Models for Time-Dependent Phenomena

I. Laser-matter interaction: atomsII. Laser-matter interaction: moleculesIII. Model systems and TDDFT

Manfred Lein, TDDFT school Benasque 2012

Laser-matter interaction: atoms

- Classical models and quantum description
- Floquet theory, Volkov states
- Multiphoton processes, tunneling ionization
- Recollision, high-harmonic generation, double ionization
- Strong-field approximation
- Recent examples of research on atoms in strong fields

Laser-matter interaction

"Weak" light field (normal light, synchrotron)

Single-photon absorption

 $P \sim |\langle 1 | \mathbf{r} \cdot \mathbf{E} | 0 \rangle|^2$

Strong light field

(laser pulses)

Multiphoton absorption

perturbative or nonperturbative

Ultrashort laser pulses

Femtosecond pulses are available:

- \rightarrow cause ionization of atoms, fragmentation of molecules
- \rightarrow allow ultrafast time-resolved measurements (pump-probe)
- \rightarrow "carrier-envelope phase" becomes important

Free classical electron in a monochromatic laser field

Equation of motion: $|\ddot{\mathbf{r}}(t) = -\mathbf{E}_0 \sin(\omega t)|$ (using dipole approximation; $\mathbf{E}_0 \sin(\omega t) = \text{electric field}$, linearly polarized) Velocity: $\dot{\mathbf{r}}(t) = \mathbf{v}_{\text{drift}} + \frac{\mathbf{E}_0}{\omega} \cos(\omega t)$ Position: $\mathbf{r}(t) = \mathbf{r}_0 + \mathbf{v}_{\text{drift}}t + \frac{\mathbf{E}_0}{\omega^2}\sin(\omega t)$ drift + oscillation t

Oscillation amplitude: $\alpha = \mathbf{E}_0 / \omega^2$

Classical preliminaries

Kinetic energy:
$$T(t) = \frac{v_{\text{drift}}^2}{2} + \mathbf{v}_{\text{drift}} \cdot \frac{\mathbf{E}_0}{\omega} \cos(\omega t) + \frac{E_0^2}{2\omega^2} \cos^2(\omega t)$$

Average kinetic energy:
$$\bar{T} = \frac{v_{\text{drift}}^2}{2} + \frac{E_0^2}{4\omega^2}$$

 \rightarrow Define ponderomotive potential: $U_{\rm p} = \frac{E_0^2}{4\omega^2}$

If field amplitude is position dependent, there will be a ponderomotive force $\mathbf{F}_{\mathrm{p}} = -\nabla U_{\mathrm{p}}(\mathbf{r})$. (But in an ultrashort laser pulse, the electron has not enough time to

follow this force).

Time evolution is described by the time-dependent Schrödinger equation (TDSE): $i\frac{\partial}{\partial t}\Psi(t) = H(t)\Psi(t)$.

Hamiltonian in dipole approximation ($\lambda >>$ system size):

$$H(t) = H_0 + \mathbf{E}(t) \cdot \sum_j \mathbf{r}_j$$
 with $\mathbf{E}(t)$ = electric field.

This is called *length gauge*.

Alternatively:

$$H'(t) = H_0 + \mathbf{A}(t) \cdot \sum_j [\mathbf{p}_j + \mathbf{A}(t)/2]$$
 with
 $\mathbf{A}(t) = -\int_{-\infty}^t \mathbf{E}(t') dt'.$

This is called *velocity gauge*.

The velocity-gauge wave function $\Psi'(t)$ is related to the length-gauge wave function $\Psi(t)$ by

$$\Psi'(t) = e^{-i\mathbf{A}(t)\cdot\sum_j \mathbf{r}_j} \Psi(t)$$

Are there problems with TDDFT and velocity gauge (momentum-dependent interaction)?

No, because gauge transformation does not change density .

 \rightarrow TDKS equations may be solved in either gauge.

But: orbitals change under gauge transformation.

