can be written in integral form:

t
Ut,t") = Up(t,t') — i [ U(t, t")Hins (t")Up (", t")dt".
t/

Goal: calculation of transition amplitudes from ground state to
continuum states with momentum p at final time ¢;:

My (e, ;) = (Wp(te)|U (¢, 1) [Wo (t:))

—p.26



Strong-field approximation for ionization

Assumption 1: time evolution after ionization is governed by
the laser field only, not by the binding potential, i.e.
U(t,t") ~ Uy(t,t") (Volkov-Propagator). Then

t
Ut t") = Up(t,t') — i [ Uy(t,t") Hin (t")Up (", t)dt".
t/

Assumption 2: final state with momentum p Is approximated
as a Volkov state.

— lonization amplitude in strong-field approximation (SFA):

MBS () —zf (WY ()| Hing ()| Wo (1)) dt
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Strong-field approximation for ionization

SFA is not gauge invariant: results for ionization of N,
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T.K. Kjeldsen and L.B. Madsen, J. Phys. B 37, 2033 (2004)

Length gauge (r - E(¢)) appears favourable (except for large molecules)
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Two examples of recent research In
laser-atom interactions

e Low-energy structure in electron spectra from long-wavelength
irradiation

e Lateral momentum width in strong-field ionization
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L ow-energy structure in electron spectra

= =3D TDSE  ——KFR —=—Experiment

Normalized electron yield

U 1 i i i | 1 i 1 i | i i 1 i
0 3 10 15

Electron energy (eV)

Figure 4 | Comparison of calculated and measured LES distributions for
argonionized by 150 TW cm™2, 2 um pulses. The experiment is remar-
kably well reproduced by the three-dimensional TDSE. For comparison, the
KFR using Volkov states fails in this region. The calculated distributions are
obtained using intensity averaged, 10-cycle flat-top pulses (see the
Methods section).

Blaga et al., Nat. Phys. 5, 335 (2009)
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L ow-energy structure in electron spectra

Explanation: caustics from soft recollisions

soft
recollisons

\ hard

recollisions

log(P)

direct

photo-electron yield P

\
‘,‘ electrons
|

| I | |
0 100  excess energy E [eV]

direct
electrons

0 10 electron energy E [eV]

Kastner et al. arXiv:1109.3998v1 (2011)
Yan et al., PRL 105, 253002 (2010)
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Lateral momentum distribution In strong-field ionizatio

Measured widths of lateral distributions (circularly pola rized light)
detector I I v | |
0,28 ji) AI‘ | E = _El | E
0.20 — B - ngn:azﬁabatfcz 800 t

Errr.'g [a' u']

-adiabatic: 800

15 -1 05 0 05 1 15
ooa 00? ona 009 010 011 012 0.3

P~ B (a.u.) o la.u.]

Arissian et al., PRL 105, 133002 (2010)

— Widths are larger than predicted by a simple tunneling formula
(W(ky)[? = [U(kL)[* exp(—kT \/2,/E).



Lateral momentum distribution In strong-field ionizatio

Calculated widths and comparison to experiment:

H Ar
v . . . . 0.3 — .
O e B i ‘i experiment —&—
i i | i QTF --@- !
0.28 non-adiabatic TF - - &« ---- - - - - oo —~9
| | Lo . ~ adiabatic TF @ ; o ==
035 026 p----- e o R 4
= | | ; —_ | i1l | SR §
s, g 024 il
© 03 o] 1 y
0.22 ----;-,i' ----- LA T
: . 02 k" F,
i ¢ ) ; - non-adiabatic TF --#- | 018 ‘ ___________________________________________
0.05 01 0.15 0.2 0.04 0.05 0.06 0.07
Bo[a.u] E, [a.u]

|. Dreissigacker, M.L., submitted; experimental data by Arissian et al. PRL 2010

e Very good agreement between TDSE, SFA, experiment.
e Simple tunneling model is inaccurate.
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Conclusions

e Strong laser fields require nonperturbative description and
large grids.

e In general, theoretical description is not quantitative and relies
heavily on models.

e TDDFT is the only tractable first-principles approach, already
for atoms.

Next part:

e Laser-matter interaction: molecules
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