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Landauer steady-state approach to electron transport

Critique of the Landauer approach
@ TDDFT-based approaches to transport

o Finite systems
e Embedding scheme
o Master equation

@ Time-dependent transport phenomena

e Bound-state oscillations
o Bistability
e Dynamical picture of Coulomb blockade

Summary and critique of adiabatic TDDFT for transport
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Landauer steady-state approach to electron transport

Landauer + static DFT for steady state transport

Landauer steady-state approach to electron transport J
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Landauer steady-state approach to electron transport
Landauer + static DFT for steady state transport

Standard approach: Landauer formalism plus static DFT

central
left lead L . right lead R
region C

<l

Starting point: Hamiltonian of static DFT in localized basis, define
retarded Green function

Hrrp, Hipe O Grr, Gre Grr
(E+in)l— | Hecr Hec Her Ger Gee Ger | =1
0 Hgrc Hgr Grr Grc Ggr

note: no direct hopping between left and right leads
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Landauer steady-state approach to electron transport
Landauer + static DFT for steady state transport

Standard approach: Landauer formalism plus static DFT

project on central region
Goo(E) = (B +in)loc — Hoo — £1(E) — Sr(E)) ™
embedding self-energy for lead «

So(E) = Hoo (B + )1y — Hoo) ™t Hac

Transmission function

T(E,V)=Tr{T1GccTrGoc} To =i(Zq — %)

Landauer formula for steady-state current

1V)= 5 [ ABT(E,V) (f5(B +eV/2) ~ f3(E - eV)2)
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Landauer steady-state approach to electron transport

Landauer + static DFT for steady state transport

Standard approach: Landauer formalism plus static DFT

Schematic idea of Landauer approach

kg +V/2

ightgoi in left lead
rigmigeing e n fett fex v leftgoing e in right lead

KS
Transmission T(E,V)

Zero-bias conductance in Landauer formalism

G

2
= /dET ‘m( ) Gy = 2%
Go

in zero-temperature limit: G% =T(EFr)
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Landauer steady-state approach to electron transport

Landauer + static DFT for steady state transport

Example for application of Landauer formalism
Chrysazine molecule attached to gold leads
Ref.:
A. Zacarias, E.K.U. Gross, Theor. Chem. Acc. 125, 535 (2010)
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Landauer steady-state approach to electron transport
Landauer + static DFT for steady state transport

Critique of the Landauer approach

Empirical finding: currents through single (esp. organic) molecules
often differ from experimental ones by 2-3 orders of magnitude
Basic assumptions behind Landauer:

@ A stationary current always develops
@ The stationary state is uniquely determined by the bias
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Landauer steady-state approach to electron transport
Landauer + static DFT for steady state transport

Critique of the Landauer approach

Empirical finding: currents through single (esp. organic) molecules
often differ from experimental ones by 2-3 orders of magnitude
Basic assumptions behind Landauer:

@ A stationary current always develops
@ The stationary state is uniquely determined by the bias
Theoretical weaknesses:

@ Landauer formalism vaild for non-interacting electrons

e Static DFT is a ground state theory and therefore in principle
not suited to describe systems in a non-equilibrium situation
— even if exact effective KS potential of static DFT could
be used, predictions of Landauer might still be incorrect!
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Landauer steady-state approach to electron transport
Landauer + static DFT for steady state transport

Critique of the Landauer approach

Empirical finding: currents through single (esp. organic) molecules
often differ from experimental ones by 2-3 orders of magnitude
Basic assumptions behind Landauer:

@ A stationary current always develops
@ The stationary state is uniquely determined by the bias
Theoretical weaknesses:

@ Landauer formalism vaild for non-interacting electrons

e Static DFT is a ground state theory and therefore in principle
not suited to describe systems in a non-equilibrium situation
— even if exact effective KS potential of static DFT could
be used, predictions of Landauer might still be incorrect!

— use time-dependent DFT which is exact in principle.
Furthermore, it allows to study time-dependent transport
phenomena (transients, AC bias, interaction with laser, etc...)
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m app o ti ndent transport
Approaches to (time-dependent) transport using TDDFT dent transport: embedding technique

Quantum kinetic approach

Approaches to time-dependent transport using TDDFT J
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Finite-system approach to time-dependent transport
Approaches to (time-dependent) transport using TDDFT Time-dependent transport: embedding technique
Quantum kinetic approach