Consider monochromatic field $\mathbf{E}(t) = \mathbf{E}_0 \sin(\omega t)$ \rightarrow periodic Hamiltonian H(t + T) = H(t)

 \rightarrow Floquet theorem (cf. Bloch theorem in solid-state physics):

TDSE has solutions of the form

$$\Psi(t) = e^{-i\mathcal{E}t}\Phi(t)$$

with time-periodic wave functions $\Phi(t)$,

$$\Phi(t+T) = \Phi(t).$$

The Floquet states $\Phi(t)$ are eigenstates of the **Floquet** operator $\mathcal{H}(t) = H(t) - i\frac{\partial}{\partial t}$,

$$\mathcal{H}(t)\Phi(t) = \mathcal{E}\Phi(t),$$

where \mathcal{E} is the **quasienergy**.

If \mathcal{E} and $\Phi(t)$ are solutions, then also $\mathcal{E}' = \mathcal{E} + n\omega$ and $\Phi'(t) = \Phi(t)e^{in\omega t}$ are solutions.

$\Phi(t)$ are called **dressed states**

(analog to stationary eigenstates for time-independent Hamiltonian).

Free electron in the presence of a time-dependent electric field is described by the Hamiltonian (length gauge):

$$H(t) = -\frac{\nabla^2}{2} + \mathbf{E}(t) \cdot \mathbf{r}$$

Possible solutions of the TDSE are **Volkov states**:

$$\Psi_{\mathbf{p}}^{\mathrm{V}}(\mathbf{r},t) = e^{-iS(\mathbf{p},t,t')}e^{i[\mathbf{p}+\mathbf{A}(t)]\cdot\mathbf{r}}$$

with the action integral $S(\mathbf{p}, t, t') = \frac{1}{2} \int_{t'}^{t} [\mathbf{p} + \mathbf{A}(t'')]^2 dt''$ and arbitrary, fixed t'.

These are plane waves with momenta depending on time as in classical mechanics.

For a monochromatic field, the Volkov states can be written as

$$\Psi_{\mathbf{p}}^{\mathrm{V}}(\mathbf{r},t) = e^{-i(p^2/2 + U_{\mathrm{p}})t} \Phi_{\mathbf{p}}(\mathbf{r},t)$$

with a time periodic function $\Phi_{\mathbf{p}},$ i.e. this is a Floquet state with quasienergy

$$\mathcal{E}_{\mathbf{p}} = p^2/2 + U_{\mathbf{p}}.$$

The ponderomotive potential is the ac Stark shift of plane waves!

Static electric field $E \rightarrow$ potential barrier, allows tunneling.

Tunneling rate for the hydrogen atom (see Landau & Lifshitz):

$$w = \frac{4}{E}e^{-2/(3E)}$$

(derived from quasiclassical theory)

Over-barrier ionization

For sufficiently large field E > critical field $E_{BS} \rightarrow$ ground-state energy above barrier maximum

 \rightarrow Classical escape of the electron.

$E_{\rm BS} =$ barrier suppression field strength

H atom: $E_{\rm BS} = 0.113$ a.u.

(corresponds to laser intensity $I_{\rm BS} = 4.5 \times 10^{14}$ W/cm²)

Ionization regimes

 $\gamma = \frac{\text{tunneling time}}{\text{laser period}}$ (Keldysh parameter)

H atom: $\gamma = \omega/E$

in general: $\gamma=\sqrt{I_{\rm p}/(2U_{\rm p})}$, $I_{\rm p}=$ ionization potential, $U_{\rm p}=$ ponderomotive potential

Simple man's model of ionization

- At each instant t₀, the ionization rate is given by a simple estimate (e.g. tunneling formula) using the instantaneous field strength.
- Electron appears with zero velocity at position zero.
- Subsequent dynamics is described classically.

Simple man's model of ionization

- At each instant t₀, the ionization rate is given by a simple estimate (e.g. tunneling formula) using the instantaneous field strength.
- Electron appears with zero velocity at position zero.
- Subsequent dynamics is described classically.

