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Outline

Laser-matter interaction: molecules

• Molecules, Born-Oppenheimer approximation

• Bond softening, enhanced ionization, Coulomb explosion

• High-harmonic generation in molecules, tomographic
imaging of orbitals
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Molecules

Set of nuclear and electronic coordinates Rj and rk.

Hamiltonian:

H0 =
∑

j

P 2

j

2Mj
+
∑

k

p2
k

2
+
∑

j,k

wj,e(Rj, rk)+

∑

j1 6=j2

wj1,j2(Rj1 ,Rj2) +
∑

k1 6=k2

wee(rk1 , rk2)

with wj1,j2 nucleus-nucleus interaction, wj,e nucleus-electron
interaction, and wee electron-electron interaction.

Light-molecule interaction:

H(t) = H0 −D · E(t)

with dipole moment D = (
∑

j ZjRj)− (
∑

k rk)
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Born-Oppenheimer approximation

Separation of time scales for nuclear and electronic motion
due to great mass difference

→ Electrons adjust “instantaneously” to nuclear positions.

Born-Oppenheimer (BO) Ansatz for wave function:

Ψ(R, r, t) =
∑

m χm(R, t) Φm(R, r),

Φm(R, r) = electronic eigenstates at fixed nuclear positions.

Inserting into the field-free TDSE yields

i ∂
∂t
χm(R, t) =

[

Tn + V BO
m (R)

]

χm ← BO approximation

+
∑

m′〈Φm|Tn|Φm′〉χm′ ← nonadiabatic couplings
(Tn acting on both Φm′ and χm′ )
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Born-Oppenheimer approximation

Including the laser-molecule interaction, the BO TDSE
becomes:

i ∂
∂t
χm(R, t) =

[

Tn + V BO
m (R)

]

χm(R, t) − E ·
∑

m′〈Φm|D|Φm′〉χm′

→ Functions χm coupled only by the dipole matrix elements.

BO approximation breaks down for highly excited electrons:

• Rydberg molecules

• Electrons in the continuum
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Fragmentation mechanisms in H+
2

• Bond softening

• “Above-threshold” dissociation

• Charge resonance enhanced ionization

• Coulomb explosion
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Bond softening

Transitions between BO states occur at nuclear positions
where photon energy is resonant.
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Bond softening

Alternative picture: potential surfaces shifted by multiples of
the photon energy (→ diabatic potentials)
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Lowering of dissociation threshold = bond softening
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"Above-threshold" dissociation

3-photon absorption + 1-photon emission
= effective 2-photon absorption
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Charge-resonance enhanced ionization

At a range of internuclear distances, the tunneling barrier is
suppressed by the presence of the second center.
→ enhancement of ionization
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Seideman, Ivanov, Corkum, PRL 75, 2819 (1995),
Zuo, Bandrauk, PRA 52, R 2511 (1995).
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Coulomb explosion

Ionization of H+
2 and other molecular ions can create two

charged centers→ rapid fragmentation due to Coulomb
repulsion.

++

Kinetic energy release indicates initial internuclear distance
by energy conservation:

Ekin ≈ 1/Rinitial

→ Coulomb explosion imaging
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Typical fragment spectrum

Energies of D+ ions from D2 in a strong pulse

Kinetic energy (eV)

[Trump et al. PRA 62, 063402 (2000)]
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High-harmonic generation in molecules

For small molecules: electron excursion >> molecular size

electron

photon

Atom-like mechanism

Influence of molecular properties on ion-
ization and recombination

→ Probing of molecular structure / dynamics
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Calculation of emission spectra

Calculation of the time-dependent dipole acceleration

a(t) = 〈ψ(t)|∇V0 +E(t)|ψ(t)〉

and Fourier transform

a(Ω) =
∫

a(t)eiωt

gives emission spectrum

S(Ω) ∼ |a(Ω)|2

In practice: time integration over pulse duration T ,

a(Ω) =
∫ T

0
a(t)f(t)eiωt

with some window function f(t).

Alternatively: a(t) = D̈(t) from time-dependent dipole moment D(t)

or: a(t) = v̇(t) from time-dependent dipole velocity v(t)

– p. 14



Two-center interference

Recolliding electron with wave vector k in H2 or H+
2

kk
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M.L., N. Hay, R. Velotta, J.P. Marangos, P.L. Knight, PRL 88, 183903 (2002)]

Minimum occurs when R cos θ = λ/2 with λ = 2π/k = electron wavelength

More precisely:
recombination probability is proportional to the square of the
bound-continuum transition dipole d = 〈k|D̂|Φ〉.
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Multielectron dynamics in HHG

Not only the highest occupied molecular orbital (HOMO), but also
lower-lying orbitals participate in harmonic generation when HOMO
contribution is suppressed by symmetry.