Finite-system approach

Idea: simulate nanosystem attached to large but finite leads

for t = 0: perform static DFT calculation with
additional external potential V' (z) mimicking
the bias

il for t > 0: switch off V(z) and perform
’ standard KS time-evolution

two large jellium leads connected by constriction (Sai et al, PRB
75, 115410 (2007)): snapshots of current density in TDLDA

) J
30 20 10 0 10 20 30
z[A]
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Finite-system approach to time-dependent transport
Time-dependent transport: embedding technique
Quantum kinetic approach

Approaches to (time-dependent) transport using TDDFT

Finite-system approach (cont.)

other example: tight-binding gold chain between gold electrodes
(N. Bushong et al, Nano Lett. 5, 2569 (2005))

non-interacting TDLDA
2: T
<
E}
305 :
t (fs)
clear plateau in current after current plateau still visible but
transients before eventually somewhat less clear

current dies out
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Finite-system approach to time-dependent transport
Approaches to (time-dependent) transport using TDDFT Time-dependent transport: embedding technique
Quantum kinetic approach

Time-dependent transport: embedding technique

central
left lead L . right lead R
region C

e

TD Kohn-Sham equation for orbitals

Hpr(t) Hie 0 Y, (t)
i0y— | Hcr Hee(t) Her Yre(t) | =0
0 Hpc  Hpggr(t) Vi, r(1)

Benasque 2012: S. Kurth Quantum transport



Finite-system approach to time-dependent transport
Approaches to (time-dependent) transport using TDDFT Time-dependent transport: embedding technique
Quantum kinetic approach

Time-dependent transport: embedding technique (cont.)

three equations

(10 — Hpp(t)) Yr,L(t) = Hrovr,c(t) (
i0¢brc(t) = Hopr,(t) + Hoo()bko(t) + Horer(t)  (C)
(10, — Hrr(t)) Yr,r(t) = HroYr,o(t) (

Retarded Green function for isolated lead o = L, R

[i0: — Haa(t)lga (t,t') = 6(t — ¢')

solve inhomogeneous Schrodinger equation (L) (simlarly for (R))
Y1, = gl [rh.s. of (L)] + [sol. of hom. SE (id; — Hp(t)) 1 = 0]

t/
— Y, (t) = ; A’ gf(t, Y Hrcveo(t') +igh (¢, 0)¢y, 1.(0)
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Finite-system approach to time-dependent transport
Approaches to (time-dependent) transport using TDDFT Time-dependent transport: embedding technique
Quantum kinetic approach

Time-dependent transport: embedding technique (cont.)

Equation of motion for orbital projected on central region

[i0: — Hoo(t)r,c(t) =

t
/0 dt E?mb(ta £)¢k70(5) + Z HCagc}E(t’ 0)Yk,a(0)

with retarded embedding self energy

SEtt) = > Hoagl(t,t)Hac
a=L,R

details in:
S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, E.K.U. Gross,
PRB 72, 035308 (2005)
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Finite-system approach to time-d ent transport
Approaches to (time-dependent) transport using TDDFT Time-dependent transport: embe g technique
Quantum kinetic approach

Quantum kinetic approach

Look at transport from point of view of open (electronic) system
coupled to a bath (typically phonon bath)

Refs.: R. Gebauer et al, PRL 93, 160404 (2004); Burke et al, PRL
94, 146803 (2005)

Hamiltonian of total system

f[tot = f{el + ﬁbath + f{coup J

reduced density operator

N

Sreat) = Trath | Stor(t)] = Trvasn [[ L) (T (D]
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ite- m approach to time-def
Approaches to (time-dependent) transport using TDDFT endent transport: embeddin
Quantum kinetic approach

transport
hnique

Quantum kinetic approach

two assumption to derive eqation of motion for S’red

@ weak coupling between electrons and both — sufficient to go
to 2nd order in H oyp
@ Markov approximation: time scale on which el. system varies

is large compared to time-scale on which bath correlation
functions decay

Master equation

% S g = —i [ﬁel, Sred] + C[Sred]

with superoperator é[ﬁred] whose explicit form depends on bath
density-functionalize this approach (Burke et al (2005)): for a

given superoperator, map problem of interacting electrons on an
effective non-interacting one
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approach to time-dependent transport
ndent transport: embedding technique
Quantum kinetic approach

Approaches to (time-dependent) transport using TDDFT

Quantum kinetic approach

for practical convenience: use periodic boundary conditions, i.e.,
schematically as

00 0000 090900 090
S0%6 ee 3508503050 ee S0509050 Sado
60000 @ ©0,050000000 ©05050000000 ©e5000
0000 @@ 0505000 @e 0p0/0/0 6050
0900 0%0%09%0 0%0%000° 0900