For monochromatic field: $\dot{\mathbf{r}}(t) = \frac{\mathbf{E}_0}{\omega} [\cos(\omega t) - \cos(\omega t_0)]$ i.e. drift velocity $\mathbf{v}_{\text{drift}} = -\frac{\mathbf{E}_0}{\omega} \cos(\omega t_0)$

 \rightarrow Estimate of maximum photoelectron energy:

$$|\cos(\omega t_0)| = 1 \quad \rightarrow \quad E_{\max} = \frac{E_0^2}{2\omega^2} = 2U_p$$

Absorption of more photons than needed to overcome the ionization threshold

 \rightarrow Peaks separated by the photon energy in the electron spectrum

Example:

experiment with Xe atoms, Agostini et al. PRA **36**, R4111 (1987).

FIG. 2. Electron energy spectra for different laser intensities and pulse durations. (a) reference spectrum, $I = 2.2 \times 10^{12}$ W cm⁻²; (b) and (c) $I = 7.5 \times 10^{12}$ W cm⁻².

Ponderomotive shift of the ATI peaks

- continuum dressed states have energies $\mathcal{E}_k^{\mathrm{d}} = k^2/2 + U_{\mathrm{p}}$
- shift of ground-state energy is small: $\mathcal{E}_{g}^{d} \approx E_{g}$, so absorption of n photons yields electrons with energy $E_{g} + n\omega$.
- \rightarrow Photoelectron kinetic energies $k^2/2 = E_{\rm g} + n\omega U_{\rm p}$

3-step process:

- 1. ionization
- 2. acceleration by the field
- 3. return to the core

3-step process:

- 1. ionization
- 2. acceleration by the field
- 3. return to the core

Possible consequences:

- recombination (high harmonic generation coherent light)
- elastic scattering \rightarrow fast photoelectrons
- inelastic scattering \rightarrow e.g. double ionization

High-harmonic generation

N photons of frequency ω

 \rightarrow 1 photon of frequency $N\omega.$

High-harmonic generation

Maximum return energy: $E_{\rm max} = 3.17 U_{\rm p}$

$$\hookrightarrow$$
 Cut-off at $\hbar\omega=3.17U_{\rm p}+I_{\rm p}$

[Corkum, PRL 71, 1994 (1993)]

Harmonic order

Calculation of spectra

Calculation of the time-dependent dipole acceleration

 $\mathbf{a}(t) = \langle \psi(t) | \nabla V_0 + \mathbf{E}(t) | \psi(t) \rangle$

and Fourier transform

$$\mathbf{a}(\Omega) = \int \mathbf{a}(t) e^{i\omega t}$$

gives emission spectrum

$$S(\Omega) \sim |\mathbf{a}(\Omega)|^2$$

In practice: time integration over pulse duration T,

$$\mathbf{a}(\Omega) = \int_0^T \mathbf{a}(t) f(t) e^{i\omega t}$$

with some window function f(t).

Alternatively: $\mathbf{a}(t) = \ddot{\mathbf{D}}(t)$ from time-dependent dipole moment $\mathbf{D}(t)$ or: $\mathbf{a}(t) = \dot{\mathbf{v}}(t)$ from time-dependent dipole velocity $\mathbf{v}(t)$

Rescattered photoelectrons

Scattered electrons (*high-order above-threshold ionization*)

Double ionization

Walker et al., PRL 73, 1227 (1994)

Double ionization is enhanced due to electron correlations by orders of magnitude.

Identification of the recollision mechanism:

A. Becker, F.H.M. Faisal, J. Phys. B **29**, L197 (1996)

R. Moshammer et al., PRL 84, 447 (2000)

T. Weber et al., Nature **405**, 658 (2000)

M.L., E.K.U. Gross, V. Engel, PRL **85**, 4707 (2000)

Quantum mechanical methods for ultrashort pulses

- Numerical solution of the TDSE (or TDKS) equations
 - accurate,
 - but time consuming and hard to interpret,
 - approximations for TDDFT xc potential have deficiencies

• Strong-field approximation

("Keldysh-Faisal-Reiss theory", "intense field S-matrix formalism")

- less reliable (e.g. strong dependence on gauge),
- but fast and amenable to physical interpretation.