Example: CO2

O. Smirnova et al.,
Nature 460, 972 (2009)
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Strong-field approximation for high-harmonic generation

(also known as Lewenstein model)

D(t) = i
∫ t

0
dt′E(t′)

∫

d3p 〈p+A(t′)|x|0〉〈0|r|p+A(t)〉 exp(−iS) + c.c.

where S(p, t, t′) =
t
∫

t′
dt′′

[

(p+A(t′′))2

2 + Ip

]

(length-gauge form) [Lewenstein et al., Phys. Rev. A 49, 2117 (1994)]
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Strong-field approximation for high-harmonic generation

(also known as Lewenstein model)

D(t) = i
∫ t

0
dt′E(t′)

∫

d3p 〈p+A(t′)|x|0〉〈0|r|p+A(t)〉 exp(−iS) + c.c.

where S(p, t, t′) =
t
∫

t′
dt′′

[

(p+A(t′′))2

2 + Ip

]

(length-gauge form) [Lewenstein et al., Phys. Rev. A 49, 2117 (1994)]

In addition to the gauge problem, there is a
choice of recombination operator:

velocity (or acceleration) form preferable to length form
[A. Gordon, F.X. Kärtner, PRL 95, 223901 (2005),

C.C. Chirilă, M.L., J. Mod. Opt. 54, 1039 (2007)]
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Results for harmonic generation in H+2
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curves: full SFA results

dashed lines: minima from
• TDSE
• recombination elements only
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SFA for harmonics in vibrating molecules

Assume

• Born-Oppenheimer motion of core electrons,
• transition matrix element independent of internuclear distance

(sufficient is d(k, R) = f(k) g(R))

→ Creation of a nuclear wave packet χ that evolves on the BO potential
surface of the ion between t′ and t.
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SFA for harmonics in vibrating molecules

Assume

• Born-Oppenheimer motion of core electrons,
• transition matrix element independent of internuclear distance

(sufficient is d(k, R) = f(k) g(R))

→ Creation of a nuclear wave packet χ that evolves on the BO potential
surface of the ion between t′ and t.

→ P(t) = 2
t
∫

0

dt′E(t′)
∫

dRχ(R, 0)∗χ(R, t−t′)

×
∫

d3p 〈p+A(t′)|x|0〉 〈0|∇|p+A(t)〉 exp[−iS(p, t, t′)] + c.c

with vibrational wave packet χ(R, τ).

→ Harmonics are sensitive to the vibrational autocorrelation function
C(τ) =

∫

dRχ(R, 0)∗χ(R, τ)
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Vibrational autocorrelation function

Illustration of physical mechanism:
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Vibrational autocorrelation function

Calculate field-free evolution of a vibrational wave packet in the BO
potential of H+

2 /D+
2 ,

i∂χ(R,t)
∂t

=
[

−
∂2

R

M
+ V +

BO(R)
]

χ(R, t), χ(R, 0) = χH2

0 (R)
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→ More intense harmon-
ics in heavier isotope D2.
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Comparison with experiment

8 fs pulses, wavelength 775 nm, intensity 2×1014 W/cm2

Raw data of harmonics in D2

and H2
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Comparison with experiment

8 fs pulses, wavelength 775 nm, intensity 2×1014 W/cm2

Raw data of harmonics in D2

and H2

Ratio D2/H2

Blue: theory

Baker et al. Science 312,424 (2006)
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Isotope effects in water molecules

HHG in water proceeds from HOMO or HOMO-1:

Farrell et al., PRL 107, 083001 (2011)

– p. 23



Isotope effects in water molecules

Ratio of harmonics D2O / H2O:

Farrell et al., PRL 107, 083001 (2011)
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Tomographic imaging of molecular orbitals

Idea: factorize measured harmonic amplitude into “recollision wave
packet” a(ω) and recombination dipole d(ω):

D(ω) = a(ω)d(ω)

Compare to measured amplitude for a reference system with known
orbitals (i.e. known recombination dipole) and the same recollision
amplitude:

Dref(ω) = a(ω)dref(ω)

→ leads to measurement of d = D
Dred d

ref .

In the plane-wave approximation, d(ω) = 〈exp(ik · r|D̂|Φ〉,
→ Fourier transform retrieves orbital Φ.

Itatani et al., Nature 432, 867 (2004)
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Tomographic imaging of molecular orbitals

Measured recombination dipole amplitude and phase for N2

Haessler et al., Nat. Phys. 6, 200 (2010)

Note the orientation-independent minimum at harmonic 25.
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Tomographic imaging of molecular orbitals

Retrieved HOMO and HOMO-1 for N2

experimental

simulated
(filtered ab-initio orbitals)

ab-initio orbitals

Haessler et al., Nat. Phys. 6, 200 (2010) – p. 27



Conclusions

• Great importance of multi-orbital dynamics in

intense-laser-molecule interactions

• Need for combining strong-field methods with

quantum-chemical calculations

• It is desirable to combine nuclear motion with TDDFT

Next part:

• Learning about TDDFT and physical mechanisms from model

systems
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