A(t)=-cEt

so far only few applications to simple systems
Example: 3-atom gold chain connected to two gold electrodes
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bund-state oscillations
ability

Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Time-dependent transport phenomena J
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Bound-state oscillations for non-interacting electrons

G. Stefanucci (PRB 75, 195115 (2007)): If Hamiltonian of a
(noninteracting) biased system in the long-time limit supports two
or more bound states — total current in long-time limit

lim 1o (t) = 1) 4+ 1P ()

¥

with steady-state part and dynamical part

IPV () =2 fopAfy sin((ep — ep)t)
b,b’

where sum runs over the bound states of the Hamiltonian in
long-time limit
Remarks: 1) f; 1y depends on history of TD Hamiltonian
2) No steady state in long-time limit (violation of one of
the assumptions underlying Landauer)
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Bound-state oscillations in density

current and density related via continuity equation
— also dynamical contribution to density for large ¢

0t (e t) = D fou cosl(e5° — i) g™ (x)¢ (r)

bb’

note:
the terms b = 1’ lead to a history-dependent contribution (through
fv,p) to the time-independent part of the density
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Bound-State Oscillations in One-Dimensional Model

Start with constant potential, at ¢ = 0 apply sudden DC bias in
left lead, wait until steady state develops, then switch on gate

potential (with switching time t4) in device region which creates
two bound states
t<0 t>T+tg

€F
€ Uy
€p 2
- v
\ / €p 1 -I_y

-—
AX =2.4

U,
; €p

Refs.: E. Khosravi et al, Appl. Phys. A 93, 355 (2008); Phys.
Chem. Chem. Phys. 11 4535 (2009)
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Bound-state oscillations
Bist y
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

1D model: time-dependent current

— — .
04
0.2 I
: l
g o |
-0.2— ’i
041
L | L | L 1 L | L
0 100 200 300 400 500
t/a.u.
note:
amplitude of current oscillations large compared to steady-state
current
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

1-D Model: Bound-State Density and Occupation

bound-state contribution to occupation numbers f;;,
time-independent density for of bound states as function
different switching times of switching time
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

1D model: transients in current

biased system with two bound states in initial state: Fourier
transform of current for finite time interval of length Ty = 800 a.u.
but different starting points ¢, = (2 + p) x 100 a.u.

T T T T T T
015 €pp By — P04
: — p=t
p=2
— p=3
p=4
01 -
5
o
005~ B
e +Ugey, eetUpey,
Epr€pp
VAN Ep Epy
==t = = T L \I—.'&vt
0 02 04 06 08 1 12

o/au.

note: not only transition between bound states but also between
bound states and continuum
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

1D model: transients in current

0.03— —
e +U_-€
| FrYR Ey — oo |
— p=1
0.025 p=2| =
— p=3 ]
ety p=4
0.02
3
]
:3:0.015
0.01
0.005

0.2 0.25 0.3 0.35
®/au.

note:
bound-continuum transitions die out slowly (~ 1/t)
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Simple impurity model for transport

1 1
left lead | U . right lead
1 1

V V I VLink VLlnII< V V

one interacting impurity, Hubbard-like on-site interaction U,
non-interacting leads, hopping V' in leads and hopping Vi from
leads to impurity, (time-dependent) on-site energy £¢(t) at impurity
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Simple impurity model: steady-state condition in DFT

use local KS potential, apply DC bias W, in lead oo = L, R,

assume there exists steady state with density n at impurity
— self-consistency condition for n

er+Weq w
n=2 3 [ - Wa)l6w)?
a=L,R’ ™
G(w) = [w — vgs(n) — B(w — W) — D(w — Wg)] ™

1
vrs(n) =¢eo + §Un + Uge(n)

fa(w): Fermi function at inverse temperature 3
Yo(w): embedding self energy for lead «
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Multiple solutions for steady-state condition in DFT

lead bands from —2|V| to 2|V, Fermi energy e = 0.6|V],
on-site interaction U = 4|V'|, hopping to impurity Vi = 0.7V,
on-site energy €9 = 0, right bias Wgr = 0, left bias Wy, = 3|V/|
use Hartree approximation (which for our model is equivalent to
Hartree-Fock): vz =0

1 three solutions for
I self-consistent density
07 ny = 0.33
06 ‘\\. 7 \ —

'§ 0s ng = 0.58
© 04 \'\\ / \'\\ ng = 0.66
03 . .
02 “.|  Question: which steady state
o1 1— | can be reached by time
2 B .
00 01 02 03 04 05 06 07 08 09 1 propagatlon?
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Bour oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Spectral functions for multiple steady-state solutions