Time evolution operator U(t, t') obeys Schrödinger equation:

$$i\frac{\partial}{\partial t}U(t,t') = [H_0 + H_{\rm int}(t)]U(t,t'),$$

where H_{int} is the system-field interaction.

The solution can be written in integral form:

$$U(t,t') = U_0(t,t') - i \int_{t'}^t U(t,t'') H_{\text{int}}(t'') U_0(t'',t') dt''.$$

Goal: calculation of transition amplitudes from ground state to continuum states with momentum p at final time t_f :

$$M_{\mathbf{p}}(t_{\mathrm{f}}, t_{\mathrm{i}}) = \langle \Psi_{\mathbf{p}}(t_{\mathrm{f}}) | U(t_{\mathrm{f}}, t_{\mathrm{i}}) | \Psi_{0}(t_{\mathrm{i}}) \rangle$$

Assumption 1: time evolution after ionization is governed by the laser field *only*, not by the binding potential, i.e. $U(t, t'') \approx U_V(t, t'')$ (Volkov-Propagator). Then

$$U(t,t') = U_0(t,t') - i \int_{t'}^t U_V(t,t'') H_{int}(t'') U_0(t'',t') dt''.$$

Assumption 2: final state with momentum ${\bf p}$ is approximated as a Volkov state.

 \rightarrow Ionization amplitude in strong-field approximation (SFA):

$$M_{\mathbf{p}}^{\text{SFA}}(t_{i}, t_{f}) = -i \int_{t_{i}}^{t_{f}} \langle \Psi_{\mathbf{p}}^{\text{V}}(t) | H_{\text{int}}(t) | \Psi_{0}(t) \rangle dt$$

Strong-field approximation for ionization

SFA is not gauge invariant: results for ionization of N_2

T.K. Kjeldsen and L.B. Madsen, J. Phys. B 37, 2033 (2004)

Length gauge $(\mathbf{r} \cdot \mathbf{E}(t))$ appears favourable (except for large molecules)

Two examples of recent research in laser-atom interactions

- Low-energy structure in electron spectra from long-wavelength irradiation
- Lateral momentum width in strong-field ionization

Low-energy structure in electron spectra

Figure 4 Comparison of calculated and measured LES distributions for argon ionized by 150 TW cm⁻², 2 μ m pulses. The experiment is remarkably well reproduced by the three-dimensional TDSE. For comparison, the KFR using Volkov states fails in this region. The calculated distributions are obtained using intensity averaged, 10-cycle flat-top pulses (see the Methods section).

Blaga et al., Nat. Phys. 5, 335 (2009)

Low-energy structure in electron spectra

Explanation: caustics from soft recollisions

Kästner et al. arXiv:1109.3998v1 (2011) Yan et al., PRL **105**, 253002 (2010)

Lateral momentum distribution in strong-field ionization

Measured widths of lateral distributions (circularly polarized light)

Arissian et al., PRL 105, 133002 (2010)

 \rightarrow Widths are larger than predicted by a simple tunneling formula $|\Psi(k_{\perp})|^2 = |\Psi(k_{\perp})|^2 \exp(-k_{\perp}^2 \sqrt{2I_p}/E).$

Lateral momentum distribution in strong-field ionization

Calculated widths and comparison to experiment:

I. Dreissigacker, M.L., submitted; experimental data by Arissian et al. PRL 2010

- Very good agreement between TDSE, SFA, experiment.
- Simple tunneling model is inaccurate.

- Strong laser fields require nonperturbative description and large grids.
- In general, theoretical description is not quantitative and relies heavily on models.
- TDDFT is the only tractable first-principles approach, already for atoms.

Next part:

• Laser-matter interaction: molecules