25
Ut | 2
15
1
s 0.5 UgtH
0
n =033 ——
n,=0.58
HF 1o =0.66 -
0 02 04 06 08 1 12 14 16

A(w)

spectral function for ny peaked in energy range of right band, for
n3 peaked in range of left band, for ny peaked at top of right band
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Time-dependent switching between different steady states

switching between steady states by time-dependent on-site energy

Vg exp(—nt) if0<t<Ty
eo(t) = —Vyexp(—y(t—Ty)) ifTy,<t<2T,
Vgexp(—(t —2Ty)) if Ty <t < 2Ty
0.8
; HF
Rl I .| second steady state
06 _// | (density n2) unstable,
os | ; cannot be reached by
= ol time-propagation
03 ‘
Vg=0,0 e
02 V= 1,5.\/ ygg.i@r'g ;Oéé
VTR 19250
0.1 q il ' g
0 40 80 120 160 200 240
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Bound-state oscillations
Bistability

Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Inclusion of correlation in GW and second Born

BUT: using diagrammatic techniques (Kadanoff-Baym equations)
we found that inclusion of correlation beyond HF such as GW or
second Born approximation tends to destroy mustistability

TD density in GW and 2B Refs.
. @ A.-M. Uimonen et al,
ol J.Phys: Conf. Ser. 220,
03 || P 012018 (2010)
%0,4 ;/‘J @ E. Khosravi et al,
" deE arXiv:cond-mat/1112.2871
" (2011)
02 v, E-15y=01, GW
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Local functional with derivative discontinuity

use a modified version of the functional suggested by Lima et al,
PRL 90, 146402 (2003) based on the Bethe ansatz for the uniform
Hubbard model (Bethe-ansatz LDA, BALDA)

important property: derivative discontinuity at half filling

derivative discontinuity at n = 1

A = lim [pBAPA =14 €) —0BALPA(p =1 — ¢)]

xc xc

e—0F

= U — 4|VLink| cos <C(7TU)>

where ((U) parametrically depends on the on-site interaction U

Benasque 2012: S. Kurth Quantum transport



Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Steady state self-consistent density for impurity model

I.h.s. and r.h.s. of self-consistency condition for n

2
1.5 ] no solution for steady
state density for some
s 1 —w_-toy |  Vvalues of the bias.
—w, =11V
i —w, =12V |
: — W =13|
0, L | L f T T T
0 0.5 1 15 2
n

to understand physics of this regime — smoothen xc discontinuity
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Steady-state density vs. bias for different Vi,

LA EL R I e BALDA:

I ' anl step structure

1's for small Viink

width of step: U

41 *» — Coulomb blockade

Hartree:
Jos no step structure
— crucial role of
. discontinuity

note: the role of the discontinuity in steady-state transport has
also been discussed in C. Toher et al, PRL 95, 146402 (2005)
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Bound-state oscillations
Bistability
Time-dependent transport phenomena Dynamical picture of Coulomb blockade

Dynamical picture of Coulomb blockade

TD density and KS potential in presence of discontinuity

| density shows small
oscillations around integer
1 occupation

— W =13V
— W, =16V
— W, =19V

0 I |

| TD KS potential: series of
I | almost rectangular potential
‘ 1 steps

10 ‘ 15 ‘ 20
t/v?

Ref: S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, E.K.U.
Gross, PRL 104, 236801 (2010);
see also: C.A. Ullrich, Physics 3, 47 (2010)
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Summary and critique of adiabatic TDDFT for transport

Summary and critique of adiabatic TDDFT for transport

@ Standard Landauer + static DFT approach in principle
incomplete

@ TDDFT approach to transport in principle ok
@ Various approaches to TDDFT for transport

e Finite system approach

e Embedding scheme

o Master equation (open system)

@ Time-dependent phenomena in transport

o Bound-state oscillations for non-interacting electrons (no
steady state)

o Bistabilities and time-dependent switching between different
steady states

e Dynamical picture of Coulomb blockade
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Summary and critique of adiabatic TDDFT for transport

Summary and critique of adiabatic TDDFT for transport

o TDLDA does not give any corrections to the Landauer formula
(@)

100

80 F

60 |

Current (uA)

40F

20

1

from C.-Y. Yam et al, PRB 83, 245448 (2011)

@ Bistability has only been found for adiabatic functionals, i.e.,
functionals without memory but not for correlated MBPT
approaches beyond HF. Is bistability an artefact of the
adiabatic approximation?

2yottage (v) °
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